

17 IJNMT, Vol. VI, No. 1 | June 2019

ISSN 2355-0082

The Use of Color Gradation on Program

Visualization for Learning Programming

Rossevine Artha Nathasya1, Oscar Karnalim2

 Faculty of Information Technology, Maranatha Christian University, Bandung, Indonesia

rossevine.artha@gmail.com

oscar.karnalim@it.maranatha.edu

Received on 15 February 2019

Accepted on 24 June 2019

Abstract—According to several works, Program

Visualization (PV) enhances student understanding

further about how a particular program works.

However, to our knowledge, no PVs utilize color

gradation as a part of their features, even though color

plays an important role in visualization. Therefore, two

uses of color gradation on PV are proposed on this pa-

per. On the one hand, color gradation can be used to

display execution frequency of each instruction;

instruction with higher execution frequency will be

assigned with more-prominent color. Such piece of

information is expected to help student for

understanding program complexity. On the other hand,

color gradation can also be used to display access

frequency of each variable; variable with higher access

frequency will be assigned with more-prominent color.

Such piece of information is expected to help student for

understanding program-to-variable dependency. Both

uses are proved to be effective for learning

programming according to our evaluation.

Index Terms—program visualization, color

gradation, program complexity, program-to-variable

dependency, computer science education

I. INTRODUCTION

As the impact of Information Technology (IT) in

daily life grows rapidly, programming becomes a

promising skill to be learned; the demand of program

development is increased. However, learning

programming is not a trivial task; high logical thinking

and clear understanding about abstractive concepts are

required. As a result, several educational tools for

learning programming are proposed [1].

Program Visualization (PV) is a programming-

focused educational tool that helps the user to

understand his/her source code (i.e. program) through

visualization [1]. A typical PV works by accepting a

code and then generating visualization states as its

result (each state displays program information after a

particular instruction has been executed). Using such

tool, users are expected to understand their code

further; resulted states are visualized in descriptive and

interactive manner.

To our knowledge, no PVs utilize color gradation

as a part of their features, even though color plays an

important role in visualization. Hence, this paper

explores the use of color gradation on PV. To be

specific, color gradation will be applied for displaying

two pieces of information: execution frequency of

each instruction and access frequency of each variable.

The execution frequency of each instruction is related

to program complexity. With this information, the

students can understand which parts of their program

are executed most, and if they want to optimize, they

know that those parts should be the main focus. The

access frequency of each variable is related to

program-to-variable dependency. With this

information, the students can exclude unused

variables. Further, if they want to optimize their code,

variables with high access frequency can be addressed

last; these variables are heavily related to the program

and their optimization may take a considerable amount

of time. We would argue that both pieces of

information are important for users to learn their code

at Introductory Programming course. They can get the

main idea of program optimization prior taking the

real material at more advanced courses.

II. RELATED WORKS

In general, educational tools for learning

programming can be classified into twofold: standard

educational tool and Software Visualization (SV).

Standard educational tool enhances user understanding

with no strong emphasis on visualizing software (i.e.

program) data and process. For instance, a work

proposed by [2] is more focused on comparing both

algorithm and program time complexity in empirical

manner. Other examples are the work proposed by

[3,4]; they are primarily focused on active learning

about Greedy algorithm. In contrast, SV enhances

student understanding with a strong emphasis on

visualizing software data and process [1]. Since

software can be perceived from two perspectives, SV

is usually classified further to two sub-categories:

Algorithm and Program Visualization.

Algorithm Visualization (AV) focuses on

visualizing algorithm (i.e. an abstractive representation

of program). This kind of tool is frequently used to

cover complex topics such as data structures and

IJNMT, Vol. VI, No. 1 | June 2019 18

ISSN 2355-0082

algorithm strategies. First, a work in [5] proposes an

AV for learning basic data structure material in

accordance with an undergraduate course in a private

university. Second, a work in [6] proposes a web-

based portal for learning data structure and algorithm

where more emphasis is given on data structure; the

materials itself vary from the simplest one (e.g. stack)

to the most complex one (e.g. graph). Third, a work in

[7] proposes an AV for learning algorithm strategies

by example; it covers brute force, dynamic

programming, backtracking, and greedy algorithm

strategy. Last, a work in [8] proposes an AV for

learning branch \& bound strategy; it utilizes traveling

salesperson problem as its case study.

Different with AV, Program Visualization (PV)

focuses on visualizing program. Several examples of

such tool are PythonTutor, Jelliot 3, Ville, Omnicode,

and PITON. First, PythonTutor [9] is a web-based PV

that is originally designed to teach user how Python

program works. Second, Jelliot 3 [10] is a PV for

learning Java program. Third, Ville [11] is a PV with

language-independent design; new programming

language can be incorporated directly as long as it has

similar characteristic with the existing ones. Fourth,

Omnicode [12] is an extended PV from PythonTutor;

it introduces live programming environment. Fifth,

PITON [13] is an integration between PV and

programming workspace; where the user can visualize

their code during the completion of their assessment.

Color gradation is a mechanism to gradually

transition one color to another [14,15]. To our

knowledge, this mechanism has not been used on any

PVs even though color plays an important role in

visualization.

III. METHODOLOGY

This paper proposes two uses of color gradation in

Program Visualization (PV). One of them is about

displaying execution frequency of each instruction

while another one is about displaying access frequency

of each variable. Both of them will be applied on

CPyn (Colorized PYthon code visualizatioN), a

prototype PV specifically developed to implement the

uses of color gradation. As its name states, CPyn is

specifically designed to visualize Python program. The

user interface of CPyn can be seen on Figure 1; color

gradation will be displayed in source code display (the

middle component) and variable display (the upper-

right component).

Figure 1. The user interface of CPyn

CPyn accepts a program source code file path,

program input, and target color from left components.

Target color can be defined by clicking either

Recommended target color or Define own target color

button. The former one will display popular colors to

be selected while the latter one will display color

picker where the user can input his/her own color.

After all inputs are given, CPyn will generate

visualization along with program output in step-by-

step fashion; user can view each visualization state

through prev and next button.

Execution frequency refers to how many times a

particular instruction has been executed while running

the program. Displaying such information is expected

to provide further understanding about program

complexity; instruction with higher complexity (i.e.

instruction with higher execution frequency) will be

displayed with more-prominent color. Since newline is

a default instruction separator in Python (i.e. CPyn's

target language), each instruction is assumed to

occupy one line. Intuitively, displaying execution

frequency is implemented in two typical PV phases:

recording and visualization phase.

19 IJNMT, Vol. VI, No. 1 | June 2019

ISSN 2355-0082

Execution frequencies will be recorded at

recording phase (see Figure 2) by embedding two

additional steps (the italicized ones). First, before

conducting pseudo-execution, it will prepare an empty

array to store execution frequencies. Second,

according to executed instruction, it will increment

given array content; the array will be then included as

the result of recording phase.

Resulted array from recording phase will be

displayed at visualization phase (see Figure 3) by

embedding two additional steps (the italicized ones).

First, before visualization starts, it will define the

highest frequency as maximum threshold according to

resulted array. This maximum threshold is required to

define the most prominent color in gradation equation.

Second, during visualization, the background of each

line will be recolored based on resulted color

gradation. To keep instruction text still readable,

foreground color of each instruction text will be

inverted toward its background color.

Figure 2. Recording Phase

Figure 3. Visualization Phase

In order to generate color gradation, two color

equations are proposed according to [15]: RGB-based

and CMYK-based equation. Both of them accept three

parameters per instruction: execution frequency (ef),

maximum frequency threshold (mf), and target color

(in either RGB or CMYK format). User can select one

of these equations at CPyn's setting.

RGB-based color equation generates the color of

each instruction by combining red, green, and blue

color component from (1), (2), and (3) respectively;

R', G', and B' are the color components of target color.

Since black is RGB's default color where all

components are assigned as 0, resulted gradation will

be assigned from black to target color (higher

frequency refers to brighter color). An example of

CPyn's source code display resulted from such

gradation can be seen on Figure 4. It becomes dark-

themed; RGB-based color equation uses black as its

initial color.

R = (R'*ef)/mf (1)

G = (G'*ef)/mf (2)

B = (B'*ef)/mf (3)

In contrast, CMYK-based color equation generates

the color of each instruction by combining cyan,

magenta, yellow, and black color component from (4),

(5), (6), and (7) respectively; C', M', Y', and K' are the

color components of target color. Different with RGB-

based color equation, resulted gradation will be

assigned from bright to target color (higher frequency

refers to darker color); white is CMYK's default value

where all components are assigned as 0. An example

of CPyn's source code display resulted from such

gradation can be seen on Figure 5. It becomes bright-

themed; CMYK-based color equation uses white as its

initial color.

C = (C'*ef)/mf (4)

M = (M'*ef)/mf (5)

Y = (Y'*ef)/mf (6)

K = (K'*ef)/mf (7)

Access frequency refers to how many times a

particular variable has been accessed while running

the program. Displaying such information is expected

to provide further understanding about program-to-

variable dependency; variable that is more depended

by given program (i.e. variable with higher access

frequency) will be displayed in more-prominent color.

Displaying access frequency is implemented in

similar manner as displaying execution frequency. It

only differs in four aspects. First, prepared data

container at recording phase is replaced with a key-

value pair set where key refers to variable name and

value refers to its frequency (in this work, we assume

variables are distinguishable through its name).

Second, update mechanism at recording phase will be

conducted by comparing the value of recorded

variables from current state with its adjacent previous

IJNMT, Vol. VI, No. 1 | June 2019 20

ISSN 2355-0082

state. For each variable, if its value is changed, its

access frequency on prepared data container will be

incremented by 1. Third, the highest frequency at

visualization phase will be defined based on prepared

key-value pair set. Last, color gradation will be

displayed on variable display instead of source code

display (see Figure 6 for an example of CPyn's

variable display resulted from RGB-based gradation

and Figure 7 for an example of CPyn's variable display

resulted from CMYK-based gradation). Resulted color

for each variable entry refers to how many times that

variable has been accessed from initial to current

visualization state; brighter color refers to higher

frequency.

Figure 4. An example of CPyn's source code display resulted from RGB-based color gradation

Figure 5 An example of CPyn's source code display resulted from CMYK-based color gradation

21 IJNMT, Vol. VI, No. 1 | June 2019

ISSN 2355-0082

IV. EVALUATION

In order to evaluate proposed uses about color

gradation, two evaluation scenarios are conducted:

functionality-based and questionnaire-based

evaluation. Functionality-based evaluation validates

whether proposed uses are implemented correctly.

Each implementation is evaluated by comparing its

resulted color gradation and frequencies with

manually-calculated result. Seven source codes are

considered per implementation; each code covers

different introductory programming materials.

According to our functionality-based evaluation, both

uses are implemented correctly; their resulted color

gradation and frequencies is similar to manually-

calculated result on all codes.

Figure 6. An example of CPyn's variable display

resulted from RGB-based color gradation

Figure 7. An example of CPyn's variable display

resulted from CMYK-based color gradation

Different with functionality-based evaluation,

questionnaire-based evaluation validates whether

proposed uses are useful in practice from human

perspective. It involves 20 undergraduate students

where each user (i.e. student) is asked to answer 11

questions related to practical values of both uses.

Before answering these questions, each user is

required to complete 30 problems related to execution

and access frequency using CPyn in 30 minutes; each

problem is related to introductory programming

material and its expected solution is only about one to

three words. Such prerequisite aims to provide a real

experience for users about both uses when learning

programming.

Questions used in this survey are classified into

three categories: scale-based, feedback, and bug report

question. Scale-based question asks about user

agreement toward predefined statement in 7-points

Likert scale (1 refers to completely disagree, 4 refers

to neutral, and 7 refers to completely agree). Nine

questions fall into this category where their question

ID and statement can be seen on Table 1.

Table 1. Statements involved in scale-based questions

ID Statement

Q1

Color gradation in source code display helps the user

to determine which instruction is either the most or

the least frequently-executed one.

Q2

Color gradation in variable display helps the user to

determine which variable is either the most or the

least frequently-accessed one.

Q3

Color gradation in source code display helps the user

to determine non-executed instructions regarding to a

particular input set.

Q4

Color gradation in variable display helps the user to

determine non-accessed variable regarding to a

particular input set.

Q5

Color gradation in source code display, at some

extent, helps the user to understand program

complexity.

Q6

Dark-themed color gradation (i.e. RGB-based color

gradation) in source code display is convenient to be

used.

Q7

Bright-themed color gradation (i.e. CMYK-based

color gradation) in source code display is convenient

to be used.

Q8

Dark-themed color gradation (i.e. RGB-based color

gradation) in variable display is convenient to be

used.

Q9

Bright-themed color gradation (i.e. CMYK-based

color gradation) in variable display is convenient to

be used.

According to the result of scale-based questions

(see Figure 8 where vertical axis represents resulted

scale and horizontal axis represents the questions), all

statements are positively agreed; they are assigned

with mean score higher than 4 (tend to positive). In

other words, it can be stated that color gradation is

considerably beneficial when used as a part of PV

features. Among these statements, Q1 is assigned with

IJNMT, Vol. VI, No. 1 | June 2019 22

ISSN 2355-0082

the highest mean (6.25 of 7); the difference between

the most and the least frequently-executed instruction

is shown clearly in contrast coloring. It is true that

such contrast coloring is also found on variable display

(referring to Q2 statement). However, according to

respondents' informal feedback, program-to-variable

dependency (i.e. Q2's target information) is less useful

than program complexity (i.e. Q1's target information).

Q8 is assigned with the lowest mean (4.7 of 7)

when compared to other statements. Further

observation shows that dark-themed gradation causes

some texts on variable display are unreadable. It is true

that such issue should also be found on source code

display (referring to Q6 statement). However,

according to respondents' informal feedback, text on

source code display is rarer to be read than text on

variable display when learning through visualization.

Figure 8. The result of scale-based questions

When perceived from the variability (i.e. standard

deviation) of resulted means, Q1 is assigned with the

least-varied result (0.786). Hence, it can be stated that

all respondents share similar perspective about Q1;

they strongly agree that color gradation in source code

display helps the user to determine which instruction is

either the most or the least frequently-executed one.

On the contrary, Q8 is assigned with the most-varied

result (1.301). In other words, it can be stated that not

all respondents share similar perspective about Q8.

Some of them do not slightly agree that dark-themed

color gradation in variable display is convenient to be

used.

Feedback question is an open-ended question

asking about respondents' feedback about proposed

uses of color gradation. Generally speaking, most

respondents only strengthen their answers on scale-

based questions (e.g. reclaiming that color gradation

helps the user to determine which instruction is either

the most or the least frequently-executed one). Only

one respondent provides different answer. He states

that displayed font should be bigger for high

readability. We will solve such issue on future work

by providing resize-able font as a feature.

Bug report question is an open-ended question

asking about bugs found by respondents while trying

the prototype application (i.e. CPyn). Two bugs are

found which are about reset button that does not work

and variable display that shows inconsistent content on

a particular occasion. Both bugs have been fixed at the

time of writing this paper.

V. CONCLUSION AND FUTURE WORKS

In this paper, two uses of color gradation as a part

of PV's features have been proposed. One of them is

related to program complexity while the another one is

related to program-to-variable dependency. According

to our evaluation using CPyn (i.e. a prototype PV

specifically designed to implement such uses), both

uses are effective to help students for learning

programming.

For future work, we plan to evaluate proposed uses

based on students' grade in real courses. To be

specific, a quasi-experimental design [16] will be used

to compare students' grade on two materials: time

complexity in Algorithm Strategy course and program

optimization in Competitive Programming course. The

first material is related to program complexity while

the latter one is related to program-to-variable

dependency.

23 IJNMT, Vol. VI, No. 1 | June 2019

ISSN 2355-0082

REFERENCES

[1] Sorva J, Juha. Notional machines and introductory

programming education. ACM Transactions on Computing

Education 2013;13:1–31. doi:10.1145/2483710.2483713.

[2] Elvina E, Karnalim O. Complexitor: An Educational Tool for

Learning Algorithm Time Complexity in Practical Manner.

ComTech: Computer, Mathematics and Engineering

Applications 2017;8:21. doi:10.21512/comtech.v8i1.3783.

[3] Velázquez-Iturbide JÁ, Pérez-Carrasco A. Active learning of

greedy algorithms by means of interactive experimentation.

Proceedings of the 14th annual ACM SIGCSE conference on

Innovation and technology in computer science education -

ITiCSE ’09, vol. 41, New York, New York, USA: ACM

Press; 2009, p. 119. doi:10.1145/1562877.1562917.

[4] Debdi O, Paredes-Velasco M, Velázquez-Iturbide JÁ.

GreedExCol, A CSCL tool for experimenting with greedy

algorithms. Computer Applications in Engineering Education

2015;23:790–804.

[5] Christiawan L, Karnalim O. AP-ASD1: An Indonesian

Desktop-based Educational Tool for Basic Data Structure

Course. Jurnal Teknik Informatika Dan Sistem Informasi

2016;2.

[6] Halim S, Chun KOH Z, Bo Huai LOH V, Halim F. Learning

Algorithms with Unified and Interactive Web-Based

Visualization. Olympiads in Informatics 2012;6:53–68.

[7] Jonathan FC, Karnalim O, Ayub M. Extending The

Effectiveness of Algorithm Visualization with Performance

Comparison through Evaluation-integrated Development.

Seminar Nasional Aplikasi Teknologi Informasi (SNATI),

2016.

[8] Zumaytis S, Karnalim O. Introducing an Educational Tool for

Learning Branch & Bound Strategy. Journal of Information

Systems Engineering and Business Intelligence 2017;3:8.

doi:10.20473/jisebi.3.1.8-15.

[9] Guo PJ. Online python tutor: embeddable web-based program

visualization for cs education. Proceeding of the 44th ACM

technical symposium on Computer science education -

SIGCSE ’13, New York, New York, USA: ACM Press; 2013,

p. 579. doi:10.1145/2445196.2445368.

[10] Moreno A, Myller N, Sutinen E, Ben-Ari M. Visualizing

programs with Jeliot 3. Proceedings of the working

conference on Advanced visual interfaces - AVI ’04, New

York, New York, USA: ACM Press; 2004, p. 373.

doi:10.1145/989863.989928.

[11] Rajala T, Laakso M-J, Kalla E, Salakoski T. VILLE: a

language-independent program visualization tool.

Proceedings of the Seventh Baltic Sea Conference on

Computing Education Research - Volume 88, Darlinghurst:

Australian Computer Society; 2007, p. 151–9.

[12] Kang H, Guo PJ. Omnicode: A Novice-Oriented Live

Programming Environment with Always-On Run-Time Value

Visualizations. The 30th ACM Symposium on User Interface

Software and Technology (UIST, 2017.

[13] Elvina E, Karnalim O, Ayub M, Wijanto MC. Combining

program visualization with programming workspace to assist

students for completing programming laboratory task. Journal

of Technology and Science Education 2018;8:268.

doi:10.3926/jotse.420.

[14] Martin J (Frances J. The encyclopedia of pastel techniques.

Running Press; 1992.

[15] Anderson FL. Fabric to Dye For: Create 72 Hand-Dyed

Colors for Your Stash; 5 Fused Quilt Projects. 2010.

[16] Creswell JW. Educational research : planning, conducting,

and evaluating quantitative and qualitative research. Pearson;

2012.

