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Abstract—There are a lot of things that must be 

considered when determining specifications of computer 

components to make sure those components chose are 

working compatible. According to a survey conducted to 

78 respondents, about 72.5% of the respondents prefer 

to buy a built-up computer. The reason is because of a 

lack of knowledge of computer components and how to 

assemble computer properly. This research aimed to 

develop   a recommendation system that able to give 

recommendation of buying computer based on 

compatible components to be assembled, with the 

available budget, so that people who do not know 

computer components can also buy a assembled 

computer. The Genetic Algorithm was chosen for 

making this recommendation system because this 

Algorithm gives more alternative solutions through the 

process of crossover and mutation compared to the 

Greedy Algorithm which doesn’t produce a solution by 

trying all alternative solution nor Exhaustive Search on 

Brute Force Algorithm which takes a long time to find 

optimum solution. The recommendation system of 

computer components specifications based on the 

budget available has been successfully developed using 

Genetic Algorithm and achieved 75.75% user 

satisfaction. 

Index Terms— Computer Components, Genetic 

Algorithm, Greedy Algorithm, Recommendation 

System. 

I. INTRODUCTION 

According to International Data Corporation 
(IDC), in 2016, overall sales of personal computer in 
Indonesia reached 2 million units. This indicates the 
need for computers is still quite a lot in Indonesia, 
especially for office and gaming needs. 

In general there are two types of computer sold in 
computer stores, the built-up computers and the 
assembled computers. The built-up computers are 
computers directly made by the manufacturers of the 
computers, while the assembled computers are 
computers assembled by technicians base on buyer’s 
request. 

Based on a preliminary survey, about 72.5% of 
respondents who prefer to buy built-up computers 

reasoned they bought the computers because they 
don’t know computer components. While 86.8% of the 
the respondents who prefer to   buy assembled 
computers reasoned they bought the computer because 
they could adjust the price of the computer based on 
their budget. 

The preliminary survey conclude that people 
bought built-up computers because they don’t know 
computer components well. If there is a 
recommendation system able to give components 
specification of compatible computers based on their 
budget, they would buy an assembled computer so 
they can adjust the price of the computer base on their 
budget, and they no longer need to know computer 
components.  

Researches related to the this problem has been 
done by some other researchers. Imbar in 2013 [1] 
select the specification of computer components based 
on the budget of the buyer. However, the research 
based on Greedy Algorithm produced sub-optimum 
solution because the algorithm did not operate 
thoroughly against all available alternative solutions. 

Another research conducted by Haryanty in 2012 
[2] using Genetic Algorithm with Roulette Wheel 
selection method and the result was producing 
combination of products optimal to buyer's budget. 
However, this research only used five  computer 
components i.e processor, motherboard, memory 
(RAM), graphics card and hard disk; and did not check 
the  compatibility of RAM according to the 
motherboard used. 

This research used Genetic Algorithm to make 
improvement from the previous research by using 
seven  computer component products and used 
Tournament Selection for the selection method which 
has an advantage in convergence speed compared to 
proportionate roulette wheel. It is expected to help 
people when buying assembled computer with the 
various of computer components and the 
incomprehension of computer components 
compatibility.  
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II. METHODOLOGY 

A. Genetic Algorithm 

Genetic algorithms (GAs) are search methods 
based on principles of natural selection and genetics. 

GAs encode the decision variables of a search 
problem into finite-length strings of alphabets of 
certain cardinality. The strings which are candidate 
solutions to the search problem are referred to as 
chromosomes, the alphabets are referred to as genes 
and the values of genes are called alleles. For example, 
in a problem such as the traveling salesman problem, a 
chromosome represents a route, and a gene may 
represent a city. To evolve good solutions and to 
implement natural selection, measure to distinguish 
good solutions from bad solutions is needed. The 
measure could be an objective function that is a 
mathematical model or a computer simulation, or it 
can be a subjective function where humans choose 
better solutions over worse ones. The fitness measure 
must determine a candidate solution’s relative fitness, 
which will subsequently be used by the GA to guide 
the evolution of good solutions [1]. 

Another important concept of GAs is the notion of 
population. Unlike traditional search methods, genetic 
algorithms rely on a population of candidate solutions. 
The population size, which is usually a user-specified 
parameter, is one of the important factors affecting the 
scalability and performance of genetic algorithms. For 
example, small population sizes might lead to 
premature convergence and yield substandard 
solutions. On the other hand, large population sizes 
lead to unnecessary expenditure of valuable 
computational time.  

Once the problem is encoded in a chromosomal 
manner and a fitness measure for discriminating good 
solutions from bad ones has been chosen, the 
algorithm start evolving solutions using the following 
steps:  

1. Initialization. The initial population of 

candidate solutions is usually generated 

randomly across the search space. However, 

domain-specific knowledge or other 

information can be easily incorporated. 

2. Evaluation. Once the population is initialized 

or an offspring population is created, the 

fitness values of the candidate solutions are 

evaluated. 

3. Selection. Selection allocates more copies of 

those solutions with higher fitness values and 

thus imposes the survival of the fittest 

mechanism on the candidate solutions. The 

main idea of selection is to prefer better 

solutions to worse ones, and many selection 

procedures have been proposed to accomplish 

this idea, including roulette-wheel selection, 

stochastic universal selection, ranking 

selection and tournament selection.  

4. Recombination. Recombination combines 

parts of two or more parental solutions to 

create new, possibly better solutions (i.e. 

offspring). There are many ways of 

accomplishing this (some of which are 

discussed in the next section), and competent 

performance depends on a properly designed 

recombination mechanism. The offspring 

under recombination will not be identical to 

any particular parent and will instead combine 

parental traits in a novel manner (Goldberg, 

2002).  

5. Mutation. While recombination operates on 

two or more parental chromosomes, mutation 

locally but randomly modifies a solution. 

Again, there are many variations of mutation, 

but it usually involves one or more changes 

being made to an individual’s trait or traits. In 

other words, mutation performs a random walk 

in the vicinity of a candidate solution.  

6. Replacement. The offspring population created 

by selection, recombination, and mutation 

replaces the original parental population. 

Many replacement techniques such as elitist 

replacement, generation-wise replacement and 

steady-state replacement methods are used in 

GAs. 

B. Tournament Selection 

GAs uses a selection mechanism to select 
individuals from the population to insert into a mating 
pool. Individuals from the mating pool are used to 
generate new offspring, with the resulting offspring 
forming the basis of the next generation. A selection 
mechanism in GA is simply a process that favors the 
selection of better individuals in the population for the 
mating pool. The selection pressure is the degree to 
which the better individuals are favored: the higher the 
selection pressure, the more the better individuals are 
favored. This selection pressure drives the GA to 
improve the population fitness over succeeding 
generations. The convergence rate of a GA is largely 
determined by the selection pressure, with higher 
selection pressures resulting in higher convergence 
rates. However, if the selection pressure is too low, the 
convergence rate will be slow, and the GA will 
unnecessarily take longer to find the optimal solution. 
If the selection pressure is too high, there is an 
increased chance of the GA prematurely converging to 
an incorrect (suboptimal) solution.  

Tournament selection provides selection pressure 
by holding a tournament among "s" competitors, with 
"s" being the tournament size. The winner of the 
tournament is the individual with the highest fitness of 
the "s" tournament competitors. The winner is then 
inserted into the mating pool. The mating pool, being 
comprised of tournament winners, has a higher 
average fitness than the average population fitness. 
This fitness difference provides the selection pressure, 
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which drives the GA to improve the fitness of each 
succeeding generation. Increased selection pressure 
can be provided by simply increasing the tournament 
size "s", as the winner from a larger tournament will, 
on average, have a higher fitness than the winner of a 
smaller tournament [2]. 

C. Uniform Crossover 

Uniform crossover do not fragment the 
chromosomes for recombination. Each gene in 
offspring is created by copying it from the parent 
chosen according to the corresponding bit in the binary 
crossover mask of same length as the length of the 
parent chromosomes. If the bit in crossover mask is 1, 
then the resultant gene is copied from the first parent 
and if the bit in crossover mask is 0, then the resultant 
gene is copied from the second parent. A new 
crossover mask is generated arbitrarily for each pair of 
parent chromosomes. The quantity of crossover point 
is not fixed initially. So, the offspring have a mixture 
of genes from both the parents [3]. 

D. Uniform Mutation 

The mutation operator randomly selects a position 
in the chromosome and changes the corresponding 
allele, thereby modifying information. The need for 
mutation comes from the fact that as the less fit 
members of successive generations are discarded; 
some aspects of genetic material could be lost forever. 
By performing occasional random changes in the 
chromosomes, GAs ensure that new parts of the search 
space are reached, which reproduction and crossover 
alone couldn’t fully guarantee [4]. Uniform Mutation 
can be done using the following steps [5]. Choose one 
gene randomly. Replace the value of a chosen gene 
with a uniform random value selected between the 
user specified upper and lower bounds for that gene. 

III. SYSTEM MODELING 

A. Use Case Diagram 

Use case diagrams are usually referred to as 
behavior diagrams used to describe a set of actions 
(use cases) that some system or systems (subject) 
should or can perform in collaboration with one or 
more external users of the system (actors). Each use 
case should provide some observable and valuable 
result to the actors or other stakeholders of the system. 
Fig 1 shows the Use Case Diagram of the application. 

 

Fig 1. Use Case Diagram 

B. Class Diagram 

Class Diagram is UML structure diagram which 
shows structure of the designed system at the level of 
classes and interfaces, shows their features, constraints 
and relationships - associations, generalizations, 
dependencies, etc. Fig 2 shows the Class Diagram of 
the application. 
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Fig 2. Class Diagram 

IV. IMPLEMENTATION AND EXPERIMENT RESULTS 

The system is built on a website platform using 
PHP, Bulma CSS framework, DataTables, and 
AngularJS. User will get recommendation of computer 
components base on their budget by using the 
following steps. 

1. Defining the computer component that will be 

used. By the default, user will use all 

components. 

2. Filter product by its minimum specification 
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3. Define budget.  

A. Computer Specification Recommendation System 

Users can define the computer components that 
will be used for getting a recommendation. 

 

Fig 3. Defining Components 

After user has defined the components, he/she will 
define the minimum specification of products for each 
component. 

 

Fig 4. Defining Minimum Specification of Products 

On the next page shown all of the components and 
their minimum specification of products. User will 
input budget and waiting until the Algorithm has 
found the solution. In Figure 3 the user has input IDR 
3,500,000 to the budget. 

 

Fig 5. Input Budget 

The combination of computer components will be 
show after the algorithm has found solution. The 
compatibility for each component have been checked 
automatically by the application so user don’t have to 
worry about compatibility issues. 

 

Fig 6. GA Result 

B. Testing 

Testing has been conducted by giving input IDR 
3,500,000 to budget which is the worst case for the 
algorithm. The test used different population size and 
was performed for 30 times for each population size 
and processor’s socket. The test set mutation rate and 
crossover rate 0.05 and 0.6 respectively. It is observed 
that the optimal values for mutation probability 
(0.001) and single point crossover with probability 
(0.6) with population size (50-100) as suggested by 
DeJong (1975) have been used in many GA 
implementations. Mutation probability above 0.05 is in 
general harmful for the optimal performance of Gas 
[6]. 

Table 1. Amount of Data Used in the Test 

Component Name Total Products 

Processor (LGA 1151) 17 

Processor (LGA 1150) 17 

Processor(LGA 1155) 25 

Motherboard 352 

Memory 296 

Video Card 458 

Hard Disk 43 

Power Supply 286 

Monitor 252 

 

Table 2. Test Result by Using 10 Population Size 

Socket Average Time Average 

Generation 

Average 

Difference 

1151 0.626 502.7 Rp 10,500.00 

1155 0.321666667 311.2333333 Rp 1,833.33 

1150 0.414333333 323.9 Rp 2,400.00 

Mean 0.454 379.277778 Rp 4,911.11 

 

Table 3.  Test Result by Using 30 Population Size 

Socket Average Time Average 

Generation 

Average 

Difference 
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Socket Average Time Average 

Generation 

Average 

Difference 

1151 1.049666667 326.3 Rp 2,600.00 

1155 0.64 190.466667 Rp 866.67 

1150 0.763 180.766667 Rp 800.00 

Mean 0.81755556 232.511111 Rp 1,422.22 

 

Table 4. Test Result by Using 50 Population Size 

Socket Average Time Average 

Generation 

Average 

Difference 

1151 1.585 282.4 Rp 1,500.00 

1155 0.824 136.5 Rp 666.67 

1150 1.117666667 204.0666667 Rp 1,333.33 

Mean 1.17555556 207.655556 Rp 1,166.67 

 

Table 5. Test Result by Using 60 Population Size 

Socket Average Time Average 

Generation 

Average 

Difference 

1151 1.80533333 270.233333 Rp 1,566.67 

1155 1.097666667 155.4666667 Rp 966.67 

1150 3.057 160.9 Rp 700.00 

Mean 1.98666667 195.533333 Rp 1,077.78 

 

Table 6. Test Result by Using 80 Population Size 

Socket Average Time Average 

Generation 

Average 

Difference 

1151 1.99766667 224.233333 Rp 1,533.33 

1155 1.68133333 183.033333 Rp 900.00 

1150 1.36633333 153.8 Rp 600.00 

Mean 1.68177778 187.022222 Rp 1,011.11 

 

Table 7. Test Result by Using 100 Population Size 

Socket Average Time Average 

Generation 

Average 

Difference 

1151 1.894 170.2 Rp 2,533.33 

1155 1.594 137.9 Rp 466.67 

1150 1.56266667 141.2 Rp 800.00 

Mean 1.68355556 149.766667 Rp 1,266.67 

 

C. Software Quality 

Software quality questionnaire was filled by 33 
respondents. The questionnaire questions were made 

based on EUCS model. By using Pearson Product-
Moment Correlation, it was obtained that all the 
questions are valid, and by using Alpha Cronbach 
formula, it was obtained the questionnaire’s reliability 
of 0.78 which can be considered as adequate [7]. The 
score for software quality is 75.75% which is 
considered good. 

V. CONCLUSION AND FUTURE WORKS 

Computer specification recommendation system 
using Genetic Algorithm has been successfully 
designed and developed. The score for software 
quality is 75.75% which is considered good. 

Based on the experiments that have been carried 
out the most efficient population size in terms of time 
and the difference between budget and 
recommendation is 50. Larger population size will 
make the result is more accurate than smaller 
population size but it will take a longer time to find 
solution. 

In order to improve the application, it is suggested 
that the application may provide a picture to each 
product and use different algorithm that has been 
mentioned before for crossover process, mutation 
process, and selection process to make the application 
works more efficient than before. 
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