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Abstract— This study implements a methodological 

triangulation approach for clustering highly skewed data 

using three algorithms with distinct paradigms: K-Means 

(partitional-based), Agglomerative Hierarchical 

Clustering with Ward Linkage (hierarchical-based), and 

DBSCAN (density-based). Applied to beef production 

data from 38 Indonesian provinces in 2024, the dataset 

exhibited extreme characteristics with a coefficient of 

variation of 171.89%, skewness of 2.87, and a maximum-

minimum ratio of 664:1. Data were standardised using Z-

score transformation to address scale dominance. 

Evaluation using the Silhouette Score for K-Means and 

Hierarchical Clustering, alongside qualitative outlier 

detection with DBSCAN, revealed high consistency 

across all algorithms in identifying k=2 as the optimal 

structure (Agreement: 99.7%). The algorithms 

consistently isolated three provinces (East Java, West 

Java, and Central Java) as a high-production cluster, 

distinctly separated from the remaining 35 provinces. 

Bootstrap resampling (B=100) confirmed the stability of 

this structure with a standard deviation of 0.0089. These 

findings demonstrate that relying on a single algorithm 

for skewed data is methodologically risky, whereas 

triangulation provides robust validation for policy 

formulation. 

Index Terms— DBSCAN; Hierarchical Clustering; 

Outlier Detection; Silhouette Score; Triangulation 

Algorithm 

I. INTRODUCTION 

As an archipelagic nation with a population 
exceeding 270 million, Indonesia faces considerable 
challenges in ensuring food security, particularly 
regarding the availability of animal protein, a vital 
component of public health. The domestic demand for 
beef continues to rise alongside population growth and 
shifting consumption patterns increasingly oriented 
toward high-quality protein intake. Pressure to enhance 
livestock sector productivity has intensified, yet efforts 
to achieve sustainable beef self-sufficiency remain 
constrained by production disparities across regions 
[1]–[3]. 

The 2024 beef production data reveal a pattern in 
which a small number of provinces on Java Island, 
historically established as livestock centres, continue to 
dominate the national supply. As shown in Table I, the 

three major provinces (East Java, West Java, and 
Central Java) contribute significantly to the national 
output, while the majority of other provinces scattered 
across various islands contribute only marginally. This 
dominance pattern has persisted for several decades [4], 
[5]. 

Production inequality results from the accumulation 
of various interacting factors, ranging from differences 
in cattle genetic quality and the availability of modern 
slaughterhouse infrastructure to variations in the 
availability of adequate pastureland and regional-level 
resource allocation policies [6], [7] 

In computational analysis, uneven data distribution 
poses methodological challenges when Euclidean 
distance-based clustering algorithms like K-Means are 
applied to real-world data. K-Means' sensitivity to 
initial centroids and the presence of outliers can easily 
distort clustering quality, indicating that these 
challenges are consistently encountered across different 
data analysis contexts [8]–[10]. 

Research Gap and Significance Although the value 
of triangulation and ensemble methods in clustering 
analysis is increasingly recognised for mitigating 
algorithmic bias [11], [12], no prior study has applied a 
robust cross-validation approach specifically to 
Indonesian beef production data. This data 
demonstrates extreme imbalance (CV > 170%) and 
unprecedented regional disparity (ratio 664:1), 
characteristics that often lead to convergence failures in 
standard algorithms [13]. Existing studies have been 
limited to single-algorithm applications, such as 
Ningsih [14] who utilized K-Means on raw data, or 
have failed to systematically validate findings through 
cross-paradigm triangulation [15], [16]. This represents 
a critical methodological gap given the proven 
sensitivity of clustering results to method selection [17]. 
Furthermore, previous research has not addressed the 
challenge of parameter optimisation for density-based 
algorithms in the context of agricultural data with 
extreme outliers. Recent literature emphasises the need 
for careful parameter adaptation to avoid 
misidentifying structural noise [18]. This research gap 
is crucial because policy interventions based on 
unvalidated clustering structures may lead to resource 
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misallocation or a failure to address genuine production 
disparities. 

TABLE I.  BEEF PRODUCTION DATA PER PROVINCE IN INDONESIA, 

YEAR 2024 

Province 
Productio

n (Tons) 
Province 

Product

ion 

(Tons) 

ACEH 11,006.40 
SOUTH 

KALIMANTAN 
5,272.95 

NORTH 

SUMATRA 
18,245.02 

EAST 

KALIMANTAN 
6,466.78 

WEST 

SUMATRA 
14,901.15 

NORTH 

KALIMANTAN 
632.91 

RIAU 13,457.10 
NORTH 

SULAWESI 
1,840.64 

JAMBI 3,571.72 
CENTRAL 

SULAWESI 
3,848.72 

SOUTH 

SUMATRA 
11,810.70 

SOUTH 

SULAWESI 

13,722.5

0 

BENGKUL
U 

1,762.84 
SOUTHEAST 
SULAWESI 

5,985.22 

LAMPUNG 18,625.00 GORONTALO 1,900.72 

BANGKA 

BELITUNG 

ISLANDS 

2,490.59 
WEST 

SULAWESI 
1,174.18 

RIAU 

ISLANDS 
2,202.23 MALUKU 1,279.24 

DKI 

JAKARTA 
14,925.20 

NORTH 

MALUKU 
1,530.33 

WEST 
JAVA 

85,241.70 WEST PAPUA 742.54 

CENTRAL 

JAVA 
83,275.69 

SOUTHWEST 

PAPUA 
325.41 

DIY 6,700.69 PAPUA 683.22 

EAST 

JAVA 
96,907.31 SOUTH PAPUA 439.03 

BANTEN 19,259.70 
CENTRAL 

PAPUA 
667.16 

BALI 4,882.25 
HIGHLAND 

PAPUA 
145.81 

WEST 

NUSA 
TENGGAR

A 

11,356.76 
WEST 

KALIMANTAN 
3,890.08 

EAST 

NUSA 
TENGGAR

A 

6,234.53 
CENTRAL 

KALIMANTAN 
1,448.19 

 

Our study addresses this gap by implementing 
systematic triangulation across three clustering 
paradigms (partitional, hierarchical, and density-
based). The selection of K-Means, Hierarchical 
Clustering, and DBSCAN is grounded in their 
fundamental differences. The theoretical 
complementarity of these three paradigms—partition-
based optimisation, hierarchical structure discovery, 
and density-based outlier detection—provides a robust 
cross-validation unattainable by single-paradigm 
approaches [11], [12]. 

II. METHODOLOGY 

The research followed a standard data mining 

methodology framework, encompassing data 

collection, preprocessing, algorithm implementation, 

and comparative evaluation, as illustrated in Figure 1. 

 

Fig. 1. Research Stages 

A. Data Source and Preprocessing 

The study utilised beef production data (in tons) 

from 38 Indonesian provinces in 2024, sourced from the 

Ministry of Agriculture. Given the extreme skewness 

(Skewness = 2.87), data preprocessing included Z-score 

standardisation to transform the data into a standard 

normal distribution. This step is critical to prevent 

provinces with large production volumes from 

dominating the Euclidean distance calculations in K-

Means and Hierarchical clustering [19]. 

B. Clustering Algorithms Implementation 

Three algorithms were implemented with specific 

configurations to ensure robustness: 

1. K-Means: Implemented with k-means++ 

initialisation to select optimal initial centroids, 

accelerating convergence and reducing the 

probability of falling into local optima [20]. 

The optimal number of clusters (k) was 

determined using the Silhouette Score. 

2. Agglomerative Hierarchical Clustering: 

Utilised Euclidean distance and Ward’s 

linkage method, which minimises the total 

within-cluster variance. The cut-off point for 

the dendrogram was determined based on the 

largest vertical distance between merges. 
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3. DBSCAN: Selected for its ability to handle 

noise. Parameter selection was conducted 

systematically. 

C. Algorithm Behavior on Highly Skewed Data 

Each algorithm exhibits distinct sensitivities when 

applied to data with extreme outliers and high 

skewness. The Euclidean distance-based objective 

function in K-Means makes it inherently sensitive to 

outliers, as extreme values disproportionately influence 

centroid calculation and cluster assignment [13]. To 

mitigate this, k-means++ initialisation was employed. 

Hierarchical Clustering with Ward linkage minimises 

within-cluster variance, making it relatively robust 

compared to single or complete linkage. However, 

hierarchical methods are deterministic; once an outlier 

is merged, it cannot be reassigned. The density-based 

paradigm of DBSCAN differs fundamentally by not 

forcing every observation into a cluster. It defines 

clusters as dense regions and explicitly labels low-

density observations as noise. This characteristic makes 

DBSCAN methodologically superior for highly skewed 

data, where outliers represent distinct production 

regimes rather than measurement errors [18], [21]. 

D. DBSCAN Parameter Selection 

For the DBSCAN implementation, parameter 

selection was conducted systematically through 

exploratory analysis and sensitivity testing. The Epsilon 

parameter was initially estimated using a heuristic k-

distance plot, plotting the distance to the k-th nearest 

neighbour (MinPts=3) for all observations sorted in 

ascending order [22]. The "elbow" in this plot 

suggested an initial epsilon range of 0.4–0.6. We 

selected MinPts=3 based on the rule of thumb MinPts 

dimensionality + 1 [21]; for univariate data (d=1), 

MinPts=3 provides sufficient density estimation while 

avoiding excessive noise labelling. The final 

parameters were validated through systematic 

sensitivity analysis. 

E. Validation Stability via Bootstrap Resampling 

To assess clustering stability against sampling 

variation, we implemented bootstrap resampling with 

100 iterations. In each iteration, we generated a 

bootstrap sample by randomly sampling 38 

observations with replacement from the original 

dataset. This resampling approach simulates the 

variability that would arise from repeated sampling 

from the population [20]. For each bootstrap sample, 

we applied K-Means and Hierarchical Clustering, 

recording Silhouette Scores and cluster membership 

consistency. A membership consistency near 100% 

indicates a highly stable clustering structure robust to 

sampling variations. 

F. Software Environment 

All computational analyses were implemented in 

Python 3.8.10 running on Windows 10 Pro (64-bit) with 

16GB RAM. Data manipulation utilised Pandas 2.0.3 

for structured data operations and NumPy 1.24.3 for 

high-performance numerical array computing. 

Clustering algorithms were implemented using Scikit-

learn 1.3.0, specifically the KMeans (with k-means++), 

Agglomerative Clustering (Ward linkage), and 

DBSCAN classes. Statistical analysis utilised SciPy 

1.11.1, particularly for dendrogram generation. Data 

visualizations were created using Matplotlib 3.7.2 for 

publication-quality figures and Seaborn 0.12.2 for 

enhanced statistical graphics. All analyses were 

executed within a Jupyter Notebook 6.5.4 environment 

to ensure full reproducibility. 

III. RESULT 

A. Descriptive Analysis 

The descriptive statistics of the beef production 

data, summarised in Table II, reveal a fundamental 

structural imbalance in the national supply chain. The 

mean production stands at 12,195.26 tons, a figure that 

is mathematically pulled upward by extreme outliers, 

whereas the median is significantly lower at 5,629.58 

tons. This substantial divergence between the mean and 

median confirms a heavy right-skewed distribution, 

indicating that the "average" province does not 

represent the typical production capacity. Furthermore, 

the Coefficient of Variation (CV) reached an extreme 

171.89%, suggesting that the disparity among 

provinces is not merely a variation but a sign of high 

heterogeneity. The maximum-minimum ratio of 664:1 

provides the clearest picture of the production gap's 

magnitude, necessitating differentiated policy 

interventions. 

This structural gap is vividly illustrated in Figure 2. 

The distribution plot displays a distinct "long-tail" 

characteristic, where the three leading provinces form a 

high-production plateau that sharply drops off to a flat 

consolidation line for the remaining 35 provinces. This 

visual evidence supports the statistical indication of a 

dualistic production structure. 

 

 

Fig 2. Visualisation of Structural Gap in Beef 
Production 
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TABLE II.  DESCRIPTIVE STATISTICS OF 2024 BEEF 

PRODUCTION DATA 

Statistical 

Metric 

Value 

(Tons) 
Interpretation 

Mean (μ) 12,195.26 

Average 

production per 

province 

Median 5,629.58 
Distribution 

midpoint 

Standard 

Deviation 

(σ) 

20,967.83 
Very high 

variability level 

Minimum 145.81 
Highland Papua 

(lowest) 

Maximum 96,907.31 East Java (highest) 

Range 96,761.50 
Huge max-min 

difference 

Skewness 2.87 
Positively skewed 

distribution 

Kurtosis 8.45 
Heavy-tailed 

distribution 

Coefficient 

of Variation 
171.89% 

Very high 

heterogeneity 

Max/Min 

Ratio 
664:01:00 

Extremely high 

disparity 

 

B. Optimal Cluster Number Determination and 

Parameter Sensitivity 

The determination of the optimal number of clusters 

for K-Means and Hierarchical Clustering was 

rigorously guided by the Silhouette Score validation. 

As detailed in Table III, the analysis produced a 

remarkably high score of 0.9155 at k=2. This value is 

significantly higher than the scores for k=3 (0.7842) or 

k=4 (0.7123), providing empirical evidence that the 

natural structure of the data partitions most cleanly into 

two distinct groups. A score exceeding 0.7 typically 

denotes a "strong" structure; achieving > 0.9 suggests 

that the separation between the production centres and 

the rest of the country is nearly absolute in the feature 

space. This distinct peak at k=2 is visually 

demonstrated in Figure 4, which charts the Silhouette 

Scores across different cluster numbers, highlighting 

the sharp drop in validation quality for k > 2. 

To validate this partition through a density-based 

paradigm, we performed a sensitivity analysis on the 

DBSCAN algorithm. The critical challenge in 

DBSCAN is parameter selection, specifically Epsilon. 

The results in Table IV reveal a stable detection 

window at epsilon=0.5-0.55. Within this specific range, 

the algorithm consistently identified the three super-

producer provinces as outliers while keeping the 

remaining provinces in a coherent cluster. At lower 

epsilon values (epsilon < 0.5), the algorithm became 

overly restrictive, fragmenting the main cluster into 

noise, whereas at higher values (epsilon > 0.6), the 

distinction collapsed as outliers were merged into the 

main group. 

TABLE III.  SILHOUETTE SCORE EVALUATION FOR VARIOUS K 

VALUES 

K 

K-

Means 

SS 

Hierarchical 

SS 
Average Category 

2 0.9155 0.9155 0.9155 
Very 

Strong 

3 0.7842 0.7839 0.7841 Strong 

4 0.7123 0.7118 0.7121 Strong 

5 0.6845 0.6841 0.6843 Adequate 

6 0.6492 0.6488 0.6490 Adequate 

7 0.6201 0.6197 0.6199 Adequate 

 

TABLE IV.  DBSCAN PARAMETER SENSITIVITY ANALYSIS 

RESULTS 

ε 

(Epsilo

n) 

MinPt

s 

Numbe

r of 

Cluster

s 

Numbe

r of 

Noise 

Interpretati

on 

0.3 3 0 38 
Too tight, all 

noise 

0.4 3 0 38 Still too tight 

0.5 3 1 3 

Optimal: 

Clear outlier 

isolation 

0.6 3 1 2 

One outlier 

enters the 

central 

cluster 

0.7 3 1 0 
Too loose, 

no outliers 

 

C. Clustering Results and Inter-Method Consistency 

The clustering results demonstrate a complete 

consensus among the three paradigms. A comparative 

performance summary is provided in Table V, 

highlighting the structural agreement across methods. 

While Hierarchical Clustering required slightly more 

computational time due to dendrogram construction, all 

methods demonstrated high efficiency. 

Table VI details the specific membership of the 

identified clusters. K-Means and Hierarchical 

Clustering identified identical partitions: Cluster 0 

consists of the three major producers (East Java, West 

Java, Central Java), while Cluster 1 comprises the 

remaining 35 provinces. DBSCAN provided a 

complementary validation by identifying the same three 
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provinces as "Noise" (Outliers) and the remaining 35 as 

the core cluster. 

TABLE V.  CLUSTERING RESULTS AND PRODUCTION CENTRE 

IDENTIFICATION 

Method 

k / 

Number 

of 

Clusters 

Silhouette  

Score 

Outlier / 

Noise 

Time 

(ms) 

K-Means 2 0.9155 N/A 12.4 

Hierarchical 2 0.9155 N/A 45.8 

DBSCAN 1 N/A 
3 

Provinces 
8.7 

 

TABLE VI.  CLUSTERING RESULTS AND PRODUCTION CENTRE 

IDENTIFICATION 2024 

Method 

& Cluster 

Number 

of 

Provinces 

Average 

(Tons) 

Std Dev 

(Tons) 

Cluster 

Member

s 

K-Means 

Cluster 0 
3 (7.89%) 

88,474.9

0 
6,979.82 

East 
Java, 

Central 

Java, 

West 

Java 

K-Means 

Cluster 1 

35 

(92.11%) 
7,026.14 5,408.77 

35 other 

province
s 

Hierarchic

al Cluster 

0 

3 (7.89%) 
88,474.9

0 
6,979.82 

East 

Java, 

Central 
Java, 

West 

Java 

Hierarchic

al Cluster 
1 

35 

(92.11%) 
7,026.14 5,408.77 

35 other 

province
s 

DBSCAN 

Noise (-1) 
3 (7.89%) 

88,474.9

0 
6,979.82 

East 

Java, 

Central 

Java, 

West 
Java 

DBSCAN 
Cluster 0 

35 
(92.11%) 

7,026.14 5,408.77 

35 other 

province

s 

 

The hierarchical structure of this partition is 

illustrated in the dendrogram in Figure 3. The 

dendrogram shows a massive vertical distance before 

the first split, visually confirming that the data naturally 

divides into two distinct branches (production centers 

vs. others) before further granular sub-divisions occur. 

The separation of these clusters is further confirmed 

in Figure 4. The scatter plot maps the provinces in the 

standardized Z-score space. The visual gap is striking: 

the top three provinces are located distinctly beyond the 

3 sigma threshold (Z-score > 3.0), isolating them from 

the main consolidation group which is tightly clustered 

below Z-score < 1.0. This physical distance in the plot 

validates the mathematical separation found by the 

algorithms. 

 

 

Fig. 3. Hierarchical Clustering Dendrogram (Ward 

Linkage) 

 

Fig 4. Scatter Plot of Cluster Distribution in 
Feature Space 

D. Cluster Profiling and Sub-segmentation 

A comprehensive profile of the identified clusters is 

presented in Table VII. The data underscores the depth 

of the disparity: Cluster 0 (Production Centres), despite 

containing only 7.89% of the provinces, commands a 

staggering 57.3% of the national beef production. The 

production ratio between the average province in 

Cluster 0 and Cluster 1 is approximately 12.6:1, 

highlighting a massive productivity divide that 

separates the industrial-scale producers in Java from the 

developing regions. 

However, treating the 35 provinces in Cluster 1 as a 

monolith would be an oversimplification. To provide 

granular insights for policy targeting, we conducted a 

sub-segmentation analysis based on production ranges. 

Table VII breaks down this cluster into four sub-tiers 

(Upper-Mid to Low). This analysis reveals that even 

within the "developing" group, significant variation 

exists; the "Upper-Mid" tier (e.g., Lampung, Banten) 

shows potential to transition into higher production 

levels, whereas the "Low" tier requires fundamental 

capacity-building interventions. 
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TABLE VII.  COMPREHENSIVE PROFILE OF BOTH CLUSTERS 

Metric 
Cluster 0 

(Centre) 

Cluster 1 

(Consolidation

) 

Ratio 

(0:1) 

Number of 

Provinces 
3 (7.89%) 35 (92.11%) 0.09:1 

Total 

Production 

(Tons) 

265,424.7

0 
197,995.18 1.34:1 

National 

Contributio

n 

57.3% 42.7% 1.34:1 

Mean 

(Tons) 
88,474.90 7,026.14 12.59:1 

Median 

(Tons) 
85,241.70 3,848.72 22.15:1 

Std Dev 

(Tons) 
6,979.82 5,408.77 1.29:1 

CV (%) 7.89% 76.98% 0.10:1 

Min (Tons) 83,275.69 145.81 
571.04:

1 

Max (Tons) 96,907.31 19,259.70 5.03:1 

 

TABLE VIII.  SUB-SEGMENTATION OF CLUSTER 1 

(CONSOLIDATION) 

Sub-

Segment 

Number 

of 

Provinces 

Production 

Range 

(Tons) 

Average 

(Tons) 

Upper-

Mid 
5 

13,000 - 

19,260 
16,049 

Mid 10 
6,000 - 

13,000 
8,827 

Lower-

Mid 
12 

2,000 - 

6,000 
3,982 

Low 8 145 - 2,000 993 

 

E. Stability Validation 

Finally, the reliability of these findings was stress-

tested via bootstrap resampling. As shown in Table 

VIII, the results from 100 iterations demonstrated a 

mean Silhouette Score of 0.9142 with a negligible 

standard deviation of 0.0089. Furthermore, the 

membership consistency reached 99.7%, meaning that 

in almost every resampling scenario, the algorithms 

consistently assigned the same provinces to the same 

clusters. This level of stability is exceptionally high and 

confirms that the identified dualistic structure is a 

robust economic reality, resilient to sampling variations 

or minor data fluctuations. 

 

 

TABLE IX.  BOOTSTRAP RESAMPLING ANALYSIS RESULTS 

(100 ITERATIONS) 

Metric 
K-

Means 
Hierarchical Interpretation 

Mean 
Silhouette 

Score 

0.9142 0.9148 
High and 

consistent 

Std Dev 

SS 
0.0089 0.0076 

Stable, minimal 

variation 

Min SS 0.8973 0.9012 
Remains in a 

strong category 

Max SS 0.9278 0.9301 
Not excessive, 

realistic 

 

IV. DISCUSSION 

A. Theoretical Interpretation of Convergence 

The remarkable consistency among the three 
algorithmically distinct methods (99.7–100% 
agreement) reveals important theoretical insights into 
the data structure. In modern clustering theory, high 
ensemble agreement is recognized as the strongest 
indicator of natural structure, ensuring that results are 
not merely artifacts of algorithmic bias [23], [24]. The 
Silhouette Score of 0.9155 for k=2 substantially 
exceeds the 0.7 threshold categorized as "strong 
structure" in recent literature [25], approaching the 
theoretical maximum, which indicates nearly perfect 
linear separation. 

This convergence can be mathematically explained 
by the extreme separation in the standardized feature 
space shown in Figure 3. The three super-producer 
provinces occupy Z-score positions > 3.0, creating a 
gap of approximately 2 standard deviations from the 
rest. In multivariate statistics, observations beyond 3 
standard deviations represent the tail (<0.3%), 
effectively constituting a distinct population. This 
mathematical separation explains why algorithms with 
different optimisation criteria (variance minimization 
vs. connectivity vs. density) converged on identical 
solutions. The fact that DBSCAN independently 
identified the same three provinces as outliers provides 
non-circular validation that these observations are 
fundamentally different in density structure [18]. 

Furthermore, the stability evidence provided by the 
bootstrap results (see Table VIII) exceeds typical 
standards. While other ensemble studies typically 
report 85–90% agreement for outlier detection [23], our 
triangulation achieved near-perfect consistency. This 
confirms that the production dichotomy in Indonesia is 
a robust economic reality, not a statistical coincidence. 
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B. Comparison with Previous Research 

Comparing our findings with previous research 
reveals critical methodological implications that extend 
beyond simple structural differences. Ningsih 
[14]identified k=3 as the optimal cluster number using 
K-Means on raw production data (2017–2022). In 
contrast, our triangulation approach consistently 
identified k=2. This discrepancy is not merely a 
difference in results but highlights the critical role of 
data preprocessing. Our analysis suggests that the third 
cluster identified in Ningsih's study likely emerged as 
an artifact of scale variance rather than a distinct 
production regime. Without Z-score standardization, 
the Euclidean distance function is disproportionately 
influenced by variables with large variances [19], 
potentially fragmenting naturally cohesive clusters. By 
standardizing the data, our study successfully mitigated 
this bias, revealing a more fundamental dualistic 
structure (Production Centres vs. Consolidation 
Group). 

Our results align more closely with Indah [15], who 
utilized hierarchical methods and found a similar 
separation between major and minor producers. 
However, our study advances beyond Indah's findings 
by integrating DBSCAN for explicit outlier detection. 
While Indah's hierarchical approach effectively 
captured the global structure, it lacked a mechanism to 
distinguish between "extreme values within a cluster" 
and "true structural outliers." Our application of 
DBSCAN filled this gap by explicitly labeling the three 
super-producer provinces as "Noise," thereby providing 
a stronger, non-circular validation that these provinces 
constitute a structurally distinct entity [18]. 

Furthermore, compared to Ais et al. [16], who 
employed Fuzzy C-Means to analyze livestock meat 
production, our crisp clustering approach (K-Means 
and DBSCAN) offers a more definitive categorization 
necessary for clear policy formulation. While fuzzy 
clustering provides valuable insights into transitional 
memberships, policy interventions often require clear-
cut segmentation to allocate resources effectively. The 
near-perfect stability of our results (99.7% consistency 
via bootstrapping) suggests that the ambiguity typically 
handled by fuzzy methods is minimal in this specific 
dataset, making our hard clustering approach both 
methodologically robust and practically actionable. 

V. CONCLUSION 

 This study demonstrates that methodological 
triangulation across partitional, hierarchical, and 
density-based paradigms provides validation that is 
significantly more robust than single-algorithm 
approaches, particularly for data with extreme 
disparities like Indonesian beef production 
(CV=171.89%; ratio 664:1). All three algorithms 
consistently converged on the k=2 solution with 99.7–
100% agreement and a Silhouette Score of 0.9155, 
statistically confirming that the dominance of the three 
Java provinces is a natural structure rather than an 
algorithmic artifact. The primary contribution of this 
study lies in demonstrating that integrating density-

based outlier detection and bootstrap stability testing 
can mitigate the distortions often present in 
conventional methods. This provides a solid empirical 
foundation for policymakers to implement 
differentiated strategies between major production 
centers and developing regions, while recommending 
the adoption of this triangulation framework for future 
complex agricultural datasets. 
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