

IJNMT (International Journal of New Media Technology), Vol. 11, No. 2 | December 2024 119

ISSN 2355-0082

Cost Estimation for Software Development

Using Function Point Analysis Method

Ester Lumba1, Destriana Widyaningrum2, Alexander Waworuntu3

1,2 Department of Informatics, Bunda Mulia University, Jakarta, Indonesia
3 Department of Informatics, Universitas Multimedia Nusantara, Tangerang, Indonesia

1l0178@lecturer.ubm.ac.id, 2l0178@lecturer.ubm.ac.id
3alex.wawo@umn.ac.id

Accepted 7 January 2025

Approved 17 January 2025

Abstract— Software development requires substantial

financial resources. This study aims to examine the cost

estimation for software development. The complexity of

the software, its intangibility as a non-physical product,

the technology utilized, and human resources can all

influence the determination of software development

costs. The method used for cost estimation is Function

Point Analysis with a case study approach. The

researchers conducted a case study on the software

development for an employee savings and loan

cooperative at XYZ Company. The formulation of the

problem in this study is how to apply the Function Point

Analysis method in estimating software development

costs at the XYZ employee savings and loan cooperative.

The result of this study is a cost recommendation that can

serve as a reference for selecting software development

vendors by the cooperative's management.

Index Terms— Cost Estimation; Function Point

Analysis; Savings and Loan Cooperative.

I. INTRODUCTION

Information technology is rapidly advancing in the

digital era [1], prompting various small, medium, and

large organizations to develop software to support their

business operations. Desktop, web, and mobile

applications are necessary to enhance efficiency,

productivity, and service quality.

Software development incurs costs [2].

Organizations, whether large or small, often struggle to

determine the costs associated with software

development. Several factors contribute to the difficulty

of determining these costs, including the intangibility of

software as a non-physical product, project complexity,

the technology employed, and human resources.

Estimation techniques can be classified into three

categories: expert judgment based on historical data and

similar software projects, algorithmic models, and

machine learning [2][3][4].

Software comprises computer programs associated

with software documentation [5]. This documentation

is a collection of information, guidelines, and

descriptions related to the development, operation, and

maintenance of the software. Software does not become

obsolete because software defects can be repaired. The

purpose of documentation is to assist users in

understanding how to use the software. For developers,

it provides essential information for updating or

repairing software and serves as a reference for teams

involved in project development.

Software is built through an engineering process

[5]. Generally, software development follows

principles known as the software or system

development life cycle (SDLC) [6][7]. The SDLC

includes phases aimed at producing quality software

that meets customer desires or the objectives for which

the system was created. The software or system

development life cycle can be seen in Figure 1.

Fig. 1. Software Development Life Cycle

In software engineering, the concept of SDLC

underlies various software development

methodologies. These methodologies provide a

framework for planning and controlling the creation of

an information system, namely the software

development process. Software development is divided

into two approaches: structured and Object-Oriented

Design (OOD). The structured approach represents the

system based on data and the processes applied to this

data, using modeling tools like Data Flow Diagrams

(DFD). The object-oriented design approach views the

system as a collection of objects consisting of data and

processes, using modeling tools like Unified Modeling

Language (UML) [5][6][7].

120 IJNMT (International Journal of New Media Technology), Vol. 11, No. 2 | December 2024

ISSN 2355-0082

This research uses a case study approach to develop

software for the XYZ Company's employee savings and

loan cooperative. This cooperative is a type of

microfinance organization that plays a role in

enhancing the welfare of each member[8]. XYZ

Company has both permanent and contract employees.

Like other companies, XYZ Company also formed a

savings and loan cooperative. This cooperative was

established as a platform for employees to assist each

other financially during times of need. All permanent

employees are encouraged to become cooperative

members [8]. Besides serving as a venue for saving and

borrowing money, the cooperative also fosters

solidarity and mutual aid among employees at the

company [9].

To manage employee data, the cooperative's

management still uses manual bookkeeping and records

data using tools like Microsoft Excel. Amid the

demands of their primary job roles within the company,

employees who also serve as cooperative managers

often face challenges in reporting to members.

Therefore, during a member meeting, the cooperative's

management at the company proposed developing

software to aid in managing member data and recording

transactions and borrowings conducted by employees.

Building software requires funding. The

cooperative's management has contacted various

software vendors. The development costs offered by

these vendors vary significantly, ranging from very low

to very high prices.

Addressing the challenges outlined above, the

research team embarked on a study aimed at refining

the cost estimation process for software development

through the Function Point Analysis method. This study

focuses on applying this method specifically to estimate

the costs associated with developing software for the

XYZ employee savings and loan cooperative. The core

research question investigates the practical application

of Function Point Analysis in this setting: "How is the

Function Point Analysis method applied in estimating

the costs of developing software for the XYZ employee

savings and loan cooperative?"

The objectives are twofold: firstly, to implement the

Function Point method to accurately estimate the

development costs for software at the XYZ Employee

Savings and Loan Cooperative, and secondly, to equip

the cooperative's management with reliable

recommendations for choosing a software development

vendor who offers a reasonable cost.

The anticipated benefits of this study are manifold.

For software developers, it promises to provide a clear

and quantifiable guideline for estimating costs, based

on the functional size of the software. For the

cooperative's management, it aims to present an

overview of what constitutes reasonable software

development costs. Lastly, for the academic and

research community, this study is intended to serve as a

valuable reference in the field of software cost

estimation, with a particular focus on the application of

the Function Point Analysis method.

II. RESEARCH METHODOLOGY

This study employs a qualitative descriptive

approach using a case study methodology. The software

development project for the Employee Savings and

Loan Cooperative at XYZ Company will be analyzed

using Function Point Analysis to estimate costs [10].

The research process is divided into three stages, as

illustrated in Figure 2.

Fig. 2. Research Step

The initial stage of the research is divided into three

parts: preparation, preliminary survey, and interviews

with the cooperative's management. In the preparation

phase, the research team conducts studies related to

topics that are relevant to the field of expertise.

Subsequently, in the preliminary survey phase, the team

visits XYZ Company to gather information about the

software needs. The preliminary survey revealed that

the management of the XYZ Company’s employee

savings and loan cooperative needs software to manage

financial and member data. Following this, the research

team conducts further interviews to capture the user

requirements.

The implementation stage is split into two parts:

analyzing the software functions based on the

interviews conducted in the first stage and applying the

Function Point Analysis (FPA) method. In the user

requirements determination phase, researchers

document the interview results with the cooperative's

management. This documentation includes a list of

functional and non-functional requirements needed by

the users. The next part involves analyzing the software

functions, which results in seven modules. Each module

defines a list of functional requirements. The final stage

of this research produces a recommended cost estimate

for the software project. This recommendation will

serve as a reference for the cooperative's management

in selecting a vendor to develop the software for the

employee savings and loan cooperative at XYZ

Company.

III. FUNCTION POINT ANALYSIS

Function Point Analysis (FPA) is a software

measurement method introduced by Allan Albrecht in

1979[10] and is widely used globally. It has been

updated by the International Function Point Users

Group (IFPUG) [11]; a nonprofit organization managed

by members worldwide. This organization helps

IJNMT (International Journal of New Media Technology), Vol. 11, No. 2 | December 2024 121

ISSN 2355-0082

improve software development processes according to

software measurement standards. IFPUG has

approximately 1,200 members from 30 countries who

are experts in Function Point Analysis [11][12].

A. User Function Identification and Complexity

From a user’s perspective, software functionality is

measured using five elements: External Inputs (EI),

External Outputs (EO), External Inquiries (EQ),

Internal Logical Files (ILF), and Program Interfaces

(PI). Each function has its own complexity level [13].

Therefore, each function can be classified based on its

complexity as low for simple functions, medium for

moderately complex functions, and high for complex or

highly complex functions [13][14][15]. The functional

complexity weight based on function type are shown in

table 1 below:

TABLE I. FUNCTIONAL POINT COMPLEXITY

User Function Types
Complexity Weight

Low Medium High

External Inputs (EI) 3 4 6

External Outputs (EO) 4 5 7

External Inquiries (EQ) 3 4 6

Internal Logical Files (ILF) 7 10 15

Program Interfaces (PI) 5 7 10

External Input pertains to user inputs into the

system. Based on the analysis, the function and

complexity levels for the external input elements of the

employee savings and loan cooperative are shown in

Table 2.

TABLE II. EXTERNAL INPUTS

No. Description Complexity

1 Member Login Low

2 Manager and Admin Login Low

3 Member Registration Low

4 Manager Registration Low

5 Update Manager Data Low

6 Update Member Data Low

7 Loan Application Medium

8 Deposits (Principal,

Mandatory, Voluntary)

Low

9 Installment Deposits Low

External Output relates to outputs produced by the

system. Based on the analysis, the function and

complexity levels for the external output elements of

the cooperative are shown in Table 3

TABLE III. EXTERNAL OUTPUTS

No. Description Complexity

1 Member Data Search Low

2 Manager Data Search Low

3 Loan Application Status

Search

Low

4 Membership Status Search Low

5 Loan Payment Status Search Low

External Inquiries involve user searches within the

system [14][15]. The system will display search results

if data is found and a message if no data is available.

The functions and their complexities are shown in

Table 4

TABLE IV. EXTERNAL INQUIRIES

No. Description Complexity

1 Member Card Low

2 Voluntary Deposit Receipt Low

3 Mandatory Deposit Receipt Low

4 Loan Repayment Receipt Low

5 Loan History per Member Low

6 Savings History per Member Low

7 Loan List for All Members Low

8 Savings List for All Members Low

9 Monthly Report Medium

10 Annual Report Medium

11 Profit and Loss Report High

12 Cash Flow Chart High

13 Email Notifications Low

14 Smartphone Notifications Log

Internal Logical Files consist of files that form the

system, such as tables, images, text files, or other file

formats [14][15]. The complexities involved in the

cooperative's employee savings and loan system are

shown in Table 5

TABLE V. INTERNAL LOGICAL FILES

No. Description Complexity

1 Member Table Low

2 User Table Low

3 Savings Table Medium

4 Loan Table Medium

5 Manager Table Low

6 Installment Table Low

7 Interest Table Low

8 Image Files Low

Program Interface involves interfaces such as the

use of Application Programming Interfaces or other

systems related to the developed software. Since the

cooperative already has a system for processing

employee data, employee and division data are taken

from the existing system at the company. The functions

and complexity levels are shown in Table 6.

122 IJNMT (International Journal of New Media Technology), Vol. 11, No. 2 | December 2024

ISSN 2355-0082

TABLE VI. PROGRAM INTERFACE

No. Description Complexity

1 Company Employee Data Low

2 Company Division Data Low

B. Unadjusted Function Point

After identifying user functions, the next step is to

calculate the Unadjusted Function Point (UFP). The

formula for calculating UFP is (1).

𝑈𝐹𝑃 = ∑(Number of Functions × Complexity Weight) (1)

The UFP is derived from the calculation of the

number of functions multiplied by their complexity

weights. Table 7 shows the calculations for each

function and their complexities.

TABLE VII. UFP VALUE CALCULATION

User

Function

Types

Total

Number

Complexity Weight
Total

Low Medium High

External

Inputs (EI)

9 8*3 1*4 0*6 28

External

Outputs (EO)
14 10*4 2*5 2*7 64

External
Inquiries

(EQ)

5 5*3 0*4 0*6 15

Internal
Logical Files

(ILF)

8 6*7 2*10 0*15 62

Program

Interfaces
(PI)

2 2*5 0*7 0*10 10

Unadjusted Function Points 179

From Table 7 above, the total Unadjusted Function

Points is 179, calculated from the total of EI + EO + EQ

+ ILF + PI, thus total UFP = 28 + 64 + 15 + 62 + 10 =

179.

C. Calculate Value Adjustment Factor

The software developed requires an operational

environment. Therefore, in FPA, it's necessary to

calculate factors that affect the operational complexity

of the software. There are 14 General System

Characteristics (GSC) that can influence the complexity

of the software. Each characteristic or factor is rated

between 0 to 5, with 0 meaning no effect and 5 meaning

a significant effect. Table 7 shows the factors and the

researcher's ratings for the cooperative's software.

Based on the Table 8, calculate the Total Degree of

Influence (TDI) using the formula (2).

 𝑇𝐷𝐼 = ∑(GSC Value) (2)

Thus, TDI = (3+0+0+0+0+0+0+1+1+0+0+1+0+0)

= 6 After calculating the TDI, the next step is to

compute the Value Adjustment Factor using the

formula = 0.65 + (0.01 x TDI). Thus, VAF = 0.65 +

(0.01 x 6) = 0.71 After calculating the VAF, calculate

the Adjusted Function Points with the formula TUFP x

VAF Thus, AFP = 179 x 0.71 = 127.09 rounded to 127.

TABLE VIII. VALUE ADJUSTMENT FACTORS

Factor Value

Data Communication 3

Distributed Function 0

Performance Objectives 0

Heavily Used Configuration 0

Transaction Rate 0

Multiple Sites 0

Reusability 0

On-line Data Entry 1

On-line Update 1

Complex Processing 0

Installation ease 0

Operational ease 1

Extensibility 0

End-user Efficiency 0

D. Cost Estimation

To calculate the cost of software development using

the FPA method, use the formula: Total cost = Adjusted

Function Point * Hour/AFP * rates. The hourly rate is

set at Rp. 100,000.00. The determination of the rate is

based on consideration of several factors such as level

of experience, specific expertise, type of project,

location, and type of company. Thus, the estimated cost

for developing the software for the XYZ company's

employee savings and loan cooperative is 127 * 15 *

100,000 = Rp. 190,500,000.00

IV. RESULTS AND DISCUSSION

This study aimed to estimate the cost of developing

software using the Function Point Analysis (FPA)

method. The application of FPA was carried out

through a case study approach at the XYZ company's

employee savings and loan cooperative. The result of

this study is an estimated software development cost for

the cooperative amounting to Rp. 190,500,000.00. This

cost estimation will serve as a reference for the

cooperative's management to select a software

development vendor for this company.

Based on the functional requirements obtained from

the users, the software for the savings and loan

cooperative produced seven modules. These modules

are illustrated in Figure 3.

Using the FPA method, an Unadjusted Function

Point of 179 and a Total Degree of Influence of 6 were

obtained. Given that the project size of the savings and

loan cooperative falls into the category of small-scale

software, the calculation of the Value Adjustment

Factor (VAF) used a constant of 0.65 and 0.01 to

determine the influence of each TDI point on the final

VAF result, resulting in a VAF of 0.71.

IJNMT (International Journal of New Media Technology), Vol. 11, No. 2 | December 2024 123

ISSN 2355-0082

Fig. 3. Savings and Loan Cooperative Module

The variables needed to calculate the cost of the

software include the adjusted function point, the

average time taken for each function, and the hourly

rate of programmers to perform the function. According

to IFPUG standards, each function is typically

completed in 15 hours. The hourly rate depends on the

programmer's expertise level. For this calculation, the

research team used an average hourly rate of Rp.

100,000. Therefore, the estimated cost for developing

the software for the savings and loan cooperative is 127

* 15 * 100,000 = Rp. 190,500,000.00.

This study highlights the practicality of using FPA

for software cost estimation, especially in settings

where project scopes are relatively small but the

functionalities involved are critical to the organization’s

operations. It provides a quantifiable and methodical

approach to estimating costs that can significantly aid

cooperative management in budget planning and

vendor selection. Furthermore, these findings

contribute to the broader understanding of applying

FPA in different organizational settings, offering

insights that may be valuable for other researchers and

software development professionals.

V. CONCLUSION

The implementation of the Function Point Analysis

(FPA) method requires a team that possesses

programming skills to accurately determine the

complexity level of each function. FPA is versatile and

can be employed to estimate costs for small, medium,

and large-scale software projects. The rates for software

development are influenced by two factors: the skill or

experience of the programmer and the policies of the

software company.

In this study, the application of the FPA method for

estimating the cost of developing software for the

savings and loan cooperative resulted in the creation of

seven modules with a total of 127 functions. The

estimated cost for the development is Rp.

190,500,000.00. This study demonstrates that FPA is a

practical and effective tool for financial planning in

software development, providing a structured approach

that can guide cooperatives and similar organizations in

their vendor selection and budgetary processes. The

adaptability of FPA to different project sizes and

complexities also highlights its utility across various

software development scenarios.

REFERENCES

[1] S. P. D. Ardi, I. Bernarto, N. Sudibjo, A. Yulianeu, H. A.
Nanda, and K. A. Nanda, "The Secret to Enhancing
Innovativeness in the Digital Industry," International Journal
of Innovation, Creativity and Change, vol. 12, no. 12, pp. 225-
243, 2020.

[2] A. Latif, L. A. Fitriana, and M. R. Firdaus, "Comparative
Analysis Of Software Effort Estimation Using Data Mining
Technique And Feature Selection," JITK (Jurnal Ilmu
Pengetahuan dan Teknologi Komputer), vol. 6, no. 2, February
2020. doi: 10.33480/jitk.v6i2.1968, pp. 167-174.

[3] R. Henglie, Y. Purnomo, and J. A. Ginting, "Predicting
Increased H-Index For Research Journals Using The Cost-
Sensitive Selective Naive Bayes Classifiers Algorithm," Jurnal
Algoritma, Logika dan Komputasi, vol. VII, no. 01, pp. 643-
651, 2024. doi: http://dx.doi.org/10.30813/j-alu.v2i2.6028.

[4] E. W. dos Santos, I. Nunes, and D. Jannach, "Developer
perceptions of modern code review processes in practice:
Insights from a case study in a mid-sized company," Journal of
Systems and Software, vol. 222, Apr. 2025.
https://doi.org/10.1016/j.jss.2024.112288.

[5] E. Lumba and L. Hakim, "Digital Library Application Design,"
International Journal of Multidisciplinary Research and
Publications (IJMRAP), vol. 6, no. 2, pp. 193-197, 2023.

[6] A. Dennis, B. Wixom, and D. Tegarden, Systems Analysis and
Design: An Object-Oriented Approach with UML. John Wiley
& Sons, 2020.

[7] I. G. N. Suryantara, Michael, J. F. Andry, and J. A. Ginting,
"Pengembangan Aplikasi Operasional Restoran Dengan
Framework Scrum (Studi Kasus: Restoran PT. XYZ),"
INFOTECH: Journal of Technology Information, vol. 9, no. 2,
Nov. 2023. doi: https://doi.org/10.37365/jti.v9i2.168.

[8] D. Fahriani and T. R. Zubaidah, "Financial Performance
Analysis of The Saving and Loan Cooperative," JKIE (Journal
Knowledge Industrial Engineering), vol. 10, no. 1, Apr. 2023,
pp. 38-49. https://doi.org/10.35891/jkie.v10i1.4125.

[9] B. Kiiza and G. Omiat, "The Impact of Savings and Credit
Cooperatives on Household Welfare: Evidence from Uganda,"
Journal of Economics and Public Finance, vol. 7, no. 3, 2021.
doi: 10.22158/jepf.v7n3p33.

[10] International Function Point Users Group. Accessed on 10
October 2024. Available online: https://ifpug.org/.

[11] M. F. Hillman and A. P. Subriadi, "40 Years Journey of
Function Point Analysis: Against Real-time and Multimedia
Applications," Procedia Computer Science, vol. 161, pp. 266-
274, 2019. https://doi.org/10.1016/j.procs.2019.11.123.

[12] "Function Point Analysis - Introduction and Fundamentals,"
Accessed on 12 October 2024. Available online:
https://www.fingent.com/blog/function-point-analysis-
introduction-and-fundamentals/.

[13] D. N. Malleswari, D. Rakesh, K. Subrahmanyam, and D.
Vadlamudi, "An Efficient Model for Software Quality
Analysis Based on User and Developer Interaction,"
International Journal of Innovative Technology and Exploring
Engineering (IJITEE), vol. 9, issue 2, Dec. 2019. DOI:
10.35940/ijitee.B6822.129219.

[14] A. W. Wambua and B. M. Maake, "Characterizing Software
Quality Assurance Practices in Kenya," INTERNATIONAL
JOURNAL OF SOFTWARE ENGINEERING & COMPUTER
SYSTEMS (IJSECS), vol. 8, issue 1, pp. 22-28, 2022.
https://doi.org/10.15282/ijsecs.8.1.2022.3.0093.

[15] N. Rachmat and S. Saparudin, "Estimasi Ukuran Perangkat
Lunak Menggunakan Function Point Analysis - Studi Kasus

http://dx.doi.org/10.30813/j-alu.v2i2.6028
https://doi.org/10.1016/j.jss.2024.112288
https://doi.org/10.37365/jti.v9i2.168
https://doi.org/10.35891/jkie.v10i1.4125
https://ifpug.org/
https://doi.org/10.1016/j.procs.2019.11.123
https://www.fingent.com/blog/function-point-analysis-introduction-and-fundamentals/
https://www.fingent.com/blog/function-point-analysis-introduction-and-fundamentals/
https://doi.org/10.15282/ijsecs.8.1.2022.3.0093

124 IJNMT (International Journal of New Media Technology), Vol. 11, No. 2 | December 2024

ISSN 2355-0082

Aplikasi Pengujian dan Pembelajaran Berbasis Web,"
Prosiding Annual Research Seminar 2017, vol. 3, no. 1.

[16] D. Ramos-Vidal, W. K. G. Assunção, A. Cortiñas, M. R.
Luaces, O. Pedreira, and Á. S. Places, "SPL-DB-Sync:

Seamless database transformation during feature-driven
changes," Journal of Systems and Software, vol. 222, Apr.
2025. https://doi.org/10.1016/j.jss.2024.112285.

https://doi.org/10.1016/j.jss.2024.112285

