

69 IJNMT, Vol. IV, No. 2 | Desember 2017

ISSN 2354-0082

Application Software For Learning CPU

Process of Interrupt and I/O Operation

Fransiscus A Halim

Computer Engineering Department, Universitas Multimedia Nusantara, Tangerang, Indonesia

Received on August 16th, 2017

Accepted on December 20th, 2017

Abstract— The purpose of this research is to have

simulation software capable of processing interrupt

instruction and I/O operation that in the future it can

contribute in developing a kernel. Interrupt and I/O

operation are necessary in the development of the kernel

system. Kernel is a medium for hardware and software

to communicate. However, Not many application

software which helps the learner to understand

interrupt process. In managing the hardware, there are

times when some kind of condition exist in the system

that needs attention of processor or in this case kernel

which managing the hardware. In response to that

condition, the system will issue an interrupt request to

sort that condition. As the I/O operation is needed since

a computer system not just consists of CPU and memory

only but also other device such as I/O device. This paper

elaborates the application software for learning

Interrupt application. With interrupt instruction and

I/O operation in the simulation program, the program

will be more represent the process happened in the real

life computer. In this case, the program is able to run

the interrupt instruction, I/O operation and other

changes are running as expected. Refers to its main

purpose, perhaps this simulation can lead to developing

the kernel in operating system. From the results of

instruction’s testing above, has a result that shows that

90% of instructions are run properly. In executing

instructions, simulation program still has a bug

following after the execution of Jump and conditional

Jump

Index Terms—Interrupt; I/O; Kernel; Operating

System

I. INTRODUCTION

Central Processing Unit (CPU), play a role as the

“brain” of the computer and It handles all the

instructions where all of the activities in a computer

are arranged inside the CPU. The processing of

instructions given to the CPU is processed in a cycle

known as instruction cycle. This instruction cycle

consisting of three steps: fetch, decode, and execute.

In carrying out these steps, processor also involves

memory and I/O devices. It is impossible to see in

live how the process happened in hardware. What can

be done is to try to visualize the process into software

in the form of simulation. The simulation program

cannot give a perfect detail of the process of the

hardware because of the complexity of the process.

The simulation software can give a simple picture of

the interaction between processor, memory and the

peripheral devices.

The purpose of this research is to have simulation

software capable of processing interrupt instruction

and I/O operation that in the future it can contribute in

developing a kernel. This is because of the frequency

of using the interrupt instruction and I/O operation is

quite often in developing software. Other purpose of

this research is to have simulation software that can

represent more of the work of memory and the process

of instruction cycle so that it can reflect of the process

in the CPU in a more complete way.

II. FUNDAMENTAL THEORY

A. Components and Classifications in Computer

System

A computer system can do the data processing

properly if it has five units or main components that

functioning independently. These components are

input unit, processing unit, output unit, storage unit,

and communication unit [1]. CPU is a main

component in a computer system, where the main

function of CPU is to carry out instruction or program

stored in memory by performing the instruction cycle

that is fetch, decode, and execute. CPU consist of two

main components, that is Arithmetic and Logic Unit

(ALU) which carries out arithmetic operation and

logic on data, and Control Unit which responsible for

directing the flow of instruction and data in CPU.

Besides that, in CPU there are also several registers

that functioning as temporary data storage in CPU.

Register divided into main registers like Instruction

Register (IR), Program Counter (PC), Memory

Address Register (MAR), and Memory Buffer

Register (MBR), and general purpose register which

consist of operand register and accumulator [1].

B. Instruction Set and Instruction Cycle

In a computer system, there is collection of

instructions able to be carried out by processor in the

system. That collection of instructions is known as

Instruction set. Those instructions when executed, will

IJNMT, Vol. IV, No. 2 | December 2017 70

ISSN 2354-0082

experience a cycle started from fetch, decode, and

execute. The instruction cycle will always looped in a

computer. Instruction set in a microprocessor is a

collection of instruction and basic operation able to be

carried out by device to be used by programmer.

Instruction set is divided into several categories which

connected functionally, which is data transfer

instruction, arithmetic instruction, logic instruction,

shift instruction, and rotate instruction [2].

Instruction cycle consist of several read or write

process (machine cycle) in doing the execution of

microprocessor/microcontroller instruction. Three

machine cycle which are done for one instruction

cycle consist of reading the instruction (fetch),

decoding the instruction (decode), and executing the

instruction (execute). Decode process usually merged

with the fetch process [3].

C. Interrupt Handling

Interrupt is an event which indicate that there is a

condition somewhere in system, processor, or in

program which is currently executed that needs

attention from processor. Interrupt usually have the

impact on forcefully transfer the execution from the

running program to a routine or special task called

interrupt handler [4] . To help handling the interrupt,

every interrupt in IA-32 architecture that needs special

handling by the processor is given a unique

identification number, called vector. Processor used

the vector assigned to every interrupt as index in

Interrupt Descriptor Table (IDT) to determine the

starting point of interrupt handler [5].

Processor can receive interrupt from two sources,

that is external interrupt and software generated

interrupt. External interrupt is received from pin in

processor or from local Advanced Programmable

Interrupt Controller (APIC) [5]. Software generated

interrupt is generated from instruction INT n from the

software and provide the interrupt vector number as

operand. Example, instruction INT 7 will force a

definite call to interrupt handler for interrupt 7 [5].

D. Input and Output

Processor enables an application to access I/O port

in two ways, which is from distinct I/O address space

and from memory-mapped I/O. Accessing I/O port

from I/O address space is handled by string of I/O

instruction and special I/O protection mechanism.

Accessing I/O port from memory mapped I/O is

handled by move or string instruction from processor,

with protection provided by segmentation or paging

[6].

Besides able to transfer data from and to external

memory, a processor is also capable to transfer data

from and to the I/O port. I/O port is made in hardware

system from string that do decodes about the control,

data, and address pin in processor. I/O port then

configured to communicate with surrounding device.

I/O port can be an input port, output port, or

bidirectional port [5]. I/O device that responds like

memory component can be accessed from physical

memory address. When using memory mapped I/O, all

processor instruction involving the memory can be

used to accessed I/O port placed in physical memory

address. As an example, MOV instruction can move

the data between register and memory-mapped I/O

port. AND and OR instruction can also be used to

access I/O port [6].

I/O address space from processor is distinct and

different from physical memory address space. I/O

address space consist of 216 (64 K) 8-bit I/O port

individually addressable, from 0 to FFFF H. I/O port

with address 0F8 H to 0FF H is reserved. Assigning

I/O port in these addresses is prohibited [6].

I/O address space can only be accessed by IN,

OUT, INS, and OUTS instruction.

III. DESIGN OF CPU SIMULATION PROGRAM

A. Archiecture of Simulation Program

CPU simulation program that is developed in this

research has architecture component as followed [4]:

 ControlTrack, which is a module where user

can interact with the simulation program like

inputting instruction, and controlling the work

of classCpu, CMemory, and IOAddressSpace

 StatusTrack, which is playing the role as a

window to display the status and value of all

registers in classCpu and contents of Cmemory

 ClassCpu, which is a component or a class in

the simulation program that do the execution of

instructions given

 CMemory, which is a component or a class in

the simulation program that has a role as data

storage or memory

 IOAddressSpace, which is a component or a

class in the simulation program that has a role

as I/O address space as means to access the I/O

ports

 File Instruction Set, which is a file containing a

list of instruction pattern, instruction code, and

instruction code.

71 IJNMT, Vol. IV, No. 2 | December 2017

ISSN 2354-0082

classCpu

CMemory ControlTrack StatusTrack

File Instruction Set

IOAddressSpace

Fig. 1. Archictecture of Simulation Program

In running the simulation program, there are steps

that the user will encounter in. Those steps are the

mechanism of the simulation program described in the

following flowcharts

Start

Input

Instruction

More Instruction? Execute All?

Trace Next

Instruction

Restart?

No
No

Ya

Yes

Yes

End

No

Trace Next

Instruction

All instructions have

been traced?

See Execution

results
No See Execution

results

Yes

Fig. 2. Mechanism in Running the Simulation

Program

Start

Initialitation

ICC = 0

Fetch Cycle

Execute (INT) Cycle
Execute (IRET)

Cycle

ICC == 2 ICC == 3ICC?

ICC == 1

Execute Cycle

ICC = 0

End

Fig. 3. Mechanism of Tracing the Next Instruction

B. Design of Interrupt (INT) and Interrupt Return

(IRET) Instruction

Interrupt is an instruction that is used to interrupt

or halt the execution of a program. Interrupt by the

sources is divided in two, hardware-generated

interrupt and software-generated interrupt. In this

simulation program, the one able to be simulated is

software-generated interrupt, which is by executing

INT n instruction, with n is vector number of the

interrupt to be executed. The INT instruction has an

OpCode of 1C H and instruction size of 3 byte. In this

simulation program, Set Interrupt Flag (STI) and Clear

Interrupt Flag (CLI) instructions that facilitate the

change of flag from Enable Interrupt (EI) to Disable

Interrupt (DI) and vice versa, are not yet available.

Also, in this simulation program, the interrupt process

is assumed the same to all interrupt vector and flag

change for this instruction is IF flag. If an INT n

instruction is found, then to search for the interrupt

handler address of particular interrupt with vector

number n, simulation program will look into IDTR

(Interrupt Descriptor Table Register), which contains

base address of IDT (Interrupt Descriptor Table).

IDTR has size of 24-bit

23 8 7 0

IDT Base Address IDT Limit

Fig. 4. IDTR Register

IJNMT, Vol. IV, No. 2 | December 2017 72

ISSN 2354-0082

In simulation program, the contents of IDT are not

gate descriptor, but direct address of the interrupt

handler. To obtain the address, simulation program

will multiply the vector number by two (the address

length of interrupt handler is 2-byte), then added with

the base address of IDT. The result is an address

contains the address of interrupt handler. Interrupt

handler for every vector number only filled with

simple instruction that defined when the simulation

program is loaded for the first time ended with an

IRET instruction to return back from executing the

interrupt handler and back to execute the program left

because of the interrupt instruction. IRET instruction

has an OpCode of 2C H.

Start

PUSH Flag

PUSH CS

PUSH PC

indx = IDTR >> 8

Fetch INT n

instruction

indx = indx + (2*n)

PC = indx

End

Fig. 5. Flowchart of Executing Interrupt Instruction

Start

POP PC

POP CS

POP FLAG

End

Fig. 6. Flowchart of Executing IRET Instruction

When the INT instruction is found, first, the

simulation program will enter the fetch cycle, like

other instruction. After the fetch cycle, simulation

program will enter the execute cycle for interrupt

instruction. In this cycle, the first thing to do is to store

the value of register FLAG, CS and PC into the stack

with PUSH instruction. Then, simulation program will

take the last 16 bit of IDTR that contains the base

address of IDT. Index of the IDT’s base address then

added with two times the vector number of interrupt.

The result is stored in MAR, then from the memory

address pointed by MAR the simulation program will

read the base address of interrupt handler and then

save it in MBR, and then moved to PC register.

Simulation program will then start the execution of

interrupt handler started from the address pointed by

PC until the simulation program executes the IRET

instruction. When the IRET instruction is found, it

indicates that interrupt handler has been executed.

When that happened, simulation program will load the

value of FLAG, CS and PC register from stack with

POP instruction, and then resume the execution of the

program left behind. IRET instruction has an OpCode

of 2C H and size of 1-byte

C. Design of I/O Instruction

I/O instruction (IN, OUT, INS, and OUTS) will

provide access to the I/O port by means of I/O address

space for processor (these instructions cannot be used

to access port thorough memory-mapped I/O). There

are two groups of I/O instructions [5].

73 IJNMT, Vol. IV, No. 2 | December 2017

ISSN 2354-0082

 Used to move one item (byte, word or double

word) between I/O ports and general purpose

register. Included in this group are IN and OUT

instructions

 Used to move string of item (string of byte,

word or double word) between I/O ports and

memory. Included in this group are INS and

OUT instructions

In the simulation program, group of I/O instruction

able to be handled are only IN and OUT instructions

IV. IMPLEMENTATION AND TESTING

A. Implementation of Class CMemory

In class CMemory, there is an array that acts as

storage but has private attribute. The data in this array

can only be accessed using functions or methods

contained in this class. The array has the capacity of 4

KB (4096 byte). The functions or methods in this class

have a function to read or write data in the array.

There are four main methods in this class, methods to

write and read byte like writeByte and readByte, and

methods to write and read word like writeWord and

readWord

B. Implementation of Instruction

The main focuses of this research are interrupt

instruction (INT), interrupt return instruction (IRET)

and I/O operations

1) Implementation of Interrupt and Interrupt

Return

Interrupt is an instructions used to halt the running

program. Based on the sources, interrupt is divided

into two type, hardware generated interrupt and

software generated interrupt. In simulation program,

the type that can be handled is software generated

interrupt, called through INT n instruction. n is the

vector number of the interrupt called. Vector number

is allowed only in the range from 0 to 1F H. Interrupt

in simulation program is still simple, because there is

no proper interrupt handler like the one in Intel

processor

The interrupt process in this simulation program

only shows how the interrupt handler is called through

INT instruction. In this simulation program there no

instructions to facilitate change in FLAG from EI

(Enable Interrupt) to DI (Disable interrupt) vice versa

like STI (Set Interrupt Flag) and CLI (Clear Interrupt

Flag). In this simulation program, the interrupt process

is considered the same for all interrupt vector and

FLAG changed in this instruction is IF flag.

After the process of calling the interrupt handler,

the simulation program then proceeds to executing the

interrupt handler. Interrupt handler in this simulation

program only contains simple instructions ended with

IRET instruction, to return the value of register FLAG,

CS and PC back to the value before the interrupt

instruction enter execute cycle.

2) Implementation of I/O Instructions

I/O instructions that can be handled by simulation

program are IN, and OUT. IN instruction is an

instruction to read the value of I/O address space with

the address pointed by displacement or general

purpose register and store it in general purpose

register. And OUT Instructions will write the value of

a general purpose register into I/O address space with

address pointed by displacement or general purpose

register.

C. Testing of Simulation Program

Testing for the simulation program is done to see if

the program can run according to expectations. Testing

is done by trying to execute variety of instructions that

contained in file instruction set. The following is an

example of instructions run by the simulation program.

TABLE I. Testing Of Arithmetic Operations

ADD

Testing

SUB

Testing

MUL

Testing

ADD R1, 5

ADD R1, R2

ADD [R3], R4

SUB R1,5

SUB R3,[R2+5]

SUB R5, R8

MUL R6,5

MUL R6,[R5+1]

MUL R3,R4

DIV

Testing

Mixed Testing

DIV R1,R4

DIV R1, [R6]

DIV R7,[R5+1]

ADD R1,R5

MUL R1, 56

DIV R1,R2

TABLE II. Testing of Boolean Operation

NOT

Testing

AND

Testing

OR

Testing

NOT R1

NOT R2

NOT R3

AND R1,5

AND R2,45

AND R2, [R4+6]

OR R1,4

OR R5,R6

OR [R3+1], R5

XOR

Testing

Mixed

Testing

XOR R1,55

XOR R4,R8

XOR R5,[R4+65]

NOT R1

AND R1,5

XOR R1,55

TABLE III. Testing of Stack Operations

PUSHF

Testing

POPF

Testing

PUSH

Testing

POP

Testing

Mixed

Testing

PUSHF POPF PUSH R1

PUSH R2

PUSH [R1+23]

POP R3

POP R4

POP [R4+12]

PUSHF

POP R1

PUSH R4

TABLE IV. Testing of Compare Operations and

Conditional Jump Operations

CMP (>)

Testing

CMP (<)

Testing

CMP (=)

Testing

CMP R1,R2

CMP R2,[R3+1]

CMP R2, R1

CMP R4,AA

CMP R1,R1

CMP R1,R2

IJNMT, Vol. IV, No. 2 | December 2017 74

ISSN 2354-0082

CMP R3, 5 CMP [R1+1], R2 CMP R3,R3

Unconditional

Testing

Mixed Testing

JZ 10 CMP R1,R2

CMP R1,R1

JZ 10

TABLE V. TEsting of Interrupt Instructions

Interrupt

Testing

INT 0

INT 8

INT 1F

TABLE VI. Testing of I/O Operations

Input

Testing

Output

Testing

Mixed

Testing

IN R1, 45

IN R3, 12

IN R7, 2FF

OUT 12, R4

OUT 123, R6

OUT 7FF, R3

OUT 12, R1

IN R5, 12

IN R5,R1

TABLE VII. Testing of Mixed Operations

Mixed

Testing I

Mixed

Testing II

Mixed

Testing III

MOV R1,R2

PUSHF

CMP R1,R2

JE 10

CMP R1,R2

AND R1, [R2+5]

INT 5

CMP R4,R5

SUB R5,R6

OUT 12, R5

IN R7, 12

MUL R7,6

Mixed

Testing IV

Mixed

Testing V

SUB R1,R1

INT 1F

CMP R1,[R2+4]

JZ 10

PUSH R1

ADD R1,5

MOV R2, R1

POP R1

From the results of instruction’s testing above, has

a result that shows that 90% of instructions are run

properly. In executing instructions, simulation

program still has a bug following after the execution

of Jump and conditional Jump.

V. CONCLUSION AND SUGESSTION

Based on the results received from the simulation

program, can be concluded that:

 Class CMemory is able to represent more of

the work of memory because of the functions

contained in the class used to access the data in

the memory

 Simulation program is able show the flow of

instruction better because of the separation of

each instruction cycle

 Interrupt instruction and I/O operation can help

the development of kernel system because the

frequency of them being used in software

development is quite often.

To develop the next research, here are some

suggestions:

 Class CMemory can be developed so that it can

save the data in memory to a file

 For the next research, try to add multitasking

process.

 For the next research, try to enlarge the size of

the register and the instructions is added to be

more complete

 For the interrupt instruction, the interrupt

handler to be more complete with the actual

interrupt handler

 Mapping for I/O ports to be more specific, and

also can display the functions of each I/O port

is to access which I/O device.

ACKNOWLEDGMENT

Thanks to Mr. Sutrisno and Mr. Yosia who have
helped this research until it’s accomplished

REFERENCES

[1] C. Hamacher, Z. Vranesic, S. Zaky. Naraig Manjikian ,
Computer Organization and Embedded Systems 6th Edition;
McGraw-Hill, 2012

[2] B. Brey. The Intel Microprocessors , Architecture,
Programming, and Interfacing , 8th Edition. Pearson, 2008

[3] W.Stallings. Computer Organization and Architecture, 9th
Edition Pearson , 2012

[4] F.A.Halim , Sutrisno, “Fundamental Characteristic of Central
Processing Unit Simulation as a Basic Stage of Making
Kernel”, Publish in Konferensi Nasional Sistem &
Informatika (KNS&I 2010), 12-13 Nov 2010, Bali

[5] Intel, IA-32 Intel® Architecture Software Developer’s
Manual Volume 3: System Programming Guide, Denver: Intel
Corporation, 2004

[6] Intel,IA-32 Intel 80386 Reference Programmer's,: I/O
Instruction , https://pdos.csail.mit.
edu/6.828/2014/readings/i386/s08_02.htm, available 17 June
2017

