

25 IJNMT, Vol. V, No. 1 | June 2018

ISSN 2355-0082

Design and Development of Computer

Specification Recommendation System Based

on User Budget With Genetic Algorithm

Michael1, Winarno2

Department of Informatics, Universitas Multimedia Nusantara, Tangerang, Indonesia
1michael6@student.umn.ac.id

2pmwinarno@umn.ac.id

Received on September 12th, 2017

Accepted on June 8th, 2018

Abstract—There are a lot of things that must be

considered when determining specifications of computer

components to make sure those components chose are

working compatible. According to a survey conducted to

78 respondents, about 72.5% of the respondents prefer

to buy a built-up computer. The reason is because of a

lack of knowledge of computer components and how to

assemble computer properly. This research aimed to

develop a recommendation system that able to give

recommendation of buying computer based on

compatible components to be assembled, with the

available budget, so that people who do not know

computer components can also buy a assembled

computer. The Genetic Algorithm was chosen for

making this recommendation system because this

Algorithm gives more alternative solutions through the

process of crossover and mutation compared to the

Greedy Algorithm which doesn’t produce a solution by

trying all alternative solution nor Exhaustive Search on

Brute Force Algorithm which takes a long time to find

optimum solution. The recommendation system of

computer components specifications based on the

budget available has been successfully developed using

Genetic Algorithm and achieved 75.75% user

satisfaction.

Index Terms— Computer Components, Genetic

Algorithm, Greedy Algorithm, Recommendation

System.

I. INTRODUCTION

According to International Data Corporation
(IDC), in 2016, overall sales of personal computer in
Indonesia reached 2 million units. This indicates the
need for computers is still quite a lot in Indonesia,
especially for office and gaming needs.

In general there are two types of computer sold in
computer stores, the built-up computers and the
assembled computers. The built-up computers are
computers directly made by the manufacturers of the
computers, while the assembled computers are
computers assembled by technicians base on buyer’s
request.

Based on a preliminary survey, about 72.5% of
respondents who prefer to buy built-up computers

reasoned they bought the computers because they
don’t know computer components. While 86.8% of the
the respondents who prefer to buy assembled
computers reasoned they bought the computer because
they could adjust the price of the computer based on
their budget.

The preliminary survey conclude that people
bought built-up computers because they don’t know
computer components well. If there is a
recommendation system able to give components
specification of compatible computers based on their
budget, they would buy an assembled computer so
they can adjust the price of the computer base on their
budget, and they no longer need to know computer
components.

Researches related to the this problem has been
done by some other researchers. Imbar in 2013 [1]
select the specification of computer components based
on the budget of the buyer. However, the research
based on Greedy Algorithm produced sub-optimum
solution because the algorithm did not operate
thoroughly against all available alternative solutions.

Another research conducted by Haryanty in 2012
[2] using Genetic Algorithm with Roulette Wheel
selection method and the result was producing
combination of products optimal to buyer's budget.
However, this research only used five computer
components i.e processor, motherboard, memory
(RAM), graphics card and hard disk; and did not check
the compatibility of RAM according to the
motherboard used.

This research used Genetic Algorithm to make
improvement from the previous research by using
seven computer component products and used
Tournament Selection for the selection method which
has an advantage in convergence speed compared to
proportionate roulette wheel. It is expected to help
people when buying assembled computer with the
various of computer components and the
incomprehension of computer components
compatibility.

IJNMT, Vol. V, No. 1 | June 2018 26

ISSN 2355-0082

II. METHODOLOGY

A. Genetic Algorithm

Genetic algorithms (GAs) are search methods
based on principles of natural selection and genetics.

GAs encode the decision variables of a search
problem into finite-length strings of alphabets of
certain cardinality. The strings which are candidate
solutions to the search problem are referred to as
chromosomes, the alphabets are referred to as genes
and the values of genes are called alleles. For example,
in a problem such as the traveling salesman problem, a
chromosome represents a route, and a gene may
represent a city. To evolve good solutions and to
implement natural selection, measure to distinguish
good solutions from bad solutions is needed. The
measure could be an objective function that is a
mathematical model or a computer simulation, or it
can be a subjective function where humans choose
better solutions over worse ones. The fitness measure
must determine a candidate solution’s relative fitness,
which will subsequently be used by the GA to guide
the evolution of good solutions [1].

Another important concept of GAs is the notion of
population. Unlike traditional search methods, genetic
algorithms rely on a population of candidate solutions.
The population size, which is usually a user-specified
parameter, is one of the important factors affecting the
scalability and performance of genetic algorithms. For
example, small population sizes might lead to
premature convergence and yield substandard
solutions. On the other hand, large population sizes
lead to unnecessary expenditure of valuable
computational time.

Once the problem is encoded in a chromosomal
manner and a fitness measure for discriminating good
solutions from bad ones has been chosen, the
algorithm start evolving solutions using the following
steps:

1. Initialization. The initial population of

candidate solutions is usually generated

randomly across the search space. However,

domain-specific knowledge or other

information can be easily incorporated.

2. Evaluation. Once the population is initialized

or an offspring population is created, the

fitness values of the candidate solutions are

evaluated.

3. Selection. Selection allocates more copies of

those solutions with higher fitness values and

thus imposes the survival of the fittest

mechanism on the candidate solutions. The

main idea of selection is to prefer better

solutions to worse ones, and many selection

procedures have been proposed to accomplish

this idea, including roulette-wheel selection,

stochastic universal selection, ranking

selection and tournament selection.

4. Recombination. Recombination combines

parts of two or more parental solutions to

create new, possibly better solutions (i.e.

offspring). There are many ways of

accomplishing this (some of which are

discussed in the next section), and competent

performance depends on a properly designed

recombination mechanism. The offspring

under recombination will not be identical to

any particular parent and will instead combine

parental traits in a novel manner (Goldberg,

2002).

5. Mutation. While recombination operates on

two or more parental chromosomes, mutation

locally but randomly modifies a solution.

Again, there are many variations of mutation,

but it usually involves one or more changes

being made to an individual’s trait or traits. In

other words, mutation performs a random walk

in the vicinity of a candidate solution.

6. Replacement. The offspring population created

by selection, recombination, and mutation

replaces the original parental population.

Many replacement techniques such as elitist

replacement, generation-wise replacement and

steady-state replacement methods are used in

GAs.

B. Tournament Selection

GAs uses a selection mechanism to select
individuals from the population to insert into a mating
pool. Individuals from the mating pool are used to
generate new offspring, with the resulting offspring
forming the basis of the next generation. A selection
mechanism in GA is simply a process that favors the
selection of better individuals in the population for the
mating pool. The selection pressure is the degree to
which the better individuals are favored: the higher the
selection pressure, the more the better individuals are
favored. This selection pressure drives the GA to
improve the population fitness over succeeding
generations. The convergence rate of a GA is largely
determined by the selection pressure, with higher
selection pressures resulting in higher convergence
rates. However, if the selection pressure is too low, the
convergence rate will be slow, and the GA will
unnecessarily take longer to find the optimal solution.
If the selection pressure is too high, there is an
increased chance of the GA prematurely converging to
an incorrect (suboptimal) solution.

Tournament selection provides selection pressure
by holding a tournament among "s" competitors, with
"s" being the tournament size. The winner of the
tournament is the individual with the highest fitness of
the "s" tournament competitors. The winner is then
inserted into the mating pool. The mating pool, being
comprised of tournament winners, has a higher
average fitness than the average population fitness.
This fitness difference provides the selection pressure,

27 IJNMT, Vol. V, No. 1 | June 2018

ISSN 2355-0082

which drives the GA to improve the fitness of each
succeeding generation. Increased selection pressure
can be provided by simply increasing the tournament
size "s", as the winner from a larger tournament will,
on average, have a higher fitness than the winner of a
smaller tournament [2].

C. Uniform Crossover

Uniform crossover do not fragment the
chromosomes for recombination. Each gene in
offspring is created by copying it from the parent
chosen according to the corresponding bit in the binary
crossover mask of same length as the length of the
parent chromosomes. If the bit in crossover mask is 1,
then the resultant gene is copied from the first parent
and if the bit in crossover mask is 0, then the resultant
gene is copied from the second parent. A new
crossover mask is generated arbitrarily for each pair of
parent chromosomes. The quantity of crossover point
is not fixed initially. So, the offspring have a mixture
of genes from both the parents [3].

D. Uniform Mutation

The mutation operator randomly selects a position
in the chromosome and changes the corresponding
allele, thereby modifying information. The need for
mutation comes from the fact that as the less fit
members of successive generations are discarded;
some aspects of genetic material could be lost forever.
By performing occasional random changes in the
chromosomes, GAs ensure that new parts of the search
space are reached, which reproduction and crossover
alone couldn’t fully guarantee [4]. Uniform Mutation
can be done using the following steps [5]. Choose one
gene randomly. Replace the value of a chosen gene
with a uniform random value selected between the
user specified upper and lower bounds for that gene.

III. SYSTEM MODELING

A. Use Case Diagram

Use case diagrams are usually referred to as
behavior diagrams used to describe a set of actions
(use cases) that some system or systems (subject)
should or can perform in collaboration with one or
more external users of the system (actors). Each use
case should provide some observable and valuable
result to the actors or other stakeholders of the system.
Fig 1 shows the Use Case Diagram of the application.

Fig 1. Use Case Diagram

B. Class Diagram

Class Diagram is UML structure diagram which
shows structure of the designed system at the level of
classes and interfaces, shows their features, constraints
and relationships - associations, generalizations,
dependencies, etc. Fig 2 shows the Class Diagram of
the application.

ComponentComponent

socket

processors

motherboards

memories

memories_ddr4

memories_ddr3

vcards

disks

powers

monitors

+ retrieveAllComponent()

+ getRandomComponent()

+ pickProcessor()

+ pickMotherboard()

+ pickMemory()

ChromosomeChromosome

genes

fitness

memory_type

max_ram

ram

+ generateChromosome()

+ getGene()

+ setGene()

+ size()

+ getFitness()

+ getTotalComponent()

FitnessCalcFitnessCalc

solution

+ setSolution()

+ getFitness()

+ getMaxFitness()

AlgorithmAlgorithm

uniformRate

mutationRate

poolSize

max_generation_stagnant

+ evolvePopulation()

- crossOver()

- mutate()

- poolSelection()

PopulationPopulation

chromosomes

+ getFittest()

+ getChromosome()

+ size()

+ saveChromosome()

ProcessorProcessor

id

name

code_name_id

price

core

socket

lithography

base_frequency

cache

tdp

release

note

created_at

updated_at

+ getCodename()

+ getPrice()

+ getSpeed()

+ getTdp()

+ getLithography()

+ getReleaseDate()

+ getUpdatedAt()

+ toString()

MotherboardMotherboard

id

name

brand_id

price

socket

form_factor

slot

max_ram

memory_slot_type

memory_type

created_at

updated_at

+ getBrandName()

+ getPrice()

+ getMaxRam()

+ getUpdatedAt()

+ toString()

MemoryMemory

id

name

brand_id

price

speed

memory_slot_type

memory_type

capacity

created_at

updated_at

+ getBrandName()

+ getPrice()

+ getCapacity()

+ getUpdatedAt()

+ toString()

VcardVcard

id

name

brand_id

price

ddr

capacity

created_at

updated_at

+ getBrandName()

+ getPrice()

+ getUpdatedAt()

+ toString()

DiskDisk

id

name

brand_id

price

capacity

unit

created_at

updated_at

min_gb

max_gb

min_tb

max_tb

+ getBrandName()

+ getPrice()

+ getCapacity()

+ getUpdatedAt()

+ toString()

PowerPower

id

name

brand_id

price

watt

created_at

updated_at

min_power

max_power

+ getBrandName()

+ getPower()

+ getPrice()

+ getUpdatedAt()

+ toString()

MonitorMonitor

id

brand_id

name

price

size

created_at

updated_at

min_size

max_size

+ getBrandName()

+ getSize()

+ getPrice()

+ getUpdatedAt()

+ toString()

Fig 2. Class Diagram

IV. IMPLEMENTATION AND EXPERIMENT RESULTS

The system is built on a website platform using
PHP, Bulma CSS framework, DataTables, and
AngularJS. User will get recommendation of computer
components base on their budget by using the
following steps.

1. Defining the computer component that will be

used. By the default, user will use all

components.

2. Filter product by its minimum specification

IJNMT, Vol. V, No. 1 | June 2018 28

ISSN 2355-0082

3. Define budget.

A. Computer Specification Recommendation System

Users can define the computer components that
will be used for getting a recommendation.

Fig 3. Defining Components

After user has defined the components, he/she will
define the minimum specification of products for each
component.

Fig 4. Defining Minimum Specification of Products

On the next page shown all of the components and
their minimum specification of products. User will
input budget and waiting until the Algorithm has
found the solution. In Figure 3 the user has input IDR
3,500,000 to the budget.

Fig 5. Input Budget

The combination of computer components will be
show after the algorithm has found solution. The
compatibility for each component have been checked
automatically by the application so user don’t have to
worry about compatibility issues.

Fig 6. GA Result

B. Testing

Testing has been conducted by giving input IDR
3,500,000 to budget which is the worst case for the
algorithm. The test used different population size and
was performed for 30 times for each population size
and processor’s socket. The test set mutation rate and
crossover rate 0.05 and 0.6 respectively. It is observed
that the optimal values for mutation probability
(0.001) and single point crossover with probability
(0.6) with population size (50-100) as suggested by
DeJong (1975) have been used in many GA
implementations. Mutation probability above 0.05 is in
general harmful for the optimal performance of Gas
[6].

Table 1. Amount of Data Used in the Test

Component Name Total Products

Processor (LGA 1151) 17

Processor (LGA 1150) 17

Processor(LGA 1155) 25

Motherboard 352

Memory 296

Video Card 458

Hard Disk 43

Power Supply 286

Monitor 252

Table 2. Test Result by Using 10 Population Size

Socket Average Time Average

Generation

Average

Difference

1151 0.626 502.7 Rp 10,500.00

1155 0.321666667 311.2333333 Rp 1,833.33

1150 0.414333333 323.9 Rp 2,400.00

Mean 0.454 379.277778 Rp 4,911.11

Table 3. Test Result by Using 30 Population Size

Socket Average Time Average

Generation

Average

Difference

29 IJNMT, Vol. V, No. 1 | June 2018

ISSN 2355-0082

Socket Average Time Average

Generation

Average

Difference

1151 1.049666667 326.3 Rp 2,600.00

1155 0.64 190.466667 Rp 866.67

1150 0.763 180.766667 Rp 800.00

Mean 0.81755556 232.511111 Rp 1,422.22

Table 4. Test Result by Using 50 Population Size

Socket Average Time Average

Generation

Average

Difference

1151 1.585 282.4 Rp 1,500.00

1155 0.824 136.5 Rp 666.67

1150 1.117666667 204.0666667 Rp 1,333.33

Mean 1.17555556 207.655556 Rp 1,166.67

Table 5. Test Result by Using 60 Population Size

Socket Average Time Average

Generation

Average

Difference

1151 1.80533333 270.233333 Rp 1,566.67

1155 1.097666667 155.4666667 Rp 966.67

1150 3.057 160.9 Rp 700.00

Mean 1.98666667 195.533333 Rp 1,077.78

Table 6. Test Result by Using 80 Population Size

Socket Average Time Average

Generation

Average

Difference

1151 1.99766667 224.233333 Rp 1,533.33

1155 1.68133333 183.033333 Rp 900.00

1150 1.36633333 153.8 Rp 600.00

Mean 1.68177778 187.022222 Rp 1,011.11

Table 7. Test Result by Using 100 Population Size

Socket Average Time Average

Generation

Average

Difference

1151 1.894 170.2 Rp 2,533.33

1155 1.594 137.9 Rp 466.67

1150 1.56266667 141.2 Rp 800.00

Mean 1.68355556 149.766667 Rp 1,266.67

C. Software Quality

Software quality questionnaire was filled by 33
respondents. The questionnaire questions were made

based on EUCS model. By using Pearson Product-
Moment Correlation, it was obtained that all the
questions are valid, and by using Alpha Cronbach
formula, it was obtained the questionnaire’s reliability
of 0.78 which can be considered as adequate [7]. The
score for software quality is 75.75% which is
considered good.

V. CONCLUSION AND FUTURE WORKS

Computer specification recommendation system
using Genetic Algorithm has been successfully
designed and developed. The score for software
quality is 75.75% which is considered good.

Based on the experiments that have been carried
out the most efficient population size in terms of time
and the difference between budget and
recommendation is 50. Larger population size will
make the result is more accurate than smaller
population size but it will take a longer time to find
solution.

In order to improve the application, it is suggested
that the application may provide a picture to each
product and use different algorithm that has been
mentioned before for crossover process, mutation
process, and selection process to make the application
works more efficient than before.

REFERENCES

[1] Kumara Sastry, D. G., 2005. Genetic Algorithm. In: Search
Methodologies:Introductory Tutorials in Optimization and
Decision Support Techniques. Boston: Springer, Boston, MA,
p. 97.

[2] Mehta, A. S. &. A., 2013. Review Paper of Various Selection
Methods in Genetic Algorithm. International Journal of
Advanced Research in Computer Science and Software
Engineering, 3(7), pp. 1476-1479.

[3] Nitasha Soni, D. T. K., 2014. Study of Various Crossover
Operators in Genetic Algorithms. International Journal of
Computer Science and Information Technologies, 5(6), pp.
7235-7238.

[4] A.J. Umbarkar, P. S., 2015. CROSSOVER OPERATORS IN
GENETIC ALGORITHMS: A REVIEW. ICTACT
JOURNAL ON SOFT COMPUTING, 6(1), pp. 1083-1092.

[5] Firas Alabsi, R. N., 2012. Comparison of Selection Methods
and Crossover Operations using Steady State Genetic Based
Intrusion Detection System. Journal of Emerging Trends in
Computing and Information Sciences, 3(7), pp. 1053-1058

[6] D.D, P. V. &. P., 2015. The Optimal Crossover Or Mutation
Rates In Genetic Algorithm. International Journal of Applied
Engineering and Technology, 5(3), p. 40.

[7] Zahreza Fajar Setiara Putra, M. S. N. W., 2014. ANALISIS
KUALITAS LAYANAN WEBSITE BTKP-DIY
MENGGUNAKAN METODE WEBQUAL 4.0. Jurnal
JARKOM, 1(2), pp. 174-184.

