The Right Sentiment Analysis Method of Indonesian Tourism in Social Media Twitter
Case Study: The City of Bali
Abstract
The growth of social media is changing the way humans communicate with each other, many people use social media such as Twitter to express opinions, experiences and other things that concern them, where things like this are often referred to as sentiments. The concept of social media is now the focus of business people to find out people's sentiments about a product or place that will become a business. Sentiment Analysis or often also called opinion mining is a computational study of people's opinions, appraisal, and emotions through entities, events and attributes owned. Sentiment analysis itself has recently become a popular topic for research because sentiment analysis can be applied in many industrial sectors, one of which is the tourism industry in Indonesia. To be able to do a sentiment analysis requires mastery of several techniques such as techniques for doing text mining, machine learning and natural language processing (NLP) to be able to process large and unstructured data coming from social media. Some methods that are often used include Naive Bayes, Neural Networks, K-Nearest Neighbor, Support Vector Machines, and Decision Tree. Because of this, this research will compare these four algorithms so that an algorithm can be used to analyze people's sentiments towards the city of Bali.
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the IJNMT or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.