

42 IJNMT (International Journal of New Media Technology), Vol. 10, No. 1 | June 2023

ISSN 2355-0082

Intrusion Detection System on Nowaday's

Attack using Ensemble Learning

Fajar Henri Erasmus Ndolu1, Ruki Harwahyu2
1,2 Dept. of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia

1fajar.henri@ui.ac.id
2ruki.h@ui.ac.id

Accepted 13 June 2023

Approved 14 July 2023

Abstract— Attacks on computer networks are becoming

more and more widespread nowadays, making this an

important issue that must be considered . These attacks

can be detected with the Intrusion Detection System

(IDS). However, at this time there are new attacks that

have not been detected by IDS. Therefore, ensemble

learning is used. This research we used Random Forest

algorithm for attack detection as an increase in the ability

of IDS to detect cyberattacks. The use of the CSE-CIC-

IDS2018 dataset is used in this research as a current

representative dataset for cyberattack detection. The

results of this study we get a binary classification

accuracy of 99.6856% and an f1-score of 99.5803% and a

multiclass classification accuracy of 99.6944 and an f1-

score of 97.8032% with a data ratio ratio dataset of 3:1

normal class to attack class.

Keywords— IDS; random forest; undersampling; chi

square; CSE-CIC-IDS2018.

I. INTRODUCTION

The rapid development of technology makes

cyberattacks more massive and more be attention to.

According to Saxena et al and Morgan, financial losses

are predicted to reach 10.5 trillion dollars by 2025 [1],

[2] .

Detection of this cyberattack can be detected with a

system developed called the Intrusion Detection

System (IDS). However, IDS has not been able to

accurately detect new attacks that have occurred and

generates a high false alarm rate.

For this reason, in this research we used a dataset

that is considered representative to reflect the current

situation. The dataset used is CSE-CIC-IDS2018 [3] .

The dataset used can be downloaded from Cloud

Amazone Services (AWS) [4] with a total sample data

of 16 million samples with 79 features with a benign

class distribution of 83% with an attack class of 17%

consisting of 14 attack classes.

There have been several studies on IDS such as the

Support Vector Machine algorithm [5] carried out by

Kotpaliwar et al, the k-Nearest Neighbor algorithm [6]

, Gaussian Naïve Bayes [7] , various decision tree

algorithms carried out by Hota et al [8] , Convolution

Neural Network algorithm [9] . However, these studies

still use an old dataset, that is the KDDCUP99 [10]

dataset , which does not reflect the current state of the

attack.

The use of the algorithm in this study is ensemble

learning, because ensemble learning can be optimal for

classes with unbalanced datasets. Ensemble learning is

learning that combines several basic algorithms to get

better predictive results based on the highest voting [11]

. Ensemble learning is carried out by using the Random

Forest algorithm which is a boosting approach from

ensemble learning [12] . Random Forest is recognized

as being quite good at overcoming class imbalances in

datasets and providing fairly accurate results [13] .

Therefore, in this study we conducted research to

detect attacks on computer networks using the Random

Forest algorithm. This is expected to be able to detect

attacks, especially today's types of attacks that cannot

be detected with IDS.

II. METHOD

In this research, there are several research steps, as

follows (Fig.1):

Fig. 1. Research procedure

Dataset
Exploratio

n

Data
Preprocess

ing

Folding
data

feature
selection

Modeling
Model

Evaluation

IJNMT (International Journal of New Media Technology), Vol. 10, No. 1 | June 2023 43

ISSN 2355-0082

A. Data Exploration

We used the CSE-CIC-IDS2018 dataset. The

dataset consists of 10 CSV files and a total of 16 million

samples with 83% benign class and 17% attack class.

B. Data Preprocessing

In this step, we do a number of things as shown in

Fig. 2, including:

 Merging 10 files from dataset

 Remove duplicate header rows

 Convert timestamp to UnixTime

 The infinity value becomes NaN

 Remove features with a number of NaNs > 50%

 Delete row on feature number of NaN < 50%

 Remove any of the features that have a

correlation coefficient equal to one

Balancing the normal class against the attack class by

undersampling nearmiss-2 (ratio 1:1, 2:1, and 3:1)

Fig. 2. Data Preprocessing

C. Data sampling and normalization

Data folding was carried out by fold out of 80% for

data training and 20% of the data test on the balanced

dataset and the original dataset without under sampling

(ratios 1:1, 2:1, 3:1 and 4.79:1). Then normalize the

data with a min-max scaler to re-scale the feature values

to the value range [0,1].

D. Feature selection

Feature selection is carried out using the chi square

method and binary or multiclass target vectors with a

score percentage threshold of 99%, as shown in Fig. 3.

so that there are 2 feature combinations in each dataset,

a total of 8 feature combinations from the four datasets

(ratio 1:1, 2:1, 3:1 and 4,79:1). Features with the

remaining 1% score percentage will be deleted.

Fig. 3. Data sampling and feature selection

44 IJNMT (International Journal of New Media Technology), Vol. 10, No. 1 | June 2023

ISSN 2355-0082

E. Hyperparameter tuning

In this research, to get optimal results,

hyperparameter tuning was conducted in this research.

Hyperparameter tuning is done using a random grid

search technique. Random grid search randomly selects

15 predefined hyperparameter value combinations.

Each combination of hyperparameter values is cross-

validated by 5-fold cross validation. Then the

combination of hyperparameter values is selected

which produces the model with the highest average f1-

score.

The choice of a combination of hyperparameter

values is based on the highest f1-score value, because

the dataset used is an unbalanced dataset so that a better

measurement metric is the f1-score which is a

harmonization between precision values and recall

values. The hyperparameter values used in the tuning

process include estimators, max features, max depth,

min samples split, and min samples leaf, with the

following hyperparameter value ranges, shown in Table

1:

TABLE I. RANDOM FOREST HYPERPARAMETERS

Hyperparameters Value

Estimators 10,15,20,25,25,30,35,40,45,50

Max features 5,9,12,15,18

Max depth None,5,10,15,20,25,30,35

Min samples split 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17

,18,19,20

Min samples leaf 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17

,18,19,20

F. Random Forest

At this stage, a model is built for each dataset (ratios
1:1, 2:1, 3:1 and 4.79:1) using the best hyperparameter
values that have been obtained from the tuning stage.
The Random Forest algorithm is classified binary and
multi-class.

Fig. 4. Semantic diagram of the Random Forest algorithm [17]

Random Forest is used because it can prevent

overfitting and is better at classifying minority classes

in datasets. Its main advantage is that it can predict new

data and cope with it class imbalance problem in the

dataset [13], [14] . This is because the algorithm

performs the learning process on a number of random

decision trees that are generated from random

subsamples and random feature subsets in the dataset.

Thus, this algorithm can reduce the tendency to study

irrelevant details and improve the generalization ability

of new data [15] . In addition, the Random Forest

algorithm is also resistant to measurement errors that

occur during model development [16] . Therefore, the

use of the Random Forest algorithm can help improve

the accuracy and efficiency of the model. Fig. 7 shows

the semantic diagram of the Random Forest algorithm.

G. Model evaluation

Evaluate the model, we are using the metrics of

accuracy, precision, recall and f1 score. Accuracy is

measured by calculating the percentage of normal and

attack classes that are correctly predicted, or true

positive and true negative, from the total dataset (see

equation 1) [16] .

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100% (1)

To measure the classification of an attack as benign,

recall is used, which refers to the number of correctly

predicted true positives compared to the total actual

positives in the dataset, i.e. true positives and false

negatives (see equation 2) [16] .

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100% (2)

Meanwhile, precision is used to calculate the number

of true positives that are correctly predicted for all

positive predictions, namely true positives and false

positives (see equation 3) [16] .

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100% (3)

From measuring precision and gain, harmonization

calculations are needed to overcome the trade-off

between precision and gain. This measurement is

called the f1-score (see equation 4) [16] .

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
× 100% (4)

III. RESULT AND DISCUSSION

In this research, model development and evaluation

used the programming language Python 3.10, IDE

Jupyter Lab 6.4.5, Pandas 1.3.4, NumPy 1.20.3, scikit-

learn 1.0.2. The research procedure was carried out

from pre-processing the dataset and ending with model

evaluation.

A. Preprocessing data and sampling data

In the pre-processing stage, the first 10 datasets
were merged into one dataset, with around 83% normal
traffic data and 17% for attack datasets. Table 1 shows
the class distribution of the dataset for this study.

IJNMT (International Journal of New Media Technology), Vol. 10, No. 1 | June 2023 45

ISSN 2355-0082

TABLE II. DISTRIBUTION OF NORMAL AND ATTACKS CLASS

Traffic Distribution(%)
Number of

samples

Benign 83.070014 13,484,708

DDoS Attack HOIC 4.226048 686,012

DDoS Attacks LOIC

HTTP
3.549517 576,191

Hulk's DoS attacks 2.845522 461,912

Bots 1.763026 286,191

Brute force FTP 1.191158 193,360

SSH Brute force 1.155607 187,589

Infiltration 0.997564 161,934

DoS attacks

SlowHTTPTest
0.861766 139,890

DoS attacks GoldenEye 0.255702 41,508

Slowloris DoS attacks 0.067702 10,990

UDP LOIC DDoS

attacks
0.010657 1730

Web brute force 0.003764 611

Brute Force XSS 0.001417 230

SQL Injections 0.000536 87

Total 100 16,232,943

Furthermore, data duplication was removed for 59

header rows with the same name. To make it easier to

access the features in the dataset, the feature names in

the dataset are changed to lowercase and change the

symbol characters and spaces (white space) to

underscores. Then the timestamp feature is converted to

Unix time and the timestamp data type is converted

from object to numeric (int64).

In this research, the protocol used is the TCP

protocol with a value of 6 and the UDP protocol with a

value of 17, apart from the removed TCP and UDP

protocols. In the dataset there is a protocol value of "0".

Therefore, samples on protocol features that have a

value of "0" are removed so as not to cause bias in the

built model.

Then delete samples and features based on the

number of NaN. The four additional features in the

fourth file " Thursday-20-02-

2018_TrafficForML_CICFlowMeter.csv " namely

flow_id, src_ip, src_port, and dst_ip are missing in the

other nine files, resulting in a NaN when combined. The

resulting number of NaNs reached 8,190,014 or 51.2%

of the total sample in the dataset, so these features were

deleted. Whereas in the flow_byts_s and flow_pkts_s

features which have a total NaN of 95,759 or 0.59% of

the total sample dataset, samples are deleted.

Feature deletion also applies to features that do not

have variants, because these features do not contribute

to the classification of the target class. Removed

features include bwd_psh_flags, bwd_urg_flags,

fwd_byts_b_avg, fwd_pkts_b_avg, fwd_blk_rate_avg,

bwd_byts_b_avg, bwd_pkts_b_avg, and

bwd_blk_rate_avg. In addition, feature deletion is also

carried out on one of the two features that have the same

value distribution. If the value of the correlation

coefficient is equal to one, then one of the features is

removed. There are 8 features removed, namely

cwe_flag_count, subflow_fwd_byts, syn_flag_cnt,

subflow_bwd_pkts, bwd_seg_size_avg,

fwd_seg_size_avg, subflow_bwd_byts.

After several preprocessing stages, the remaining
dataset has 63 features and 15.898.871 samples from
the initial dataset which has 83 features and 16.232.943
samples. There was a deletion of 20 features and
334.072 samples.

Then, from the remaining datasets, class balancing

was carried out. This was done with three different

sampling ratios, namely 1:1, 2:1, and 3:1. The model

development was also carried out with a dataset without

under sampling with a normal class to attack class ratio

of 4.79:1. The amount of data in each dataset can be

seen in Table 3.

TABLE III. NORMAL CLASS TO ATTACK CLASS RATIO

COMPARISON

Under sampling Ratio
Number of Samples

normal attacks

Nearmiss-2 1 : 1 2,744,000 2,744,400

Nearmiss-2 2 : 1 5,488,800 2,744,400

Nearmiss-2 3 : 1 8,233,200 2,744,400

None 4, 79 : 1 13,154,471 2,744,400

 After the data pre-processing stage, then divide the

data into 80% training data and 20% test data. Then

normalize the data with the MinMax scaler to the value

range [0,1] [13] .

B. Feature selection

Feature selection was performed using the Chi-

square method with binary and multi-class target

vectors. The calculation results are then sorted from the

largest and summed up until the total score forms a

percentage of ≤ 99%. Features with the remaining 1%

percentage removed. This feature selection was carried

out on 4 different datasets with ratios of 1:1, 2:1, 3:1

and 4.79:1 and each dataset produced 2 different

selected feature combinations, so that the total in the

four datasets produced 8 selected feature combinations

as listed in Table 4.

46 IJNMT (International Journal of New Media Technology), Vol. 10, No. 1 | June 2023

ISSN 2355-0082

C. Hyperparameter tuning

This research uses a random grid search technique with

cross-validation (k = 5) to select a combination of

hyperparameter values that produce the optimal model.

From a total of 8 different selected feature

combinations, a total of 8 combinations of

hyperparameter values were generated from the tuning

process. Then, a combination of hyperparameter

values with the highest F1 is selected from each

dataset, as shown in Table 5.

TABLE IV. SELECTED 8 FEATURES COMBINATION

Ratio
Under

sampling

Feature selection

- Target vector -

Percentage (%) -

features

Selected feature combinations

1 : 1

Nearmiss-2

Chi-square -

Multi-class - 99 -

50

'dst_port', 'protocol', 'timestamp', 'flow_duration', 'tot_fwd_pkts', 'totlen_fwd_pkts',

'fwd_pkt_len_max', 'fwd_pkt_len_mean', 'fwd_pkt_len_std', 'bwd_pkt_len_min', 'bwd_pkt_len_

mean', 'bwd_pkt_len_std', 'flow_pkts_s ', 'flow_iat_mean', 'flow_iat_std', 'flow_iat_max',

'flow_iat_min', 'fwd_iat_tot', 'fwd_iat_mean', 'fwd_iat_max', 'fwd_iat_min', 'bwd_iat_tot',

'bwd_iat_mean', 'bwd_iat_std', 'bwd _iat_max', 'bwd_iat_min', 'fwd_psh_flags', 'fwd_header_len',

'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_mean', 'pkt_len_std', 'pkt_len_var', 'rst_flag_cnt',

'psh_flag_cnt', 'ack_flag_cnt', 'urg_flag_cnt', 'ece_flag_cnt ', 'pkt_size_avg', 'init_fwd_win_byts',

'init_bwd_win_byts', 'fwd_act_data_pkts', 'fwd_seg_size_min', 'active_mean', 'active_std',

'active_max', 'idle_mean', 'idle_std', 'idle_max', 'idle_min'

Nearmiss-2

Chi-square -

Binary class – 99 -

31

'dst_port', 'fwd_pkt_len_max', 'fwd_pkt_len_mean', 'fwd_pkt_len_std', 'bwd_pkt_len_max',

'bwd_pkt_len_mean', 'bwd_pkt_len_std', 'flow_pkts_s', 'flow_iat_mean', 'flow_iat_min',

'fwd_iat_mean', 'fwd_iat_std', 'fwd_iat_min ', 'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_max',

'pkt_len_mean', 'pkt_len_std', 'pkt_len_var', 'rst_flag_cnt', 'psh_flag_cnt', 'ack_flag_cnt',

'urg_flag_cnt', 'ece_flag_cnt' , 'pkt_size_avg', 'init_fwd_win_byts', 'init_bwd_win_byts',

'fwd_seg_size_min', 'idle_mean', 'idle_max', 'idle_min'

2 : 1

Nearmiss-2

Chi-square -

Multi-class - 99 -

47

'dst_port', 'protocol', 'flow_duration', 'tot_fwd_pkts', 'totlen_fwd_pkts', 'fwd_pkt_len_max',

'fwd_pkt_len_mean', 'fwd_pkt_len_std', 'bwd_pkt_len_mean', 'bwd_pkt_len_std', ' flow_pkts_s',

'flow_iat_mean', 'flow_iat_std ', 'flow_iat_max', 'flow_iat_min', 'fwd_iat_tot', 'fwd_iat_mean',

'fwd_iat_max', 'fwd_iat_min', 'bwd_iat_tot', 'bwd_iat_mean', 'bwd_iat_std', 'bwd_iat_max',

'bwd_iat_min', 'fw d_psh_flags', 'fwd_header_len', 'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_mean',

'pkt_len_std', 'rst_flag_cnt', 'psh_flag_cnt', 'ack_flag_cnt', 'urg_flag_cnt', 'ece_flag_cnt',

'pkt_size_avg' , 'init_fwd_win_byts', 'init_bwd_win_byts ', 'fwd_act_data_pkts',

'fwd_seg_size_min', 'active_mean', 'active_std', 'active_max', 'idle_mean', 'idle_std', 'idle_max',

'idle_min'

Nearmiss-2

Chi-square -

Binary class - 99 -

37

'dst_port', 'protocol', 'flow_duration', 'fwd_pkt_len_max', 'fwd_pkt_len_min', 'fwd_pkt_len_mean',

'fwd_pkt_len_std', 'bwd_pkt_len_max', 'bwd_pkt_len_min', 'bwd_pkt_len_mean', 'bwd_

pkt_len_std', 'flow_pkts_s', 'flow_iat_mean ', 'flow_iat_max', 'flow_iat_min', 'fwd_iat_tot',

'fwd_iat_mean', 'fwd_iat_max', 'fwd_iat_min', 'fwd_psh_flags', 'fwd_pkts_s', 'bwd_pkts_s',

'pkt_len_min', 'pkt_len_max' , 'pkt_len_mean', 'pkt_len_std', 'pkt_len_var', 'psh_flag_cnt',

'ack_flag_cnt', 'urg_flag_cnt', 'pkt_size_avg', 'init_fwd_win_byts', 'init_bwd_win_byts',

'fwd_seg_size_min', 'idle_mean', 'idle_max', ' idle_min'

3 : 1

Nearmiss-2

Chi-square -

Multi-class - 99 -

46

'dst_port', 'protocol', 'timestamp', 'flow_duration', 'tot_fwd_pkts', 'totlen_fwd_pkts',

'fwd_pkt_len_max', 'fwd_pkt_len_mean', 'fwd_pkt_len_std', 'bwd_pkt_len_std', 'flow_pkts_s ',

'flow_iat_mean', 'flow_iat_std ', 'flow_iat_max', 'flow_iat_min', 'fwd_iat_tot', 'fwd_iat_mean',

'fwd_iat_max', 'fwd_iat_min', 'bwd_iat_tot', 'bwd_iat_mean', 'bwd_iat_std', 'bwd_iat_max',

'bwd_iat_min', 'fw d_psh_flags', 'fwd_header_len', 'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_std',

'rst_flag_cnt', 'psh_flag_cnt', 'ack_flag_cnt', 'urg_flag_cnt', 'ece_flag_cnt', 'init_fwd_win_byts',

'init_bwd _win_byts', 'fwd_act_data_pkts', 'fwd_seg_size_min ', 'active_mean', 'active_std',

'active_max', 'active_min', 'idle_mean', 'idle_std', 'idle_max', 'idle_min'

Nearmiss-2

Chi-square -

Binary class - 99 -

36

'dst_port', 'protocol', 'timestamp', 'flow_duration', 'fwd_pkt_len_max', 'fwd_pkt_len_min',

'fwd_pkt_len_mean', 'fwd_pkt_len_std', 'bwd_pkt_len_min', 'bwd_pkt_len_mean', 'flow_pkts_s',

'flow_iat_mean', 'flow_iat_max ', 'flow_iat_min', 'fwd_iat_tot', 'fwd_iat_mean', 'fwd_iat_max',

'fwd_iat_min', 'fwd_psh_flags', 'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_min', 'pkt_len_max',

'pkt_len_me an', 'pkt_len_std', 'fin_flag_cnt', 'rst_flag_cnt', 'ack_flag_cnt', 'ece_flag_cnt',

'pkt_size_avg', 'init_fwd_win_byts', 'init_bwd_win_byts', 'fwd_seg_size_min', 'idle_mean',

'idle_max', 'idle_min'

4, 79 :

1
None

Chi-square –

Multi-class - 99 -

37

'dst_port', 'protocol', 'timestamp', 'flow_duration', 'tot_fwd_pkts', 'totlen_fwd_pkts',

'bwd_pkt_len_min', 'flow_pkts_s', 'flow_iat_mean', 'flow_iat_std', 'flow_iat_max', 'flow_iat_min',

'fwd_ iat_tot ', 'fwd_iat_mean', 'fwd_iat_max', 'fwd_iat_min', 'bwd_iat_tot', 'bwd_iat_mean',

'bwd_iat_max', 'bwd_iat_min', 'fwd_psh_flags', 'fwd_header_len', 'fwd_pkts_s', 'bwd_pkts _s',

'rst_flag_cnt', 'psh_flag_cnt', 'ack_flag_cnt', 'urg_flag_cnt', 'ece_flag_cnt', 'init_fwd_win_byts',

'init_bwd_win_byts', 'fwd_act_data_pkts', 'fwd_seg_size_min', 'idle_mean', 'idle_std', 'idle_max' ,

'idle_min'

IJNMT (International Journal of New Media Technology), Vol. 10, No. 1 | June 2023 47

ISSN 2355-0082

Ratio
Under

sampling

Feature selection

- Target vector -

Percentage (%) -

features

Selected feature combinations

None

Chi-square –

Binary class - 99 -

35

'dst_port', 'protocol', 'timestamp', 'flow_duration', 'fwd_pkt_len_max', 'fwd_pkt_len_min',

'bwd_pkt_len_min', 'flow_pkts_s', 'flow_iat_std', 'flow_iat_max', 'fwd_iat_tot', 'fwd_iat_mean', '

fwd_iat_std ', 'fwd_iat_max', 'bwd_iat_tot', 'bwd_iat_mean', 'bwd_iat_std', 'bwd_iat_max',

'fwd_psh_flags', 'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_min', 'pkt_len_mean', 'fin_flag_cnt ',

'rst_flag_cnt', 'ack_flag_cnt', 'ece_flag_cnt', 'pkt_size_avg', 'init_fwd_win_byts',

'init_bwd_win_byts', 'fwd_act_data_pkts', 'fwd_seg_size_min', 'idle_mean', 'idle_max', 'idle_min'

D. Model development and model evaluation

Model development with the Random Forest (RF)
algorithm is carried out on each different dataset with a
ratio of 1:1, 2:1, 3:1, and 4.79:1. There are 4 models
built. The four models were evaluated by binary and
multi-class classification which were then compared.

The best model is obtained from a dataset with a
ratio of 3:1 . Evaluation of binary classification

produces an average accuracy of 99.6856%, precision
of 99.6414%, recall of 99.5196%, and f1 of 99.5803%.
While the results of the multi-class classification
evaluation show that the model has an accuracy of
99.6944%, precession of 98.8319%, recall of 96.904%,
and F1 of 97.8032% as shown in Table 6.

TABLE V. BEST COMBINATION OF HYPERPARAMETERS FROM HYPERPARAMETER TUNING

Ratio
Under

Sampling

Feature selection - Target vector -

Percentage of score (%) - features
Best Hyperparameters

1 : 1 Nearmiss-2 Chi-square - Multi class - 99% - 50
n estimators = 20, min samples split = 18, min samples leaf = 2,

max features = 15, max depth = None

2 : 1 Nearmiss-2 Chi-square - Binary class - 99% - 37
n estimators = 20, min samples split = 2, min samples leaf = 6,

max features = 18, max depth = 35

3 : 1 Nearmiss-2 Chi-square - Multi class - 99% - 46
n estimators = 15, min samples split = 17, min samples leaf = 2,

max features = 15, max depth = 30

4, 79 : 1 None Chi-square - Binary class - 99% - 35
n estimators = 35, min samples split = 3, min samples leaf = 2,

max features = 15, max depth = 35

TABLE VI. EVALUATION RESULTS

Ratio
feature selection

(features)

Multiclass classification (%) Time (sec)

accuracy Precision recall F1-score Trains test

1:1 Chi-square (50) 99.7564 98.1668 96.0803 96.9755 215.62 1.41

2:1 Chi-square (37) 98.2595 93.5775 89.9453 91.2306 564.62 3.22

3:1 Chi-square (46) 99.6944 98.8319 96,904 97.8032 333.13 2.29

4.79:1 Chi-square (35) 99.2835 96521 95.0857 95.7519 1166.25 7.43

Fig. 5 shows the binary classification confusion

matrix . The confusion matrix shows a false alarm rate

of 0.15 % (2443) and a false negative rate of 0.8 1 %

(4 459).

48 IJNMT (International Journal of New Media Technology), Vol. 10, No. 1 | June 2023

ISSN 2355-0082

Fig. 5. Binary classification confusion matrix

From the results of the multi-class evaluation shown

in Fig 6 , this model has an average accuracy value of

above 99%, even 7 out of 15 classes have an F1 value

of 100%. This shows that the hybrid model can classify

these classes accurately.

Fig . 6. Multi-class classification evaluation results

Fig. 7. Multi-class misclassification dataset ratio of 3:1

 Based on the misclassification analysis in Fig.7 ,

SQL Injection is the type of attack with the lowest

performance and the highest percentage of

misclassification of 23.52%. This is due to the small

size of the SQL Injection sample which only amounts

to 87 samples or around 0.00054% of the entire dataset.

This small sample size is not sufficient to represent the

class data in this study, making it difficult to achieve an

F1 score above 90%.

 Furthermore, infiltration is a type of attack with the

second largest misclassification, namely 14, 13 %.

From the confusion matrix in Figure 8, it can be seen

that 4478 Infiltration samples were incorrectly

classified as benign class (normal class), and similarly,

2210 out of 2214 benign samples were incorrectly

classified as Infiltration class. This indicates that

several Infiltration classes and Benign classes have

similar patterns, making it difficult for the model to

distinguish between them.

IJNMT (International Journal of New Media Technology), Vol. 10, No. 1 | June 2023 49

ISSN 2355-0082

Fig . 8 integration matrix dataset ratio 3:1

IV. CONCLUSION

Based on the tests and analysis performed, it can be

concluded that the random foreset algorithm with

hyperparameter tuning provides increased performance

in terms of accuracy, precision, recall, and F1, and has

the potential to reduce false detection . This model gives

the best results with a ratio of 3:1 (normal versus

attack). The results of the binary classification

evaluation show an average accuracy of 99.6856%,

precision of 99.6414%, recall of 99.5196%, and f1 of

99.5803%. Meanwhile, the results of the multi-class

classification evaluation showed an accuracy of

99.6944%, precession of 98.8319%, recall of 96.904%,

and F1 of 97.8032%. Overall, the model has been

successfully developed and tested, demonstrating

improved performance on the 2018 CSE-CICIDS data

set.

ACKNOWLEDGMENTS

Authors would like to thanks to Dept. Electrical
Engineering Faculty of Engineering Universitas
Indonesia, for supporting this research.

REFERENCES

[1] AK Saxena, S. Sinha, and P. Shukla, "General study of intrusion

detection systems and surveys of agent based intrusion

detection systems," Proceeding - IEEE Int. Conf. Comput.

commun. Autom. ICCCA 2017 , vol. 2017-January, pp. 417–

421, 2017, doi: 10.1109/CCAA.2017.8229866.

[2] S. Morgan, “Cybercrime To Cost The World 8 Trillion

Annually In 2023.”

https://cybersecurityventures.com/cybercrime-to-cost-the-

world-8-trillion-annually-in-2023/ (accessed Feb. 03, 2023).

[3] “IDS 2018 | Datasets | Research | Canadian Institute for

Cybersecurity | UNB.” https://www.unb.ca/cic/datasets/ids-

2018.html (accessed Feb. 03, 2022).

[4] “A Realistic Cyber Defense Dataset (CSE-CIC-IDS2018) -

Registry of Open Data on AWS.”

https://registry.opendata.aws/cse-cic-ids2018/ (accessed Feb.

03, 2023).

[5] MV Kotpalliwar and R. Wajgi, “Classification of attacks using

support vector machine (SVM) on KDDCUP'99 IDS

database,” in Proceedings - 2015 5th International Conference

on Communication Systems and Network Technologies, CSNT

2015 , 2015, pp. 987–990, doi: 10.1109/CSNT.2015.185.

[6] Y. Liao and VR Vemuri, “Use of K-Nearest Neighbor classifier

for intrusion detection,” Comput. Secur. , vol. 21, no. 5, pp.

439–448, 2002, doi: 10.1016/S0167-4048(02)00514-X.

[7] BS Sharmila and R. Nagapadma, "Intrusion Detection System

using Naive Bayes algorithm," in 2019 IEEE International

WIE Conference on Electrical and Computer Engineering

(WIECON-ECE) , 2019, pp. 1–4, doi: 10.1109/WIECON-

ECE48653.2019.9019921.

[8] HS Hota and AK Shrivas, “Decision Tree Techniques Applied

on NSL-KDD Data and Its Comparison with Various Feature

Selection Techniques,” in Advanced Computing, Networking

and Informatics- Volume 1 , 2014, pp. 205–211, doi:

10.1007/978-3-319-07353-8_24.

[9] Y. Xiao, C. Xing, T. Zhang, and Z. Zhao, “An Intrusion

Detection Model Based on Feature Reduction and

Convolutional Neural Networks,” IEEE Access , vol. 7, pp.

42210–42219, 2019, doi: 10.1109/ACCESS.2019.2904620.

[10] “KDD Cup 1999 Data.”

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[11] X. Gao, C. Shan, C. Hu, Z. Niu, and Z. Liu, “An Adaptive

Ensemble Machine Learning Model for Intrusion Detection,”

IEEE Access , vol. 7, pp. 82512–82521, 2019, doi:

10.1109/ACCESS.2019.2923640.

[12] A. Saifudin and RS Wahono, "Application of Ensemble

Techniques to Handle Class Imbalance in Prediction of

50 IJNMT (International Journal of New Media Technology), Vol. 10, No. 1 | June 2023

ISSN 2355-0082

Software Defects," J. Softw. Eng. , vol. 1, no. 1, 2015.

[13] AS More and DP Rana, “Review of random forest

classification techniques to resolve data imbalances,” in 2017

1st International Conference on Intelligent Systems and

Information Management (ICISIM) , 2017, pp. 72–78, doi:

10.1109/ICISIM.2017.8122151.

[14] L. Breiman, “Random Forests,” Mach. Learn. , vol. 45, no. 1,

pp. 5–32, 2001, doi: 10.1023/A:1010933404324.

[15] TB Laboratories, M. Avenue, and M. Hill, “Random Decision

Forests Tin Kam Ho Perceptron training,” 1995.

[16] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and

Techniques , 3rd ed. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2011.

[17] L. Yang, M. Cai, Y. Duan, and X. Yang, “Intrusion detection

based on approximate information entropy for random forest

classification,” ACM Int. Conf. Proceeding Ser. , pp. 125–129,

2019, doi: 10.1145/3335484.3335488.

