

43 IJNMT, Vol. VI, No. 1 | June 2019

ISSN 2355-0082

Review of Various A* Pathfinding

Implementations in Game Autonomous Agent

Julio Christian Young1*, Alethea Suryadibrata2, Richard Luhulima2

Informatics, Universitas Multimedia Nusantara, Tangerang, Indonesia

julio.christian@umn.ac.id

 alethea@umn.ac.id

 richard.luhulima@student.umn.ac.id

Received on 29 March 2019

Accepted on 24 June 2019

Abstract—Among many pathfinding algorithms, A*

pathfinding algorithm is the most common algorithm

used in grid-based pathfinding. This is because the

implementation of the A* pathfinding is proven to be

able to generate the optimal path in a relatively short

time by combining two characteristics of Dijkstra's and

best-first search algorithm. In the implementation of the

A* pathfinding, the selection of heuristic function and

data structure can affect the performance of the

algorithm. The purpose of this research is to find the

best heuristic function and data structure in regard to

the performance in the A* pathfinding algorithm in a

3D platform. In the experiment, some known heuristic

functions and data structures will be tested on the

various 3D platform with a different size and obstacle

percentage. Based on the experiment, Euclidean squared

distance is the best heuristic function and binary heap is

the best data structure for 3D pathfinding problem, in

regard to the implementation performance.

Index Terms—A* pathfinding, Agent Pathfinding,

Performance Comparison.

I. INTRODUCTION

Pathfinding is a path searching problem from an

origin node to a particular node from a collection of

interconnected nodes. There are several real-world

problems that can be solved by using pathfinding

algorithm such as, selection of the shortest telephone

line, navigation in fully observable environment

(selection of transit line on public transport from a

given routes) and path selection problem in an

autonomous agent [1]. Not only used to solve real-

world problems, pathfinding algorithm are frequently

used in several game genres to determine which path

that must be passed by an autonomous agent [2].

Most of pathfinding algorithms are usually

designed to solve path searching problem in an

arbitrary graph efficiently, not to efficiently solve

path searching in a grid-based pathfinding problem.

Arbitrary graph is a graph that contains a collection of

nodes, where each node can be connected from one to

another by a weighted edge. Generally, autonomous

agent pathfinding in any modern video game

represented in grid-based pathfinding problem. There

are several algorithm that could be used to solve grid-

based pathfinding problem, such as bread-first search,

best-first search, Dijkstra’s or A* pathfinding

algorithm [1].

Among the algorithms above, A* pathfinding is

the most frequently used to solve grid-based

pathfinding problem. A* pathfinding combines two

characteristics from Dijkstra’s algorithm and best-first

search algorithm. A* pathfinding doesn’t always

come up with the most optimal path but it has a

significantly faster time performance compared to

Dijkstra’s algorithm. A* pathfinding usually come up

with slower time performance when it is compared

with best-first search algorithm in the obstacle free

platform. However, A* pathfinding will be more

optimal compared to best-first search algorithm when

there are several obstacles between the origin and

destination node [3].

In [4], A* algorithm and Navigation Mesh

(NavMesh) is used for Ghost Agents on Pacman

Game. A* algorithm has smaller steps compared to

Dijkstra’s algorithm.

Performance efficiency of pathfinding algorithm

are usually measured by the length of the resulting

path and the computational time required [5]. This

paper reviews A* pathfinding performance efficiency

using various heuristic functions and data structures.

It is implemented in Game Autonomous Agent using

3D platform.

II. LITERATURE REVIEW

Pathfinding is a process to determine optimal

path from two different locations. It is considered to

be an important task to do in commercial game [6]

[7].

A* pathfinding algorithm work by combining

both properties of Dijkstra’s algorithm and best-first

search algorithm. Just like Dijkstra’s algorithm, A*

pathfinding consider the distance owned by each

candidate node to the initial node. But in addition, just

like best-first search algorithm, A* pathfinding also

IJNMT, Vol. VI, No. 1 | June 2019 44

ISSN 2355-0082

takes into account the distance of each candidate node

with the destination node. Base on both characteristic

above, the searching for the best candidate node in A*

pathfinding can be seen with the heuristic function

below.

Fig. 1 Heuristic Function Definition on A*

pathfinding

By using heuristic function above in its

implementation, pseudocode of A* pathfinding can be

seen from Fig. 2 below.

a_star_path_finding(start,end)

 OPEN = list

 CLOSED = list

 ADD start TO OPEN

 WHILE(OPEN is NOT EMPTY)

 current = FIND lowest cost node IN OPEN

 REMOVE current FROM OPEN

 ADD current TO CLOSED

 IF current IS end

 RETURN

 ENDIF

 FOREACH neighbour IN current

 IF neighbour IS obstacle OR

 neighbour IS IN CLOSED

 CONTINUE

 ENDIF

 SET new_cost TO

 cost OF current +

 DISTANCE neighbour FROM current

 IF new_cost < cost OF neighbour OR

 neighbour IS NOT IN OPEN

 new_cost IS

 new_cost +

 DISTANCE neighbour TO end
 cost OF neighbour IS new_cost

 parent OF neighbour IS current

 IF neighbour IS NOT IN OPEN

 ADD start TO OPEN

 ENDIF

 ENDIF

 END

 END

END

Fig. 2 A* Search Algorithm for Grid-based

Pathfinding Pseudocode

From Fig. 2, in the worst case, A* search will

requiring A* for calculating distance from every

neighbour () of every single node (except the origin

and destination node) in the collection () to the

origin and the destination node. Possible direction (D)

that allowed from a game mechanism will determine

the amount of edge (E) owned by a single node.

Fig.3 How Direction Determine the Amount of

Checked Edges

As an example from the Fig. 3 above, in the left

picture, if the mechanics allowing player to move in 4

direction (south, north, west, and east) only then the

amount of checked edge will be 4, and as in the right

picture, if the mechanics allowing 8 direction

movement (south, north, west, east, northeast,

southeast, northwest, southwest) then the amount of

checked edge will be 8.

 For implementing A* pathfinding in 3D game,

first, game’s platform need to be mapped to a grid

and represented in a 2-dimensional array. In the grid-

based pathfinding, in worst case of A* pathfinding

will have upper bound time complexity same as BFS

algorithm.

and

Fig. 4 A* pathfinding’s Complexity

III. METHODOLOGY

For grid-based pathfinding, A* pathfinding’s

complexity is determined by heuristic function that

being used such algorithm. In the algorithm

implementation, heuristic function will be used for

measuring distance between nodes, therefore the

selection of an appropriate heuristic function will

determine the complexity of the algorithm. Based on

the earlier research, the following are some heuristic

functions that commonly used on the A* pathfinding

[8].

A. Manhattan distance

As distance measurement function, manhattan

distance work is just a simple addition of horizontal

and vertical distance between nodes. By the definition

above, the following Fig. 5 are the pseudocode of

measurement function from a node to destination

node.

45 IJNMT, Vol. VI, No. 1 | June 2019

ISSN 2355-0082

manhattan_distance(node, end)

 //abs is a function that return

 //positive number from given number

 distance_x = abs(node.x - end.x)

 distance_y = abs(node.y - end,y)

 return D * (distance_x + distance_y)

Fig. 5 Mahattan Distance Pseudocode

The value of D in the Fig. 4 above is a scale that

can be set to influence g(n) or f(n) in the heuristic

function. In general, the value of D in f (n) and g (n)

is set to a value that is equal. By decreasing the D

value on g (n) and increasing the D value on h (n)

then the A * algorithm will work greedier than the

usual implementation. If the value of D in g (n) is set

to zero and D in h(n) is set to be any positive number

then the algorithm will work just like a best-first

search algorithm. On the other hand, if the value of D

in f(n) is greater than the value of g(n) then the

algorithm will find the path tends to be more optimal

(with respect to the node count) by performing

checking process to more nodes.

B. Diagonal distance

Diagonal distance work by taking an assumption

that the game mechanics allowing an agent to move

horizontally, vertically, as well as diagonally. In

diagonal distance implementation, an agent will

approaching the destination node by a diagonal

movement as long as it allowed to do vertical and

horizontal move at the given time. Until an agent only

allowed to do horizontal or vertical movement, then

the agent will move towards the destination point

based on the remaining step. The following Fig. 6 is

the pseudocode of the distance measurement function

from initial node to destination node.

diagonal_distance(node, end)

 //abs is a function that return

 //positive number from given numbers

 distance_x = abs(node.x - end.x)

 distance_y = abs(node.y - end.y)

 if(distance_y > distance_x)

 return distance_x * D2 +

 (distance_y - distance_x) * D

 return distance_y * D2 +

 (distance_x - distance_y) * D

Fig. 6 Diagonal Distance Pseudocode

Value of D2 in the Fig. 5 above usually equal to

, as an example if the value of D is equal to 10,

then value of D2 is equal to 14.14. However, it does

not rule out the possibility that value of D as well as

D2 modified so that the agent can move with the

needs of design in a game.

C. Chebyshev distance

Chebyshev distance is a variance of diagonal

distance that taking an assumption that the cost that

needed by an agent to a diagonal movement is equal

to the cost needed to do a vertical or a horizontal

movement. The following Fig. 7 is the pseudocode of

the distance measurement function from initial node

to destination node.

chebyshev_distance(node, end)

 //abs is a function that return

 //positive number from given numbers

 distance_x = abs(node.x - end.x)

 distance_y = abs(node.y - end.y)

 if(distance_y > distance_x)

 return distance_x * D + (distance_y - distance_x) * D

 return distance_y * D + (distance_x - distance_y) * D

Fig.6 Chebyshev distance pseudocode

D. Euclidean distance

Euclidean distance is a distance measurement

function that calculate the distance from a node to

other node by taking an assumption that a node can

move to every corner so the distance between two

node can be calculated using distance measurement

calculation formula between two node in a cartesian

diagram representation. This function will generate

shortest path from a certain node to other node.

Euclidean_distance(node, end)

 //abs is a function that return

 //positive number from given numbers

 distance_x = abs(node.x - end.x)

 distance_y = abs(node.y - end.y)

 //sqrt is a square root function

 return D * sqrt(

 distance_x * distance_x +

 distance_y * distance_x

)

Fig. 7 Euclidean Distance Pseudocode

Although in the implementation, Euclidean

distance can generate shortest path, consider that

square root function used in the Euclidean distance

involving a complex calculation process that causes

the function to be computationally expensive.

E. Euclidean Squared Distance

This distance measurement function is the

modification version of Euclidean distance. By taking

into the account that square root function used in the

Euclidean distance is computationally expensive, this

function calculate a distance between two nodes

without using squared root function.

Euclidean_distance(node, end)

 //abs is a function that return

 //positive number from given numbers

 distance_x = abs(node.x - end.x)

 distance_y = abs(node.y - end.y)

 return D * (

 distance_x * distance_x +

 distance_y * distance_y

)

Fig.8 Euclidean Squared Distance Pseudocode

Besides the selection of the right distance

function, in A* pathfinding, the selection of data

structure to store candidates to be checked will also

affect the performance of the algorithm. Following

are several data structure that frequently used in A*

pathfinding implementation [9].

IJNMT, Vol. VI, No. 1 | June 2019 46

ISSN 2355-0082

A. Unsorted list

Unsorted list or commonly called list is one of

data structure with the easiest implementation process

that can be used to represent set of node that has been

or will be checked. But take into the account that in

the worst case, the searching or deletion process in a

list requiring a searching time of . This due to

the one by one checking process from the first to last

data stored in a list. Despite of the disadvantage of an

unsorted list, the insertion process of a new data to a

list only requiring an insertion time of , by just

appending a new data as a last element to a list.

B. Sorted list

Unlike the common list that has searching time

complexity of , because of the data with the

lowest heuristic can modified as an last or first

element of a list, the searching process of a list will

only requiring a searching or a deletion time with

time complexity of . However, after inserting a

new data to list, the sorting process will at least has a

time complexity of .

C. Binary heap

Binary heap is one of the most popular data

structure used in A* pathfinding. By creating a min

heap from set of nodes processed by the A*

pathfinding, the most potential node candidate search

process (the smallest value node) or a deletion process

takes up the time complexity of .

However, unlike list data structure that only have the

insertion time complexity of , the insertion of

new data to a binary heap will requiring a time

complexity of .

D. Binary heap + Hash table

Hash table is a data structure that implements an

associative array abstract data type. The main

function of hash table is to map keys to values. A

hash table uses a hash function to compute an index

into an array of buckets or slots, from which the

desired value can be found. In many situations, hash

table turn out to be on average more efficient than

search trees or any other table lookup structure. Based

on the given reasons, hash table is widely used in

many kinds of computer software, particularly for

associative arrays, database indexing, caches, and

sets. In its implementation, time complexity of

searching, insertion, or deletion process in hash table

is equal to .

In A* pathfinding, combinations of binary heap

structure and hash table structure is one of the

practices that tend to be done by most of artificial

intelligence programmers. Set of nodes as candidates

to be checked by the algorithm will be represented by

a binary heap, whereas the other set of nodes that has

been checked are represented by a hash table. By

representing candidate nodes in a binary heap, the

candidate searching, insertion, or deletion process will

only has a time complexity of Moreover, by

representing candidate nodes in a hash table, the

search process to determine whether a check has been

performed on a candidate just need a time complexity

of .

E. Pairing heap + Hash table

Pairing heap is a self-adjusting binomial heap

that designed by Fredman et al (1986). This type of

data structure is designed for create an efficient and

fast data structure like fibonacci heap. However, not

like fibonacci heap that difficult in practice, pairing

heap can be implemented more easily. In pairing

heap, searching and insertion of a new data will

requiring a time complexity of , while the

deletion process will has time complexity of [10].

Combination of pairing heap and hash table where the

pairing heap work as a replacement for a binary heap

in binary heap and hash table combination is another

approach that will be measured in the experiment.

F. Splay tree + Hash table

Splay tree is a representation data structure that is

a variation of self-balancing binary search tree. The

main idea of splay tree is move the last searched node

as a root of binary tree. Through this mechanism,

splay tree time for insertion, minimum search, and

deletion will have amount [11]. With adding

hash table data structure for representing the checked

node, node searching process on the set of checked

node will have time amount of . Just like pairing

heap, splay tree is just another approach that worth to

be evaluated since in theory insertion, search, and

deletion process of .

IV. EXPERIMENT

This experiment provided some 3D platform with

several sizes to be mapped in grid forms (1010 * 10,

30 * 30, 100 * 100, 300 * 300, 500 * 500, 1000 *

1000). For every grid size, several variation of

obstacle density will also be generated (25%, 50%,

and 75%). Using 3D platform, 30 pathfinding

scenario is made from a node to other node and the

distance between nodes is vary and adjusted with grid

size.

This experiment performed on a computer with

the following specifications:

● Processor: Intel(R) Core™ i7-6700HQ

@2.60GHz (8 CPUs), ~2.6GHz

● Memory: 8192MB RAM

● Graphics Card: NVIDIA GeForce GTX960M

Integrated RAMDAC, 4GB Dedicated

VRAM, 4GB Shared Memory.

● Programming language: C# .NET 3.5

● Simulation software: Unity Game Engine

5.6.0f3

47 IJNMT, Vol. VI, No. 1 | June 2019

ISSN 2355-0082

A* pathfinding algorithm is tested in a 3D game.

The 3D platform is created to put the player and the

AI. This platform should be represented in a grid that

represents set of nodes that holds all the information

needed by A* pathfinding. The information of each

node consists of the coordinates of the node, a flag to

indicate whether the node can be traversed or not, and

the parent of the node. Parent of the node will be used

later when A* pathfinding does the backtracking

process when the destination node has been reached.

The following is the data structure from the node.

class Node {

 bool walkable

 Vector3 worldPosition

 int gridX

 int gridY

 int hCost

 int gCost;

 Node parent;

 int fCost (){

 return gCost + hCost;

 }

}

Fig.9 Node class

Based on the 3D platform that has been

generated, the process to search the distance is

performed using the representation of binary heap

data structures for the nodes that will be checked

(OPEN) and hash table data structures is used to save

the nodes that has been checked. The table below

represents the average path length in units and the

average time that is needed by each heuristic function

in milliseconds (ms). Path length and average time is

obtained by running each heuristic function

repeatedly for 30 times.

Table 1.Heuristic function table

Board

Size

Obsta

cle

Densi

ty

MD DD CD ED ED-S

10*10 25% 10.6

(5ms

)

10.6

(4ms)

10.57(

4ms)

10.63

(4ms)

11.97

(4ms)

50% 10.4

(4ms

)

10.4

(4ms)

10.4

(4ms)

10.4

(4ms)

10.5

(3ms)

75% 11.8

7

(4ms

)

11.87

(4ms)

11.87

(5ms)

11.87

(5ms)

11.87(4

ms)

30*30 25% 26.4

(15m

s)

24.73

(17ms

)

24.67

(18ms

)

25.73

(16m

s)

27.93

(13ms)

Board

Size

Obsta

cle

Densi

ty

MD DD CD ED ED-S

50% 36.1

3

(17m

s)

35.5

(19ms

)

35.37

(19ms

)

35.47

(19m

s)

39.33

(10ms)

75% 39.8

3

(12m

s)

39.37

(11ms

)

39.37

(11ms

)

39.43

(14m

s)

39.86

(10ms)

50 * 50 25% 49.5

7

(43m

s)

46.5

(49ms

)

46.27

(48ms

)

47.1

(40m

s)

54.63

(17ms)

50% 75.3

(59m

s)

73.43

(64ms

)

73.5

(64ms

)

73.6

(65m

s)

88.27

(42ms)

75% 115.

73

(39m

s)

114.1

67

(40ms

)

114.1

67

(40ms

)

114.4

67

(40m

s)

117.9

(37ms)

100 *

100

25% 94.3

4

(205

ms)

89.8

(205

ms)

89.9

(205s

ms)

90.5

(154

ms)

114.167

(56ms)

50% 215.

07

(286

ms)

206.5

7

(286

ms)

206.7

3

(294

ms)

208.3

(298

ms)

222.97

(263ms

)

75% 143.

23

(202

ms)

138.8

(209

ms)

138.7

3

(209

ms)

139.7

7

(206

ms)

181.53

(98ms)

300 *

300

25% 236.

17

(103

6ms)

249.5

3

(1147

ms)

248.1

3

(1225

ms)

255.3

3

(847

ms)

312.07

(142ms

)

50% 329.

23

(147

3ms)

310.6

3

(1553

ms)

309.8

3

(1598

ms)

313.5

(1322

ms)

420.567

(332ms

)

500 *

500

25% 499.

43

(445

4ms)

466.7

7

(4255

ms)

464.3

7

(4082

ms)

478.4

(2878

ms)

589.5

(513ms

)

50% 518.

73

(408

4ms)

492.5

(4190

ms)

490.3

(4457

ms)

503.0

7

(2769

ms)

661.73

(556ms

)

MD = Manhattan Distance

DD = Diagonal Distance

CD = Chebyshev Distance

ED = Euclidean Distance

IJNMT, Vol. VI, No. 1 | June 2019 48

ISSN 2355-0082

Based on the table above, when the size of game

area is increased, the heuristic function that run very

fast and does not increase in time is squared

Euclidean distance. However, squared Euclidean

distance generated longer path compared to other

function. Euclidean distance is the second function

which runs quickly and produces the shortest path. If

there are enough AI agents in the game to search the

path, squared Euclidean distance function can be

considered as the function to be used. Pathfinding

function frequently called in frame update and

register input from user (game loop), it is better if

heuristic function can run faster so it will not causing

frame spike or frame drop that can disturbing user

experience in the game.

Even though there was a literature that mention

that Euclidean distance is more expensive compared

to other simpler arithmetic operation, it is proven that

Euclidean distance average running time is faster than

3 other heuristic function (manhattan distance,

diagonal distance, and chebyshev distance).

There are 6 data structure that is used and we use

A* pathfinding with squared Euclidean distance to

find the most efficient data structure. Table 2 shows

the test results.

Table 2.Data structure table

Boar

d

Size

Obsta

cle

Densit

y

UL SL BH BH

+

HT

PH

+

HT

ST +

HT

10*1

0

25% 5ms 12ms 4ms 4m

s

5m

s

12ms

50% 3ms 6ms 3ms 3m

s

5m

s

8ms

75% 3ms 5ms 3ms 4m

s

5m

s

8ms

30*3

0

25% 81m

s

268m

s

12ms 10

ms

22

ms

28ms

50% 28m

s

121m

s

10ms 13

ms

18

ms

17ms

75% 22m

s

39ms 10ms 10

ms

8m

s

17ms

50 *

50

25% 86m

s

1142

ms

17ms 17

ms

25

ms

32ms

50% 220

ms

481m

s

30ms 42

ms

42

ms

52ms

75% 129

ms

123m

s

29ms 37

ms

28

ms

44ms

100

*

25% 555

ms

1074

7ms

48ms 56

ms

59

ms

71ms

Boar

d

Size

Obsta

cle

Densit

y

UL SL BH BH

+

HT

PH

+

HT

ST +

HT

100 50% 9758

ms

4622

ms

240m

s

263

ms

232

ms

317m

s

75% 2156

ms

2211

ms

89ms 98

ms

89

ms

112m

s

300

*

300

25% 2437

ms

3148

91ms

161m

s

142

ms

122

ms

133m

s

50% 2141

9ms

1440

59ms

350m

s

332

ms

315

ms

363m

s

500

*

500

25% 3344

7ms

TLE 487m

s

442

ms

357

ms

416m

s

50% 5713

3ms

TLE 546m

s

342

ms

434

ms

796m

s

UL = Unsorted List

SL = Sorted List

BH = Binary Heap

HT = Hash Table

PH = Pairing Heap

ST = Splay Tree

TLE = Time Limit Exceeded

Based on the table above, even though list data

type is easy to be implemented as a set representation

of nodes, it is not as efficient as other data structures

(binary heap, pairing heap, and splay tree). The

attempt to make list data more efficient by sorting the

list which can reduce the search time of finding

minimum value worsens the running time of A*

pathfinding.

Hash table which is used as membership function

of the nodes begin to work well when the grid size is

more than or equal to 300. It is proven by comparing

the running time between binary heap and binary

heap + hash table. Minimum binary heap is the best

data structure to represent A* pathfinding.

V. CONCLUSION AND SUGGESTION

A* pathfinding is a very unique algorithm since it

has greedy characteristic such as best-first search and

calculate the distance from a specific node to the

predetermined goal node such as Dijkstra’s algorithm.

Because of this characteristic, the function that is used

to calculate the distance from a node to the

destination node is affecting the running time of

algorithm. Based on the experiment, squared

Euclidean distance is one of the functions that is good

enough to be used in A* pathfinding since the running

time of algorithm does not increased rapidly as in

other heuristic functions. If A* pathfinding is

49 IJNMT, Vol. VI, No. 1 | June 2019

ISSN 2355-0082

expected to generate shorter distance compared to

other function (manhattan, diagonal and chebyshev

distance), we can use Euclidean distance as an

alternative. Although the function is using root

operation that is considered quite expensive, the

running time of this algorithm within a large search

space has a significant differences compared to other

distance measurement functions (more than 1

second). Based on the other experiment related to

representation data structure of nodes that will be

processed by A* pathfinding, binary heap is the best

data structure which can be used when the grid size is

smaller than 300. Binary heap + hash table is the best

data structure which can be used when the grid size is

equal or more than 300.

Advanced research can be done by using larger

search space and varying the obstacle density. The

purpose of varying the obstacle density is to find out

whether the heuristic function is work well in all

cases or in some special cases only. Larger search

space aims to evaluate whether binary heap is still be

the best data structure to represent nodes that will

processed by A* pathfinding.

REFERENCE

[1] Cui, X. and Shi, H. (2011). A*-Based Pathfinding in Modern

Computer Games. International Journal of Computer Science

and Network Security, 11, 125-130.
[2] Xu, Z., Doren, M. V. (2011). A museum visitors guide with

A* pathfinding algorithm. IEEE Conference on Computer

Science and Automation Engineering (CSAE).

[3] Patel, A. Introduction to A*.

http://theory.stanford.edu/~amitp/GameProgramming/,

diakses pada tanggal 16 November 2017.
[4] Zikky, M. (2016). Review of A* (A Star) Navigation Mesh

Pathfinding as the Alternative of Artificial Intelligent for

Ghost Agent on the Pacman Game. EMITTER International

Journal of Engineering Technology, Vol. 4, No. 1, pp 141-

149
[5] Cui, X. and Shi, H. (2012). An Overview of Pathfinding in

Navigation Mesh. International Journal of Computer Science

and Network Security, Vol. 12 No. 12 pp 48-51.
[6] Cui, X. and Shi, H. (2011). Directed Oriented Pathfinding in

Video Games. International Journal of Artificial Intelligence

& Applications, Vol. 2 No. 4 pp 1-11.
[7] Patel, A. A*’s use of the Heuristics.

http://theory.stanford.edu/~amitp/GameProgramming/Heuristi

cs.html, diakses pada tanggal 16 November 2017.
[8] Patel, A. A* pathfinding notes: set representation.

http://theory.stanford.edu/~amitp/GameProgramming/Implem

entationNotes.html#set-representation, diakses pada tanggal

16 November 2017.
[9] Fredman, M. L., Sedgewick, R., Sleator, D. D., Tarjan, R. E.

(1986). The pairing heap: a new form of self-adjusting heap.

Journal of Algorithmica, Vol. 1, Issue 1-4, pp 111-129.
[10] R.Anbuselvi., M. Phil. (2013). Pathfinding Solutions on

Grid-based Graph. Advanced Computing: An International

Journal (ACIJ), Vol.4, No.2, March 2013.
[11] Sleator, D. D., Tarjan, R. E. (1985). Self-adjusting binary

search tree. Journal of the ACM (JACM), Vol. 32, Issue 3, pp

652-686.

