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Abstract— Attacks on computer networks are becoming 

more and more widespread nowadays, making this an 

important issue that must be considered . These attacks 

can be detected with the Intrusion Detection System 

(IDS). However, at this time there are new attacks that 

have not been detected by IDS. Therefore, ensemble 

learning is used. This research we used Random Forest 

algorithm for attack detection as an increase in the ability 

of IDS to detect cyberattacks. The use of the CSE-CIC-

IDS2018 dataset is used in this research as a current 

representative dataset for cyberattack detection. The 

results of this study we get a binary classification 

accuracy of 99.6856% and an f1-score of 99.5803% and a 

multiclass classification accuracy of 99.6944 and an f1-

score of 97.8032% with a data ratio ratio dataset of 3:1 

normal class to attack class. 

Keywords— IDS; random forest; undersampling; chi 

square; CSE-CIC-IDS2018. 

I. INTRODUCTION 

The rapid development of technology makes 

cyberattacks more massive and more be attention to. 

According to Saxena et al and Morgan, financial losses 

are predicted to reach 10.5 trillion dollars by 2025 [1], 

[2] . 

Detection of this cyberattack can be detected with a 

system developed called the Intrusion Detection 

System (IDS). However, IDS has not been able to 

accurately detect new attacks that have occurred and 

generates a high false alarm rate. 

For this reason, in this research we used a dataset 

that is considered representative to reflect the current 

situation. The dataset used is CSE-CIC-IDS2018 [3] . 

The dataset used can be downloaded from Cloud 

Amazone Services (AWS) [4] with a total sample data 

of 16 million samples with 79 features with a benign 

class distribution of 83% with an attack class of 17% 

consisting of 14 attack classes. 

There have been several studies on IDS such as the 

Support Vector Machine algorithm [5] carried out by 

Kotpaliwar et al, the k-Nearest Neighbor algorithm [6] 

, Gaussian Naïve Bayes [7] , various decision tree 

algorithms carried out by Hota et al [8] , Convolution 

Neural Network algorithm [9] . However, these studies 

still use an old dataset, that is the KDDCUP99 [10] 

dataset , which does not reflect the current state of the 

attack. 

The use of the algorithm in this study is ensemble 

learning, because ensemble learning can be optimal for 

classes with unbalanced datasets. Ensemble learning is 

learning that combines several basic algorithms to get 

better predictive results based on the highest voting [11] 

. Ensemble learning is carried out by using the Random 

Forest algorithm which is a boosting approach from 

ensemble learning [12] . Random Forest is recognized 

as being quite good at overcoming class imbalances in 

datasets and providing fairly accurate results [13] . 

Therefore, in this study we conducted research to 

detect attacks on computer networks using the Random 

Forest algorithm. This is expected to be able to detect 

attacks, especially today's types of attacks that cannot 

be detected with IDS. 

 

II. METHOD 

In this research, there are several research steps, as 

follows (Fig.1): 

 
Fig. 1. Research procedure 
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A. Data Exploration 

We used the CSE-CIC-IDS2018 dataset. The 

dataset consists of 10 CSV files and a total of 16 million 

samples with 83% benign class and 17% attack class. 

B. Data Preprocessing 

In this step, we do a number of things as shown in 

Fig. 2, including: 

 Merging 10 files from dataset 

 Remove duplicate header rows 

 Convert timestamp to UnixTime 

 The infinity value becomes NaN 

 Remove features with a number of NaNs > 50% 

 Delete row on feature number of NaN < 50% 

 Remove any of the features that have a 

correlation coefficient equal to one 

Balancing the normal class against the attack class by 

undersampling nearmiss-2 (ratio 1:1, 2:1, and 3:1) 

 

 
Fig. 2. Data Preprocessing 

 

C. Data sampling and normalization 

Data folding was carried out by fold out of 80% for 

data training and 20% of the data test on the balanced 

dataset and the original dataset without under sampling 

(ratios 1:1, 2:1, 3:1 and 4.79:1). Then normalize the 

data with a min-max scaler to re-scale the feature values 

to the value range [0,1]. 

D. Feature selection 

Feature selection is carried out using the chi square 

method and binary or multiclass target vectors with a 

score percentage threshold of 99%, as shown in Fig. 3. 

so that there are 2 feature combinations in each dataset, 

a total of 8 feature combinations from the four datasets 

(ratio 1:1, 2:1, 3:1 and 4,79:1). Features with the 

remaining 1% score percentage will be deleted. 

 

 
Fig. 3. Data sampling and feature selection
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E. Hyperparameter tuning 

In this research, to get optimal results, 

hyperparameter tuning was conducted in this research. 

Hyperparameter tuning is done using a random grid 

search technique. Random grid search randomly selects 

15 predefined hyperparameter value combinations. 

Each combination of hyperparameter values is cross-

validated by 5-fold cross validation. Then the 

combination of hyperparameter values is selected 

which produces the model with the highest average f1-

score. 

The choice of a combination of hyperparameter 

values is based on the highest f1-score value, because 

the dataset used is an unbalanced dataset so that a better 

measurement metric is the f1-score which is a 

harmonization between precision values and recall 

values. The hyperparameter values used in the tuning 

process include estimators, max features, max depth, 

min samples split, and min samples leaf, with the 

following hyperparameter value ranges, shown in Table 

1: 

TABLE I.  RANDOM FOREST HYPERPARAMETERS 

Hyperparameters Value 

Estimators 10,15,20,25,25,30,35,40,45,50 

Max features 5,9,12,15,18 

Max depth None,5,10,15,20,25,30,35 

Min samples split 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17

,18,19,20 

Min samples leaf 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17

,18,19,20 

 

F. Random Forest 

At this stage, a model is built for each dataset (ratios 
1:1, 2:1, 3:1 and 4.79:1) using the best hyperparameter 
values that have been obtained from the tuning stage. 
The Random Forest algorithm is classified binary and 
multi-class. 

 
Fig. 4. Semantic diagram of the Random Forest algorithm [17] 

Random Forest is used because it can prevent 

overfitting and is better at classifying minority classes 

in datasets. Its main advantage is that it can predict new 

data and cope with it class imbalance problem in the 

dataset [13], [14] . This is because the algorithm 

performs the learning process on a number of random 

decision trees that are generated from random 

subsamples and random feature subsets in the dataset. 

Thus, this algorithm can reduce the tendency to study 

irrelevant details and improve the generalization ability 

of new data [15] . In addition, the Random Forest 

algorithm is also resistant to measurement errors that 

occur during model development [16] . Therefore, the 

use of the Random Forest algorithm can help improve 

the accuracy and efficiency of the model. Fig. 7 shows 

the semantic diagram of the Random Forest algorithm. 

G. Model evaluation 

Evaluate the model, we are using the metrics of 

accuracy, precision, recall and f1 score. Accuracy is 

measured by calculating the percentage of normal and 

attack classes that are correctly predicted, or true 

positive and true negative, from the total dataset (see 

equation 1) [16] . 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100% (1) 

 

To measure the classification of an attack as benign, 

recall is used, which refers to the number of correctly 

predicted true positives compared to the total actual 

positives in the dataset, i.e. true positives and false 

negatives (see equation 2) [16 ] . 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100% (2) 

 

Meanwhile, precision is used to calculate the number 

of true positives that are correctly predicted for all 

positive predictions, namely true positives and false 

positives (see equation 3) [16] . 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100% (3) 

 

From measuring precision and gain, harmonization 

calculations are needed to overcome the trade-off 

between precision and gain. This measurement is 

called the f1-score (see equation 4) [16] . 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
× 100% (4) 

 

 

III. RESULT AND DISCUSSION 

In this research, model development and evaluation 

used the programming language Python 3.10, IDE 

Jupyter Lab 6.4.5, Pandas 1.3.4, NumPy 1.20.3, scikit-

learn 1.0.2. The research procedure was carried out 

from pre-processing the dataset and ending with model 

evaluation. 

A. Preprocessing data and sampling data 

In the pre-processing stage, the first 10 datasets 
were merged into one dataset, with around 83% normal 
traffic data and 17% for attack datasets. Table 1 shows 
the class distribution of the dataset for this study. 
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TABLE II.  DISTRIBUTION OF NORMAL AND ATTACKS CLASS 

Traffic Distribution( %) 
Number of 

samples 

Benign 83.070014 13,484,708 

DDoS Attack HOIC 4.226048 686,012 

DDoS Attacks LOIC 

HTTP 
3.549517 576,191 

Hulk's DoS attacks 2.845522 461,912 

Bots 1.763026 286,191 

Brute force FTP 1.191158 193,360 

SSH Brute force 1.155607 187,589 

Infiltration 0.997564 161,934 

DoS attacks 

SlowHTTPTest 
0.861766 139,890 

DoS attacks GoldenEye 0.255702 41,508 

Slowloris DoS attacks 0.067702 10,990 

UDP LOIC DDoS 

attacks 
0.010657 1730 

Web brute force 0.003764 611 

Brute Force XSS 0.001417 230 

SQL Injections 0.000536 87 

Total 100 16,232,943 

Furthermore, data duplication was removed for 59 

header rows with the same name. To make it easier to 

access the features in the dataset, the feature names in 

the dataset are changed to lowercase and change the 

symbol characters and spaces (white space) to 

underscores. Then the timestamp feature is converted to 

Unix time and the timestamp data type is converted 

from object to numeric (int64). 

In this research,  the protocol used is the TCP 

protocol with a value of 6 and the UDP protocol with a 

value of 17, apart from the removed TCP and UDP 

protocols. In the dataset there is a protocol value of "0". 

Therefore, samples on protocol features that have a 

value of "0" are removed so as not to cause bias in the 

built model. 

Then delete samples and features based on the 

number of NaN. The four additional features in the 

fourth file " Thursday-20-02-

2018_TrafficForML_CICFlowMeter.csv " namely 

flow_id, src_ip, src_port, and dst_ip are missing in the 

other nine files, resulting in a NaN when combined. The 

resulting number of NaNs reached 8,190,014 or 51.2% 

of the total sample in the dataset, so these features were 

deleted. Whereas in the flow_byts_s and flow_pkts_s 

features which have a total NaN of 95,759 or 0.59% of 

the total sample dataset, samples are deleted. 

Feature deletion also applies to features that do not 

have variants, because these features do not contribute 

to the classification of the target class. Removed 

features include bwd_psh_flags, bwd_urg_flags, 

fwd_byts_b_avg, fwd_pkts_b_avg, fwd_blk_rate_avg, 

bwd_byts_b_avg, bwd_pkts_b_avg, and 

bwd_blk_rate_avg. In addition, feature deletion is also 

carried out on one of the two features that have the same 

value distribution. If the value of the correlation 

coefficient is equal to one, then one of the features is 

removed. There are 8 features removed, namely 

cwe_flag_count, subflow_fwd_byts, syn_flag_cnt, 

subflow_bwd_pkts, bwd_seg_size_avg, 

fwd_seg_size_avg, subflow_bwd_byts. 

After several preprocessing stages, the remaining 
dataset has 63 features and 15.898.871 samples from 
the initial dataset which has 83 features and 16.232.943 
samples. There was a deletion of 20 features and 
334.072 samples. 

Then, from the remaining datasets, class balancing 

was carried out. This was done with three different 

sampling ratios, namely 1:1, 2:1, and 3:1. The model 

development was also carried out with a dataset without 

under sampling with a normal class to attack class ratio 

of 4.79:1. The amount of data in each dataset can be 

seen in Table 3. 

TABLE III.  NORMAL CLASS TO ATTACK CLASS RATIO 

COMPARISON 

Under sampling Ratio 
Number of Samples 

normal attacks 

Nearmiss-2 1 : 1 2,744,000 2,744,400 

Nearmiss-2 2 : 1 5,488,800 2,744,400 

Nearmiss-2 3 : 1 8,233,200 2,744,400 

None 4, 79 : 1 13,154,471 2,744,400 

 After the data pre-processing stage, then divide the 

data into 80% training data and 20% test data. Then 

normalize the data with the MinMax scaler to the value 

range [0,1] [13] . 

 

B. Feature selection 

Feature selection was performed using the Chi-

square method with binary and multi-class target 

vectors. The calculation results are then sorted from the 

largest and summed up until the total score forms a 

percentage of ≤ 99%. Features with the remaining 1% 

percentage removed. This feature selection was carried 

out on 4 different datasets with ratios of 1:1, 2:1, 3:1 

and 4.79:1 and each dataset produced 2 different 

selected feature combinations, so that the total in the 

four datasets produced 8 selected feature combinations 

as listed in Table 4. 
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C. Hyperparameter tuning 

This research uses a random grid search technique with 

cross-validation (k = 5) to select a combination of 

hyperparameter values that produce the optimal model. 

From a total of 8 different selected feature 

combinations, a total of 8 combinations of 

hyperparameter values were generated from the tuning 

process. Then, a combination of hyperparameter 

values with the highest F1 is selected from each 

dataset, as shown in Table 5. 

TABLE IV.  SELECTED 8 FEATURES COMBINATION 

Ratio 
Under 

sampling 

Feature selection 

- Target vector - 

Percentage (%) - 

features 

Selected feature combinations 

1 : 1 

Nearmiss-2 

Chi-square - 

Multi-class - 99 - 

50 

'dst_port', 'protocol', 'timestamp', 'flow_duration', 'tot_fwd_pkts', 'totlen_fwd_pkts', 

'fwd_pkt_len_max', 'fwd_pkt_len_mean', 'fwd_pkt_len_std', 'bwd_pkt_len_min', 'bwd_pkt_len_ 

mean', 'bwd_pkt_len_std', 'flow_pkts_s ', 'flow_iat_mean', 'flow_iat_std', 'flow_iat_max', 

'flow_iat_min', 'fwd_iat_tot', 'fwd_iat_mean', 'fwd_iat_max', 'fwd_iat_min', 'bwd_iat_tot', 

'bwd_iat_mean', 'bwd_iat_std', 'bwd _iat_max', 'bwd_iat_min', 'fwd_psh_flags', 'fwd_header_len', 

'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_mean', 'pkt_len_std', 'pkt_len_var', 'rst_flag_cnt', 

'psh_flag_cnt', 'ack_flag_cnt', 'urg_flag_cnt', 'ece_flag_cnt ', 'pkt_size_avg', 'init_fwd_win_byts', 

'init_bwd_win_byts', 'fwd_act_data_pkts', 'fwd_seg_size_min', 'active_mean', 'active_std', 

'active_max', 'idle_mean', 'idle_std', 'idle_max', 'idle_min' 

Nearmiss-2 

Chi-square - 

Binary class – 99 - 

31 

'dst_port', 'fwd_pkt_len_max', 'fwd_pkt_len_mean', 'fwd_pkt_len_std', 'bwd_pkt_len_max', 

'bwd_pkt_len_mean', 'bwd_pkt_len_std', 'flow_pkts_s', 'flow_iat_mean', 'flow_iat_min', 

'fwd_iat_mean', 'fwd_iat_std', 'fwd_iat_min ', 'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_max', 

'pkt_len_mean', 'pkt_len_std', 'pkt_len_var', 'rst_flag_cnt', 'psh_flag_cnt', 'ack_flag_cnt', 

'urg_flag_cnt', 'ece_flag_cnt' , 'pkt_size_avg', 'init_fwd_win_byts', 'init_bwd_win_byts', 

'fwd_seg_size_min', 'idle_mean', 'idle_max', 'idle_min' 

2 : 1 

Nearmiss-2 

Chi-square - 

Multi-class - 99 - 

47 

'dst_port', 'protocol', 'flow_duration', 'tot_fwd_pkts', 'totlen_fwd_pkts', 'fwd_pkt_len_max', 

'fwd_pkt_len_mean', 'fwd_pkt_len_std', 'bwd_pkt_len_mean', 'bwd_pkt_len_std', ' flow_pkts_s', 

'flow_iat_mean', 'flow_iat_std ', 'flow_iat_max', 'flow_iat_min', 'fwd_iat_tot', 'fwd_iat_mean', 

'fwd_iat_max', 'fwd_iat_min', 'bwd_iat_tot', 'bwd_iat_mean', 'bwd_iat_std', 'bwd_iat_max', 

'bwd_iat_min', 'fw d_psh_flags', 'fwd_header_len', 'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_mean', 

'pkt_len_std', 'rst_flag_cnt', 'psh_flag_cnt', 'ack_flag_cnt', 'urg_flag_cnt', 'ece_flag_cnt', 

'pkt_size_avg' , 'init_fwd_win_byts', 'init_bwd_win_byts ', 'fwd_act_data_pkts', 

'fwd_seg_size_min', 'active_mean', 'active_std', 'active_max', 'idle_mean', 'idle_std', 'idle_max', 

'idle_min' 

Nearmiss-2 

Chi-square - 

Binary class - 99 - 

37 

'dst_port', 'protocol', 'flow_duration', 'fwd_pkt_len_max', 'fwd_pkt_len_min', 'fwd_pkt_len_mean', 

'fwd_pkt_len_std', 'bwd_pkt_len_max', 'bwd_pkt_len_min', 'bwd_pkt_len_mean', 'bwd_ 

pkt_len_std', 'flow_pkts_s', 'flow_iat_mean ', 'flow_iat_max', 'flow_iat_min', 'fwd_iat_tot', 

'fwd_iat_mean', 'fwd_iat_max', 'fwd_iat_min', 'fwd_psh_flags', 'fwd_pkts_s', 'bwd_pkts_s', 

'pkt_len_min', 'pkt_len_max' , 'pkt_len_mean', 'pkt_len_std', 'pkt_len_var', 'psh_flag_cnt', 

'ack_flag_cnt', 'urg_flag_cnt', 'pkt_size_avg', 'init_fwd_win_byts', 'init_bwd_win_byts', 

'fwd_seg_size_min', 'idle_mean', 'idle_max', ' idle_min' 

3 : 1 

Nearmiss-2 

Chi-square - 

Multi-class - 99 - 

46 

'dst_port', 'protocol', 'timestamp', 'flow_duration', 'tot_fwd_pkts', 'totlen_fwd_pkts', 

'fwd_pkt_len_max', 'fwd_pkt_len_mean', 'fwd_pkt_len_std', 'bwd_pkt_len_std', 'flow_pkts_s ', 

'flow_iat_mean', 'flow_iat_std ', 'flow_iat_max', 'flow_iat_min', 'fwd_iat_tot', 'fwd_iat_mean', 

'fwd_iat_max', 'fwd_iat_min', 'bwd_iat_tot', 'bwd_iat_mean', 'bwd_iat_std', 'bwd_iat_max', 

'bwd_iat_min', 'fw d_psh_flags', 'fwd_header_len', 'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_std', 

'rst_flag_cnt', 'psh_flag_cnt', 'ack_flag_cnt', 'urg_flag_cnt', 'ece_flag_cnt', 'init_fwd_win_byts', 

'init_bwd _win_byts', 'fwd_act_data_pkts', 'fwd_seg_size_min ', 'active_mean', 'active_std', 

'active_max', 'active_min', 'idle_mean', 'idle_std', 'idle_max', 'idle_min' 

Nearmiss-2 

Chi-square - 

Binary class - 99 - 

36 

'dst_port', 'protocol', 'timestamp', 'flow_duration', 'fwd_pkt_len_max', 'fwd_pkt_len_min', 

'fwd_pkt_len_mean', 'fwd_pkt_len_std', 'bwd_pkt_len_min', 'bwd_pkt_len_mean', 'flow_pkts_s', 

'flow_iat_mean', 'flow_iat_max ', 'flow_iat_min', 'fwd_iat_tot', 'fwd_iat_mean', 'fwd_iat_max', 

'fwd_iat_min', 'fwd_psh_flags', 'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_min', 'pkt_len_max', 

'pkt_len_me an', 'pkt_len_std', 'fin_flag_cnt', 'rst_flag_cnt', 'ack_flag_cnt', 'ece_flag_cnt', 

'pkt_size_avg', 'init_fwd_win_byts', 'init_bwd_win_byts', 'fwd_seg_size_min', 'idle_mean', 

'idle_max', 'idle_min' 

4, 79 : 

1 
None 

Chi-square – 

Multi-class - 99 - 

37 

'dst_port', 'protocol', 'timestamp', 'flow_duration', 'tot_fwd_pkts', 'totlen_fwd_pkts', 

'bwd_pkt_len_min', 'flow_pkts_s', 'flow_iat_mean', 'flow_iat_std', 'flow_iat_max', 'flow_iat_min', 

'fwd_ iat_tot ', 'fwd_iat_mean', 'fwd_iat_max', 'fwd_iat_min', 'bwd_iat_tot', 'bwd_iat_mean', 

'bwd_iat_max', 'bwd_iat_min', 'fwd_psh_flags', 'fwd_header_len', 'fwd_pkts_s', 'bwd_pkts _s', 

'rst_flag_cnt', 'psh_flag_cnt', 'ack_flag_cnt', 'urg_flag_cnt', 'ece_flag_cnt', 'init_fwd_win_byts', 

'init_bwd_win_byts', 'fwd_act_data_pkts', 'fwd_seg_size_min', 'idle_mean', 'idle_std', 'idle_max' , 

'idle_min' 
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Ratio 
Under 

sampling 

Feature selection 

- Target vector - 

Percentage (%) - 

features 

Selected feature combinations 

None 

Chi-square – 

Binary class - 99 - 

35 

'dst_port', 'protocol', 'timestamp', 'flow_duration', 'fwd_pkt_len_max', 'fwd_pkt_len_min', 

'bwd_pkt_len_min', 'flow_pkts_s', 'flow_iat_std', 'flow_iat_max', 'fwd_iat_tot', 'fwd_iat_mean', ' 

fwd_iat_std ', 'fwd_iat_max', 'bwd_iat_tot', 'bwd_iat_mean', 'bwd_iat_std', 'bwd_iat_max', 

'fwd_psh_flags', 'fwd_pkts_s', 'bwd_pkts_s', 'pkt_len_min', 'pkt_len_mean', 'fin_flag_cnt ', 

'rst_flag_cnt', 'ack_flag_cnt', 'ece_flag_cnt', 'pkt_size_avg', 'init_fwd_win_byts', 

'init_bwd_win_byts', 'fwd_act_data_pkts', 'fwd_seg_size_min', 'idle_mean', 'idle_max', 'idle_min' 

D. Model development and model evaluation 

Model development with the Random Forest (RF) 
algorithm is carried out on each different dataset with a 
ratio of 1:1, 2:1, 3:1, and 4.79:1. There are 4 models 
built. The four models were evaluated by binary and 
multi-class classification which were then compared. 

The best model is obtained from a dataset with a 
ratio of 3:1 . Evaluation of binary classification  

produces an average accuracy of 99.6856%, precision 
of 99.6414%, recall of 99.5196%, and f1 of 99.5803%. 
While the results of the multi-class classification 
evaluation show that the model has an accuracy of 
99.6944%, precession of 98.8319%, recall of 96.904%, 
and F1 of 97.8032% as shown in Table 6. 

 

TABLE V.  BEST COMBINATION OF HYPERPARAMETERS FROM HYPERPARAMETER TUNING 

Ratio 
Under 

Sampling 

Feature selection - Target vector - 

Percentage of score (%) - features 
Best Hyperparameters 

1 : 1 Nearmiss-2 Chi-square - Multi class - 99% - 50 
n estimators = 20, min samples split = 18, min samples leaf = 2, 

max features = 15, max depth = None 

2 : 1 Nearmiss-2 Chi-square - Binary class - 99% - 37 
n estimators = 20, min samples split = 2, min samples leaf = 6, 

max features = 18, max depth = 35 

3 : 1 Nearmiss-2 Chi-square - Multi class - 99% - 46 
n estimators = 15, min samples split = 17, min samples leaf = 2, 

max features = 15, max depth = 30 

4, 79 : 1 None Chi-square - Binary class - 99% - 35 
n estimators = 35, min samples split = 3, min samples leaf = 2, 

max features = 15, max depth = 35 

TABLE VI.  EVALUATION RESULTS 

Ratio 
feature selection 

(features) 

Multiclass classification (%) Time (sec) 

accuracy Precision recall F1-score Trains test 

1:1 Chi-square (50) 99.7564 98.1668 96.0803 96.9755 215.62 1.41 

2:1 Chi-square (37) 98.2595 93.5775 89.9453 91.2306 564.62 3.22 

3:1 Chi-square (46) 99.6944 98.8319 96,904 97.8032 333.13 2.29 

4.79:1 Chi-square (35) 99.2835 96521 95.0857 95.7519 1166.25 7.43 

Fig. 5 shows the binary classification confusion 

matrix . The confusion matrix shows a false alarm rate 

of 0.15 % ( 2443 ) and a false negative rate of 0.8 1 % 

(4 459 ). 
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Fig. 5. Binary classification confusion matrix 

From the results of the multi-class evaluation shown 

in Fig 6 , this model has an average accuracy value of 

above 99%, even 7 out of 15 classes have an F1 value 

of 100%. This shows that the hybrid model can classify 

these classes accurately. 

Fig . 6. Multi-class classification evaluation results 

 
Fig. 7. Multi-class misclassification dataset ratio of 3:1 

 Based on the misclassification analysis in Fig.7 , 

SQL Injection is the type of attack with the lowest 

performance and the highest percentage of 

misclassification of 23.52%. This is due to the small 

size of the SQL Injection sample which only amounts 

to 87 samples or around 0.00054% of the entire dataset. 

This small sample size is not sufficient to represent the 

class data in this study, making it difficult to achieve an 

F1 score above 90%. 

 Furthermore, infiltration is a type of attack with the 

second largest misclassification, namely 14, 13 %. 

From the confusion matrix in Figure 8, it can be seen 

that 4478 Infiltration samples were incorrectly 

classified as benign class (normal class), and similarly, 

2210 out of 2214 benign samples were incorrectly 

classified as Infiltration class. This indicates that 

several Infiltration classes and Benign classes have 

similar patterns, making it difficult for the model to 

distinguish between them. 
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Fig . 8  integration matrix dataset ratio 3:1

IV. CONCLUSION 

Based on the tests and analysis performed, it can be 

concluded that the random foreset algorithm with 

hyperparameter tuning provides increased performance 

in terms of accuracy, precision, recall, and F1, and has 

the potential to reduce false detection . This model gives 

the best results with a ratio of 3:1 ( normal versus 

attack). The results of the binary classification 

evaluation show an average accuracy of 99.6856%, 

precision of 99.6414%, recall of 99.5196%, and f1 of 

99.5803%. Meanwhile, the results of the multi-class 

classification evaluation showed an accuracy of 

99.6944%, precession of 98.8319%, recall of 96.904%, 

and F1 of 97.8032%. Overall, the model has been 

successfully developed and tested, demonstrating 

improved performance on the 2018 CSE-CICIDS data 

set. 
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