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Abstract— This study implements a methodological
triangulation approach for clustering highly skewed data
using three algorithms with distinct paradigms: K-Means
(partitional-based), Agglomerative Hierarchical
Clustering with Ward Linkage (hierarchical-based), and
DBSCAN (density-based). Applied to beef production
data from 38 Indonesian provinces in 2024, the dataset
exhibited extreme characteristics with a coefficient of
variation of 171.89%, skewness of 2.87, and a maximum-
minimum ratio of 664:1. Data were standardised using Z-
score transformation to address scale dominance.
Evaluation using the Silhouette Score for K-Means and
Hierarchical Clustering, alongside qualitative outlier
detection with DBSCAN, revealed high consistency
across all algorithms in identifying k=2 as the optimal
structure  (Agreement: 99.7%). The algorithms
consistently isolated three provinces (East Java, West
Java, and Central Java) as a high-production cluster,
distinctly separated from the remaining 35 provinces.
Bootstrap resampling (B=100) confirmed the stability of
this structure with a standard deviation of 0.0089. These
findings demonstrate that relying on a single algorithm
for skewed data is methodologically risky, whereas
triangulation provides robust validation for policy
formulation.

Index Terms— DBSCAN; Hierarchical Clustering;
Outlier Detection; Silhouette Score; Triangulation
Algorithm

I INTRODUCTION

As an archipelagic nation with a population
exceeding 270 million, Indonesia faces considerable
challenges in ensuring food security, particularly
regarding the availability of animal protein, a vital
component of public health. The domestic demand for
beef continues to rise alongside population growth and
shifting consumption patterns increasingly oriented
toward high-quality protein intake. Pressure to enhance
livestock sector productivity has intensified, yet efforts
to achieve sustainable beef self-sufficiency remain
constrained by production disparities across regions

[11-[3].

The 2024 beef production data reveal a pattern in
which a small number of provinces on Java Island,
historically established as livestock centres, continue to
dominate the national supply. As shown in Table I, the

three major provinces (East Java, West Java, and
Central Java) contribute significantly to the national
output, while the majority of other provinces scattered
across various islands contribute only marginally. This
dominance pattern has persisted for several decades [4],

[5].

Production inequality results from the accumulation
of various interacting factors, ranging from differences
in cattle genetic quality and the availability of modern
slaughterhouse infrastructure to variations in the
availability of adequate pastureland and regional-level
resource allocation policies [6], [7]

In computational analysis, uneven data distribution
poses methodological challenges when Euclidean
distance-based clustering algorithms like K-Means are
applied to real-world data. K-Means' sensitivity to
initial centroids and the presence of outliers can easily
distort clustering quality, indicating that these
challenges are consistently encountered across different
data analysis contexts [8]-[10].

Research Gap and Significance Although the value
of triangulation and ensemble methods in clustering
analysis is increasingly recognised for mitigating
algorithmic bias [11], [12], no prior study has applied a
robust cross-validation approach specifically to
Indonesian beef production data. This data
demonstrates extreme imbalance (CV > 170%) and
unprecedented regional disparity (ratio 664:1),
characteristics that often lead to convergence failures in
standard algorithms [13]. Existing studies have been
limited to single-algorithm applications, such as
Ningsih [14] who utilized K-Means on raw data, or
have failed to systematically validate findings through
cross-paradigm triangulation [15], [16]. This represents
a critical methodological gap given the proven
sensitivity of clustering results to method selection [17].
Furthermore, previous research has not addressed the
challenge of parameter optimisation for density-based
algorithms in the context of agricultural data with
extreme outliers. Recent literature emphasises the need
for careful parameter adaptation to avoid
misidentifying structural noise [18]. This research gap
is crucial because policy interventions based on
unvalidated clustering structures may lead to resource
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misallocation or a failure to address genuine production
disparities.

TABLE 1. BEEF PRODUCTION DATA PER PROVINCE IN INDONESIA,

YEAR 2024
. Productio . Pr?duct
Province n (Tons) Province ion
(Tons)
SOUTH
ACEH 11,006.40 KALIMANTAN 5,272.95
NORTH EAST
SUMATRA 18,245.02 KALIMANTAN 6,466.78
WEST NORTH
SUMATRA 14,901.15 KALIMANTAN 632.91
NORTH
RIAU 13,457.10 SULAWESI 1,840.64
CENTRAL
JAMBI 3,571.72 SULAWESI 3,848.72
SOUTH 11.810.70 SOUTH 13,722.5
SUMATRA U SULAWESI 0
BENGKUL SOUTHEAST
U 1,762.84 SULAWESI 5,985.22
LAMPUNG 18,625.00 GORONTALO 1,900.72
BANGKA
BELITUNG 2,490.59 SU\IT]A]::\%I;ESI 1,174.18
ISLANDS
RIAU
ISLANDS 2,202.23 MALUKU 1,279.24
DKI NORTH
JAKARTA 14,925.20 MALUKU 1,530.33
WEST
JAVA 85,241.70 WEST PAPUA 742.54
CENTRAL SOUTHWEST
JAVA 83,275.69 PAPUA 325.41
DIY 6,700.69 PAPUA 683.22
EAST 96,907.31 SOUTH PAPUA 439.03
JAVA U i
CENTRAL
BANTEN 19,259.70 PAPUA 667.16
HIGHLAND
BALI 4,882.25 PAPUA 145.81
WEST
NUSA WEST
TENGGAR 11,356.76 KALIMANTAN 3,808
A
EAST
NUSA CENTRAL
TENGGAR 6,234.53 KALIMANTAN 1,448.19
A

Our study addresses this gap by implementing
systematic triangulation across three clustering
paradigms (partitional, hierarchical, and density-
based). The selection of K-Means, Hierarchical
Clustering, and DBSCAN is grounded in their
fundamental differences. The theoretical
complementarity of these three paradigms—partition-
based optimisation, hierarchical structure discovery,
and density-based outlier detection—provides a robust
cross-validation unattainable by single-paradigm
approaches [11], [12].

II. METHODOLOGY

The research followed a standard data mining
methodology  framework, encompassing data

collection, preprocessing, algorithm implementation,
and comparative evaluation, as illustrated in Figure 1.

Research Methodology Framework
Incorporating Triangualation and Robustness Validation

Stage 1: Data Collection
Beef Production
(38 Provinces, 2024)

Stage 2 : Data Preprocessing

Cleaning, Ef

Stage 4 : Clustering
Implementation

DBSCAN ) Parameter Tuning
(E=D.5, MinP1s=3)

Kemeans Hierarchical
(k-means ++) (Ward Linkage)

Stage 5: Comparative
CROSS Evaluation Inter-Method
VALIDATION Consistency Analysis

Stage 6 : Visualization &
Interpretation

Bar Charts, Scatter Plots,
Dendrograms

Fig. 1. Research Stages

A. Data Source and Preprocessing

The study utilised beef production data (in tons)
from 38 Indonesian provinces in 2024, sourced from the
Ministry of Agriculture. Given the extreme skewness
(Skewness = 2.87), data preprocessing included Z-score
standardisation to transform the data into a standard
normal distribution. This step is critical to prevent
provinces with large production volumes from
dominating the Euclidean distance calculations in K-
Means and Hierarchical clustering [19].

B. Clustering Algorithms Implementation

Three algorithms were implemented with specific
configurations to ensure robustness:

1. K-Means: Implemented with k-means++
initialisation to select optimal initial centroids,
accelerating convergence and reducing the
probability of falling into local optima [20].
The optimal number of clusters (k) was
determined using the Silhouette Score.

2. Agglomerative  Hierarchical  Clustering:
Utilised Euclidean distance and Ward’s
linkage method, which minimises the total
within-cluster variance. The cut-off point for
the dendrogram was determined based on the
largest vertical distance between merges.
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3. DBSCAN: Selected for its ability to handle
noise. Parameter selection was conducted
systematically.

C. Algorithm Behavior on Highly Skewed Data

Each algorithm exhibits distinct sensitivities when
applied to data with extreme outliers and high
skewness. The Euclidean distance-based objective
function in K-Means makes it inherently sensitive to
outliers, as extreme values disproportionately influence
centroid calculation and cluster assignment [13]. To
mitigate this, k-means++ initialisation was employed.
Hierarchical Clustering with Ward linkage minimises
within-cluster variance, making it relatively robust
compared to single or complete linkage. However,
hierarchical methods are deterministic; once an outlier
is merged, it cannot be reassigned. The density-based
paradigm of DBSCAN differs fundamentally by not
forcing every observation into a cluster. It defines
clusters as dense regions and explicitly labels low-
density observations as noise. This characteristic makes
DBSCAN methodologically superior for highly skewed
data, where outliers represent distinct production
regimes rather than measurement errors [18], [21].

D. DBSCAN Parameter Selection

For the DBSCAN implementation, parameter
selection was conducted systematically through
exploratory analysis and sensitivity testing. The Epsilon
parameter was initially estimated using a heuristic k-
distance plot, plotting the distance to the k-th nearest
neighbour (MinPts=3) for all observations sorted in
ascending order [22]. The "elbow" in this plot
suggested an initial epsilon range of 0.4-0.6. We
selected MinPts=3 based on the rule of thumb MinPts
dimensionality + 1 [21]; for univariate data (d=1),
MinPts=3 provides sufficient density estimation while
avoiding excessive noise labelling. The final
parameters were validated through systematic
sensitivity analysis.

E. Validation Stability via Bootstrap Resampling

To assess clustering stability against sampling
variation, we implemented bootstrap resampling with
100 iterations. In each iteration, we generated a
bootstrap sample by randomly sampling 38
observations with replacement from the original
dataset. This resampling approach simulates the
variability that would arise from repeated sampling
from the population [20]. For each bootstrap sample,
we applied K-Means and Hierarchical Clustering,
recording Silhouette Scores and cluster membership
consistency. A membership consistency near 100%
indicates a highly stable clustering structure robust to
sampling variations.

F. Software Environment

All computational analyses were implemented in
Python 3.8.10 running on Windows 10 Pro (64-bit) with

16GB RAM. Data manipulation utilised Pandas 2.0.3
for structured data operations and NumPy 1.24.3 for
high-performance  numerical array computing.
Clustering algorithms were implemented using Scikit-
learn 1.3.0, specifically the KMeans (with k-means++),
Agglomerative Clustering (Ward linkage), and
DBSCAN classes. Statistical analysis utilised SciPy
1.11.1, particularly for dendrogram generation. Data
visualizations were created using Matplotlib 3.7.2 for
publication-quality figures and Seaborn 0.12.2 for
enhanced statistical graphics. All analyses were
executed within a Jupyter Notebook 6.5.4 environment
to ensure full reproducibility.

III. RESULT

A. Descriptive Analysis

The descriptive statistics of the beef production
data, summarised in Table II, reveal a fundamental
structural imbalance in the national supply chain. The
mean production stands at 12,195.26 tons, a figure that
is mathematically pulled upward by extreme outliers,
whereas the median is significantly lower at 5,629.58
tons. This substantial divergence between the mean and
median confirms a heavy right-skewed distribution,
indicating that the "average" province does not
represent the typical production capacity. Furthermore,
the Coefficient of Variation (CV) reached an extreme
171.89%, suggesting that the disparity among
provinces is not merely a variation but a sign of high
heterogeneity. The maximum-minimum ratio of 664:1
provides the clearest picture of the production gap's
magnitude, necessitating  differentiated  policy
interventions.

This structural gap is vividly illustrated in Figure 2.
The distribution plot displays a distinct "long-tail"
characteristic, where the three leading provinces form a
high-production plateau that sharply drops off to a flat
consolidation line for the remaining 35 provinces. This
visual evidence supports the statistical indication of a
dualistic production structure.

Figure 2. Structural Gap in Beef Production (2024)
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Fig 2. Visualisation of Structural Gap in Beef
Production
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TABLE IL. DESCRIPTIVE STATISTICS OF 2024 BEEF
PRODUCTION DATA
Statistical Value Interpretation
Metric (Tons) P
Average
Mean () 12,195.26 production per
province
Median | 5.629.58 Distribution
midpoint
Standard :
Deviation | 20,967.83 Very high
variability level
(o)
Minimum 145.81 Highland Papua
(lowest)
Maximum 96,907.31 East Java (highest)
Huge max-min
Range 96,761.50 difference
Skewness 2.87 POSlt.lve.l y skewed
distribution
. Heavy-tailed
Kurtosis 845 distribution
Coefficient o Very high
of Variation 171.89% heterogeneity
Max/Min 0. Extremely high
Ratio 664:01:00 disparity

B. Optimal Cluster Number Determination and
Parameter Sensitivity

The determination of the optimal number of clusters
for K-Means and Hierarchical Clustering was
rigorously guided by the Silhouette Score validation.
As detailed in Table III, the analysis produced a
remarkably high score of 0.9155 at k=2. This value is
significantly higher than the scores for k=3 (0.7842) or
k=4 (0.7123), providing empirical evidence that the
natural structure of the data partitions most cleanly into
two distinct groups. A score exceeding 0.7 typically
denotes a "strong" structure; achieving > 0.9 suggests
that the separation between the production centres and
the rest of the country is nearly absolute in the feature
space. This distinct peak at k=2 is visually
demonstrated in Figure 4, which charts the Silhouette
Scores across different cluster numbers, highlighting
the sharp drop in validation quality for k > 2.

To validate this partition through a density-based
paradigm, we performed a sensitivity analysis on the
DBSCAN algorithm. The critical challenge in
DBSCAN is parameter selection, specifically Epsilon.
The results in Table IV reveal a stable detection
window at epsilon=0.5-0.55. Within this specific range,
the algorithm consistently identified the three super-
producer provinces as outliers while keeping the
remaining provinces in a coherent cluster. At lower
epsilon values (epsilon < 0.5), the algorithm became

overly restrictive, fragmenting the main cluster into
noise, whereas at higher values (epsilon > 0.6), the
distinction collapsed as outliers were merged into the
main group.

TABLE III SILHOUETTE SCORE EVALUATION FOR VARIOUS K
VALUES

K- Hierarchical

K | Means Average | Category
SS
SS
Very
2 0.9155 0.9155 0.9155
Strong

3 0.7842 0.7839 0.7841 Strong
4 0.7123 0.7118 0.7121 Strong
5 0.6845 0.6841 0.6843 Adequate
6 0.6492 0.6488 0.6490 Adequate
7 0.6201 0.6197 0.6199 Adequate

TABLE IV. DBSCAN PARAMETER SENSITIVITY ANALYSIS

RESULTS
Numbe
(€ asilo MinPt r of N:l::fb ¢ Interpretati
p S Cluster . on
n) s Noise
03 3 0 33 Too tlght, all
noise
0.4 3 0 38 Still too tight
Optimal:
0.5 3 1 3 Clear outlier
isolation
One outlier
06 3 1 5 enters the
central
cluster
0.7 3 1 0 Too loose,
no outliers

C. Clustering Results and Inter-Method Consistency

The clustering results demonstrate a complete
consensus among the three paradigms. A comparative
performance summary is provided in Table V,
highlighting the structural agreement across methods.
While Hierarchical Clustering required slightly more
computational time due to dendrogram construction, all
methods demonstrated high efficiency.

Table VI details the specific membership of the
identified clusters. K-Means and Hierarchical
Clustering identified identical partitions: Cluster 0
consists of the three major producers (East Java, West
Java, Central Java), while Cluster 1 comprises the
remaining 35 provinces. DBSCAN provided a
complementary validation by identifying the same three
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provinces as "Noise" (Outliers) and the remaining 35 as
the core cluster.

TABLE V. CLUSTERING RESULTS AND PRODUCTION CENTRE

IDENTIFICATION
k/
Method Number | Silhouette Olltl.lel‘ / | Time
of Score Noise (ms)
Clusters
K-Means 2 0.9155 N/A 12.4
Hierarchical 2 0.9155 N/A 45.8
DBSCAN 1 N/A 3 8.7
Provinces
TABLE VL CLUSTERING RESULTS AND PRODUCTION CENTRE
IDENTIFICATION 2024
Method Number Average | Std Dev Cluster
of Member
& Cluster . (Tons) (Tons)
Provinces S
East
Java,
K-Means o 88,474.9 Central
Cluster 0 3 (7.89%) 0 6,979.82 Java,
West
Java
35 other
K-Means 35 .
Cluster 1 92.11%) 7,026.14 | 5,408.77 prO\;mce
East
. . Java
Hierarchic £
al Cluster | 3(7.80%) | 884749 | 697980 | Contral
0 0 Java,
West
Java
Hierarchic 35 35 other
al Cl]uster 92.11%) 7,026.14 | 5,408.77 prox;mce
East
Java,
DBSCAN o 88,474.9 Central
Noise (-1) 3 (7.89%) 0 6,979.82 Java,
West
Java
35 other
DBSCAN 35 .
Cluster 0 92.11%) 7,026.14 | 5,408.77 prm;mce

The hierarchical structure of this partition is
illustrated in the dendrogram in Figure 3. The
dendrogram shows a massive vertical distance before
the first split, visually confirming that the data naturally
divides into two distinct branches (production centers
vs. others) before further granular sub-divisions occur.

The separation of these clusters is further confirmed
in Figure 4. The scatter plot maps the provinces in the
standardized Z-score space. The visual gap is striking:
the top three provinces are located distinctly beyond the
3 sigma threshold (Z-score > 3.0), isolating them from
the main consolidation group which is tightly clustered

below Z-score < 1.0. This physical distance in the plot
validates the mathematical separation found by the
algorithms.

Wara Distance
=
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£

Fig. 3. Hierarchical Clustering Dendrogram (Ward
Linkage)
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Fig 4. Scatter Plot of Cluster Distribution in
Feature Space

D. Cluster Profiling and Sub-segmentation

A comprehensive profile of the identified clusters is
presented in Table VII. The data underscores the depth
of the disparity: Cluster 0 (Production Centres), despite
containing only 7.89% of the provinces, commands a
staggering 57.3% of the national beef production. The
production ratio between the average province in
Cluster 0 and Cluster 1 is approximately 12.6:1,
highlighting a massive productivity divide that
separates the industrial-scale producers in Java from the
developing regions.

However, treating the 35 provinces in Cluster 1 as a
monolith would be an oversimplification. To provide
granular insights for policy targeting, we conducted a
sub-segmentation analysis based on production ranges.
Table VII breaks down this cluster into four sub-tiers
(Upper-Mid to Low). This analysis reveals that even
within the "developing" group, significant variation
exists; the "Upper-Mid" tier (e.g., Lampung, Banten)
shows potential to transition into higher production
levels, whereas the "Low" tier requires fundamental
capacity-building interventions.
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TABLE VII. COMPREHENSIVE PROFILE OF BOTH CLUSTERS
Cluster 1
. Cluster 0 e Ratio

Metric (Centre) (Conso;ldatlon ©:1)
Number of |55 g900) | 35 (92.11%) 0.09:1
Provinces

Total
Production 265,:424.7 197,995.18 1.34:1
0

(Tons)

National
Contributio 57.3% 42.7% 1.34:1

n
Mean
88,474.90 7,026.14 12.59:1

(Tons)

Median | 5541 70 3,848.72 22.15:1

(Tons)

Std Dev 6,979.82 5,408.77 1.29:1

(Tons)

CV (%) 7.89% 76.98% 0.10:1
Min (Tons) | 83,275.69 145.81 5711'04:
Max (Tons) | 96,907.31 19,259.70 5.03:1

TABLE VIII. SUB-SEGMENTATION OF CLUSTER 1
(CONSOLIDATION)

Sub- Number | Production Lo

Segment of Range (Tons)
Provinces (Tons)
Upper- 13,000 -
Mid > 19260 | 1604
. 6,000 -

Mid 10 13,000 8,827

Lower- 2,000 -

Mid 12 6,000 3,982
Low 8 145 - 2,000 993

E. Stability Validation

Finally, the reliability of these findings was stress-
tested via bootstrap resampling. As shown in Table
VIII, the results from 100 iterations demonstrated a
mean Silhouette Score of 0.9142 with a negligible
standard deviation of 0.0089. Furthermore, the
membership consistency reached 99.7%, meaning that
in almost every resampling scenario, the algorithms
consistently assigned the same provinces to the same
clusters. This level of stability is exceptionally high and
confirms that the identified dualistic structure is a
robust economic reality, resilient to sampling variations
or minor data fluctuations.

TABLE IX. BOOTSTRAP RESAMPLING ANALYSIS RESULTS
(100 ITERATIONS)
. K- . . .
Metric Hierarchical Interpretation
Means
Mean .
Silhouette | 0.9142 0.9148 High and
Score consistent
Std Dev 0.0089 0.0076 Stable,.m.lmmal
SS variation
Min SS | 0.8973 0.9012 Remains in a
strong category
Not excessive,
Max SS 0.9278 0.9301 -
realistic

IV. DISCUSSION

A. Theoretical Interpretation of Convergence

The remarkable consistency among the three
algorithmically  distinct  methods  (99.7-100%
agreement) reveals important theoretical insights into
the data structure. In modern clustering theory, high
ensemble agreement is recognized as the strongest
indicator of natural structure, ensuring that results are
not merely artifacts of algorithmic bias [23], [24]. The
Silhouette Score of 0.9155 for k=2 substantially
exceeds the 0.7 threshold categorized as "strong
structure” in recent literature [25], approaching the
theoretical maximum, which indicates nearly perfect
linear separation.

This convergence can be mathematically explained
by the extreme separation in the standardized feature
space shown in Figure 3. The three super-producer
provinces occupy Z-score positions > 3.0, creating a
gap of approximately 2 standard deviations from the
rest. In multivariate statistics, observations beyond 3
standard deviations represent the tail (<0.3%),
effectively constituting a distinct population. This
mathematical separation explains why algorithms with
different optimisation criteria (variance minimization
vs. connectivity vs. density) converged on identical
solutions. The fact that DBSCAN independently
identified the same three provinces as outliers provides
non-circular validation that these observations are
fundamentally different in density structure [18].

Furthermore, the stability evidence provided by the
bootstrap results (see Table VIII) exceeds typical
standards. While other ensemble studies typically
report 85-90% agreement for outlier detection [23], our
triangulation achieved near-perfect consistency. This
confirms that the production dichotomy in Indonesia is
a robust economic reality, not a statistical coincidence.

0N [JNMT (International Journal of New Media Technology), Vol. 12, No. 2 | December 2025



I (s 2955052

B. Comparison with Previous Research

Comparing our findings with previous research
reveals critical methodological implications that extend
beyond simple structural differences. Ningsih
[14]identified k=3 as the optimal cluster number using
K-Means on raw production data (2017-2022). In
contrast, our triangulation approach consistently
identified k=2. This discrepancy is not merely a
difference in results but highlights the critical role of
data preprocessing. Our analysis suggests that the third
cluster identified in Ningsih's study likely emerged as
an artifact of scale variance rather than a distinct
production regime. Without Z-score standardization,
the Euclidean distance function is disproportionately
influenced by variables with large variances [19],
potentially fragmenting naturally cohesive clusters. By
standardizing the data, our study successfully mitigated
this bias, revealing a more fundamental dualistic
structure  (Production Centres vs. Consolidation
Group).

Our results align more closely with Indah [15], who
utilized hierarchical methods and found a similar
separation between major and minor producers.
However, our study advances beyond Indah's findings
by integrating DBSCAN for explicit outlier detection.
While Indah's hierarchical approach effectively
captured the global structure, it lacked a mechanism to
distinguish between "extreme values within a cluster"
and "true structural outliers." Our application of
DBSCAN filled this gap by explicitly labeling the three
super-producer provinces as "Noise," thereby providing
a stronger, non-circular validation that these provinces
constitute a structurally distinct entity [18].

Furthermore, compared to Ais et al. [16], who
employed Fuzzy C-Means to analyze livestock meat
production, our crisp clustering approach (K-Means
and DBSCAN) offers a more definitive categorization
necessary for clear policy formulation. While fuzzy
clustering provides valuable insights into transitional
memberships, policy interventions often require clear-
cut segmentation to allocate resources effectively. The
near-perfect stability of our results (99.7% consistency
via bootstrapping) suggests that the ambiguity typically
handled by fuzzy methods is minimal in this specific
dataset, making our hard clustering approach both
methodologically robust and practically actionable.

V. CONCLUSION

This study demonstrates that methodological
triangulation across partitional, hierarchical, and
density-based paradigms provides validation that is
significantly more robust than single-algorithm
approaches, particularly for data with extreme
disparities  like  Indonesian  beef production
(CV=171.89%; ratio 664:1). All three algorithms
consistently converged on the k=2 solution with 99.7—
100% agreement and a Silhouette Score of 0.9155,
statistically confirming that the dominance of the three
Java provinces is a natural structure rather than an
algorithmic artifact. The primary contribution of this
study lies in demonstrating that integrating density-

based outlier detection and bootstrap stability testing
can mitigate the distortions often present in
conventional methods. This provides a solid empirical
foundation  for  policymakers to  implement
differentiated strategies between major production
centers and developing regions, while recommending
the adoption of this triangulation framework for future
complex agricultural datasets.
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