

98 IJNMT, Vol. VII, No. 2 | December 2020

ISSN 2355-0082

MeDict: Health Dictionary Application Using

Damerau-Levenshtein Distance Algorithm

Wiwi Clarissa
1
, Farica Perdana Putri

2

1,2
 Department of Informatics, Universitas Multimedia Nusantara, Tangerang, Indonesia

1
wiwi.clarissa@student.umn.ac.id

2
farica@umn.ac.id

Accepted on 11 June 2020

Approved on 31 October 2020

Abstract—Typographical error often happens. It can

occur due to mechanical errors or missed hands or

fingers when typing. Someone's ignorance of how to

spell correctly also can cause typographical errors.

Dictionary application development has been carried

out by various parties so that the searching process in

the dictionary becomes more efficient. However, there is

no word search optimization when the typographical

error happens. Typographical errors in the searching

process can result in the information sought cannot be

found. The Damerau-Levenshtein Distance algorithm

implemented to provide search suggestions when a

typographical error occurs. This research aims to design

and build a health dictionary application, MeDict, using

the Damerau-Levenshtein Distance algorithm.

Technology Acceptance Model (TAM) used to evaluate

the application. The result is 86.2% stating strongly

agree that the application can be useful and 86.9%

stating strongly agree that the application can be used

easily.

Index Terms—Damerau-Levenshtein distance,

dictionary, Technology Acceptance Model,

typographical error

I. INTRODUCTION

In the world of education, especially in the medical

field, it is very important for a student majoring in

medicine to understand medical terms. In the medical

field, there are many terms that are difficult to

understand [1]. In a book-shaped dictionary, the

process of vocabulary search is still ineffective

because the dictionary is large and thick, so the search

process will take a long time [2]. Therefore, the

development of dictionary applications has been

carried out by various parties so that the search

process the terms in the dictionary become more

efficient. However, there was no search optimization

when a typographical error occurred. Typographical

errors by a user can result in the information sought

can not be found.

Typographical errors can be caused by mechanical

errors, such as mistyping due to finger movements. It

sometimes also caused by someone's lack of

knowledge about how to spell the correct word.

Common mistakes made when typing include

substitution, insertion, deletion, or transposition

(exchanging two adjacent letters) [3].

To overcome this problem, we need a method that

can be used to optimize word searching in a dictionary

application. This search optimization can be done by

providing search suggestions if the input word cannot

be found in the dictionary.

The edit distance algorithm can be used to provide

search suggestions, including the Hamming distance

and Levenshtein distance algorithms [4]. Peggy has

successfully implemented the Levenshtein Distance

algorithm to optimize word search in Chinese -

Indonesian translator applications [5]. However,

research by Sutisna and Adisantoso proved that

spelling correction using the Damerau-Levenshtein

Distance algorithm can improve a search engine

performance by 22% rather than using the Levenshtein

Distance algorithm [6]. Research by Jupin, Shi, and

Obradovic proved that the Damerau-Levenshtein

Distance algorithm has a smaller number of errors

(false positive) than the Jaro-Winkler Distance

algorithm [7]. Vogler explained that the choice of a

string distance algorithm depends on the problem

situation being encountered. If the problem is

typographical errors, then the variations of

Levenshtein Distance algorithm are good, because the

algorithm takes into account three or four (for

Damerau-Levenshtein Distance) types of typing errors

that usually occur [8].

Based on the previous researches, this health

dictionary application called MeDict uses the

Damerau-Levenshtein Distance algorithm to optimize

word searching. The Damerau-Levenshtein Distance

algorithm will be used to correct typographical errors

by giving word suggestions that have similarities

according to the Damerau-Levenshtein Distance

calculations.

II. LITERATURE REVIEW

A. Damerau-Levenshtein Distance

The Damerau-Levenshtein Distance algorithm was

developed by Frederick J. Damerau. Damerau-

IJNMT, Vol. VII, No. 2 | December 2020 99

ISSN 2355-0082

Levenshtein Distance is a measurement (metric)

produced through the calculation of the number of

differences found in two strings. The Damerau-

Levenshtein Distance algorithm determines the

minimum number of operations needed to convert one

string into another string.

Damerau-Levenshtein Distance algorithm is a

development of the Levenshtein Distance algorithm.

Damerau extended Levenshtein distance to also detect

transposition errors and treat them as one edit

operation [7]. Therefore Damerau-Levenshtein

calculates the minimum insertion, deletion,

substitution, and transposition operations to convert

one word into another. Damerau stated that about 80%

of typographical errors were the result of all four

operations.

The pseudocode of the Damerau-Levenshtein

Distance algorithm can be seen in Table 1.

TABLE I. PSEUDOCODE OF DAMERAU-LEVENSHTEIN DISTANCE

ALGORITHM [9]

Damerau-Levenshtein Distance Algorithm

function damerauLevenshteinDistance(input s : array[1..m]

of char, input t : array[1..n] of char) integer {function to

compute Damerau-Levenshtein distance between two

strings using Damerau-Levenshtein algorithm

DECLARATION

i, j : integer cost : integer d : array [0..m][0..n] of integer

ALGORITHM

for i 1 to m do { source prefixes initialization }

 d[i][0] i

endfor

for j 1 to n do { target prefixes initialization }

 d[0][j] j

endfor

{ using Damerau-Levenshtein Algorithm to check } for i

1 to n do

 for j 1 to m do

 if (s[i] == t[j]) then

 cost 0

 else

 cost 1

 endif

 d[i][j] minimum (

 d[i-1][j] + 1, { deletion }

 d[i][j-1] + 1, { insertion }

 d[i-1][j-1] + cost { substitution }

)

 if (i > 1 and j > 1 and s[i] == t[j-1]

 and s[j-1] == t[i]) then

 d[i][j] minimum (

 d[i][j],

 d[i-2][j-2] + cost { transposition }

)

 endif

 endfor

endfor

 d[m][n] { return results }

B. Filter and Verify Method

In the 90s, the "filter and verify" method was

introduced to reduce data comparisons in the

calculation of edit distance. Research on this method is

still very active. Filters can make the system more

efficient by removing unnecessary comparisons. One

of the most common methods is length filtering, where

the difference in the length of the two strings s and t

must not be greater than k [7]. The algorithm of length

filtering can be seen in Table 2.

TABLE II. LENGTH FILTERING ALGORITHM [7]

Length Filtering Algorithm

Algorithm: LengthFilter(s, t)

Input: s, t: strings of characters

Output: Boolean

Begin

 if abs(|s| - |t|) > k : return FALSE
 else: return TRUE

 end-if

end

C. Technology Acceptance Model (TAM)

The Technology Acceptance Model (TAM) was

introduced by Fred D. Davis in 1989 as an instrument

for predicting the possibility of new technology being

adopted in a group [10].

The Technology Acceptance Model can be

illustrated in Fig. 1. According to this model, the

user's attitude towards the use of a given system is

considered to be the major determinant of whether he

uses it or not. Attitudes toward use are influenced by

two variables: perceived usefulness and perceived

ease of use. Perceived usefulness is the degree to

which an individual believes that using a particular

system will improve the performance of his work.

Perceived ease of use is the degree to which an

individual believes that using a particular system will

be free of physical and mental effort. Perceived

usefulness is also influenced by perceived ease of use

because a system that is easier to use will result in

increased job performance. Design features directly

influence perceived usefulness and perceived ease of

use [11].

Fig. 1. First phase of test setup 1 of ADS-B signal quality

testing with receiver inside the walls

Initially, Davis used 14 indicators (initial scale

items) in measuring perceived usefulness and

perceived ease of use. But after several trials, the

100 IJNMT, Vol. VII, No. 2 | December 2020

ISSN 2355-0082

results obtained in the form of 6 measurement

indicators are better and more practical. Table 3 is a

measurement indicator for the variables of perceived

usefulness and perceived ease of use.

TABLE III. INDICATORS OF PERCEIVED USEFULNESS AND

PERCEIVED EASE OF USE [12]

Scale Items

Usefulness

1. Work More Quickly

2. Job Performance

3. Increase Productivity

4. Effectiveness

5. Makes Job Easier

6. Useful

Ease of Use

1. Easy to Learn

2. Controllable

3. Clear & Understandable

4. Flexible

5. Easy to Become Skillful

6. Easy to Use

III. EXPERIMENTAL RESULTS

Damerau-Levenshtein Distance algorithm will be

evaluated by comparing the results of manual

calculation with the results of the calculation of edit

distance by the application. Following is the scenario

of testing the Damerau-Levenshtein Distance

algorithm. Table 4 is a sample of data entered by the

user.

TABLE IV. USER SAMPLE DATA

Words typed Words supposed to be

dislekei disleksia

neuorablastona neuroblastoma

influnea influenza

frotifikasi fortifikasi

black water feaver blackwater fever

The application will calculate the edit distance

value using the Damerau-Levenshtein Distance

algorithm and provide a list of word suggestions that

are similar to words entered by the user. Fig. 2 shows

the search result for the word "dislekei" in the health

dictionary application. Based on Fig. 2 it can be seen

that the application can provide search suggestions

when typographical error occurs.

The tolerance value used in this application is

50%, meaning that the application will only display

word suggestions that have an edit distance that is less

than or equal to 50% of the number of letters entered

by the user. The word "dislekei" has 8 letters,

meaning the application will display word suggestions

that have an edit distance value of less than or equal

to 4.

Fig. 2. User’s Search Result

Table 5 is the manual calculation of the Damerau-

Levenshtein Distance algorithm. The last cell colored

in green shows the edit distance value between the

words "dislekei" and "disleksia", which is 2.

TABLE V. DAMERAU-LEVENSHTEIN DISTANCE CALCULATION

 d i s l e k s i a

 0 1 2 3 4 5 6 7 8 9

d 1 0 1 2 3 4 5 6 7 8

i 2 1 0 1 2 3 4 5 6 7

s 3 2 1 0 1 2 3 4 5 6

l 4 3 2 1 0 1 2 3 4 5

e 5 4 3 2 1 0 1 2 3 4

k 6 5 4 3 2 1 0 1 2 3

e 7 6 5 4 3 2 1 1 2 3

i 8 7 6 5 4 3 2 2 1 2

Fig. 3 is the result of the Damerau-Levenshtein

Distance calculation by the application. It shows that

the result of the edit distance is 2. Based on Table 5

and Fig. 3, it can be seen that the calculation result in

the health dictionary application equals to the result of

the manual calculation.

Fig. 3. Damerau-Levenshtein Distance Calculation Result by

Application

Application acceptance testing was also conducted

in this study. The method used in testing application

acceptance is based on the Technology Acceptance

Model (TAM) by distributing questionnaires. The

sampling technique used was purposive sampling

technique. Therefore, the questionnaire was given to

35 respondents related to the medical field, namely

medical students and nursing students to get an

assessment of this health dictionary application.

Questionnaire questions are divided into two parts:

perceived usefulness and perceived ease of use.

Table 6 is the answer to the questionnaire for the

perceived usefulness variable. Based on the

calculation of the total score of the perceived

IJNMT, Vol. VII, No. 2 | December 2020 101

ISSN 2355-0082

usefulness variable, it can be concluded that 86.2% of

users strongly agree that this health dictionary

application can improve work performance and be

useful.

TABLE VI. PERCEIVED USEFULNESS QUESTIONNAIRE RESULT

Questions 1 2 3 4 5

The Medict application speeds up

my work in finding the meaning of
a medical term

0 1 3 15 16

Using the Medict application can

improve my work performance
0 0 4 17 14

In my opinion, using Medict
application can increase my

productivity

0 1 4 18 12

In my opinion, the use of Medict

application can help me search the
meaning of a medical term

effectively

0 1 5 10 19

In my opinion, the Medict
application can facilitate me in

finding the meaning of a medical

term

0 0 4 14 17

Overall, the Medict application is
useful

0 0 4 14 17

Table 7 is the answer to the questionnaire for the

variable perceived ease of use. Based on the

calculation of the total score of the ease of use

variable, it can be concluded that 86.9% of users

strongly agree that the health dictionary application is

easy to use.

TABLE VII. PERCEIVED EASE OF USE
 QUESTIONNAIRE RESULT

Questions 1 2 3 4 5

In my opinion, Medict application is

easy to learn
0 1 3 18 13

In my opinion, Medict application
can be run according to its function

0 0 3 18 14

In my opinion, Medict application is

clear and understandable
0 1 4 11 19

My interaction with Medict

application is easy for me to

understand

0 0 2 16 17

I can easily familiarize myself with
every feature in Medict application

0 1 4 14 16

Overall, Medict application is easy

to use
0 0 2 16 17

IV. CONCLUSION

The health dictionary application has been

successfully designed and built using the Damerau-

Levenshtein Distance algorithm. The application is

built based on mobile which can be used on devices

with the Android and iOS operating systems. The

programming language used to build this application is

Typescript using the Ionic framework. The health

dictionary application can provide search suggestions

with the Damerau-Levenshtein Distance algorithm

calculation if there are typographical errors. Search

suggestions given to users are sorted from the lowest

to highest edit distance values. The implementation of

length filtering method also works fine to reduce the

comparison of words that are not needed.

This application has been evaluated by 35

respondents using the Technology Acceptance Model

(TAM) and obtained a result of 86.2% states strongly

agree that the application can be useful (perceived

usefulness) and 86.9% states strongly agree that the

application can be easily used (perceived ease of use).

REFERENCES

[1] Lestari, C. P., Hasibuan, N. A., and Ginting, G. L.

“Perancangan Aplikasi Kamus Istilah Medis Berbasis

Android dengan Algoritma Boyer Moore”. Jurnal INFOTEK,
vol. II, no. 3, June 2016, pp.28-32.

[2] Pratiwi, H., Arfyanti, I., and Kurniawan, D. “Implementasi

Algoritma Brute Force dalam Aplikasi Kamus Istilah
Kesehatan”. Jurnal Ilmiah Teknologi Informasi Terapan, vol.

II, no. 2, 2016, pp.119-125.

[3] Dwitiyastuti, R. N., Muttaqin, A., and Aswin, M. “Pengoreksi

Kesalahan Ejaan Bahasa Indonesia Menggunakan Metode

Levenshtein Distance”. Jurnal Mahasiswa Teknik Elektro
Universitas Brawijaya, 2013.

[4] Budiman, A., Dennis G., Seng Hansun. “Implementasi

Algoritma Hamming Distance dan Brute Force dalam
Mendeteksi Kemiripan Source Code Bahasa Pemrograman

C”. ULTIMATICS, vol. 8, no. 2, 2016.

[5] Peggy and Hansun, S. “Optimasi Pencarian Kata pada

Aplikasi Penerjemah Bahasa Mandarin – Indonesia Berbasis

Android dengan Algoritma Levenshtein Distance”. ULTIMA
Computing, vol. VII, no. 1, 2015.

[6] Sutisna, U., and Adisantoso, J. “Koreksi Ejaan Query Bahasa

Indonesia Menggunakan Algoritme Damerau Levenshtein”.
Jurnal Ilmiah Ilmu Komputer, vol. 15, no. 2, 2010.

[7] Jupin, J., Shi, J. Y., and Obradovic, Z. “Understanding Cloud
Data Using Approximate String Matching and Edit Distance”.

2012 SC Companion: High Performance Computing,

Networking Storage and Analysis, 2012, pp. 1234-1243.

[8] Vogler, R. 2013. Comparison of String Distance Algorithms.

[Online]. Available on:
https://www.joyofdata.de/blog/comparison-of-string-

distancealgorithms.

[9] Setiadi, I. “Damerau-Levenshtein Algorithm and Bayes
Theorem for Spell Checker Optimization”, 2013.

[10] Tang, D. P., and Chen, L. J. “A Review of the Evolution of
Research on Information”. 2011 International Conference on

Business Management and Electronic Information, 2011, pp.

588-591.

[11] Davis, F. D. “A Technology Acceptance Model for

Empirically Testing New End-User Information Systems :

Theory and Results”, 1985.

[12] Davis, F. D. “Perceived Usefulness, Perceived Ease of Use,

and User Acceptance of Information Technology”. MIS
Quarterly, vol. 13, no. 3, 1989, pp. 319-340.

https://www.joyofdata.de/blog/comparison-of-string-distancealgorithms
https://www.joyofdata.de/blog/comparison-of-string-distancealgorithms

