Cyberbullying Sentiment Analysis with Word2Vec and One-Against-All Support Vector Machine
Abstract
Depression and social anxiety are the two main negative impacts of cyberbullying. Unfortunately, a survey conducted by UNICEF on 3rd September 2019 showed that 1 in 3 young people in 30 countries had been victims of cyberbullying. Sentiment analysis research will be conducted to detect a comment that contains cyberbullying. Dataset of cyberbullying is obtained from the Kaggle website, named, Toxic Comment Classification Challenge. The pre-processing process consists of 4 stages, namely comment generalization (convert text into lowercase and remove punctuation), tokenization, stop words removal, and lemmatization. Word Embedding will be used to conduct sentiment analysis by implementing Word2Vec. After that, One-Against-All (OAA) method with the Support Vector Machine (SVM) model will be used to make predictions in the form of multi labelling. The SVM model will go through a hyperparameter tuning process using Randomized Search CV. Then, evaluation will be carried out using Micro Averaged F1 Score to assess the prediction accuracy and Hamming Loss to assess the numbers of pairs of sample and label that are incorrectly classified. Implementation result of Word2Vec and OAA SVM model provide the best result for the data undergoing the process of pre-processing using comment generalization, tokenization, stop words removal, and lemmatization which is stored into 100 features in Word2Vec model. Micro Averaged F1 and Hamming Loss percentage that is produced by the tuned model is 83.40% and 15.13% respectively.
Index Terms— Sentiment Analysis; Word Embedding; Word2Vec; One-Against-All; Support Vector Machine; Toxic Comment Classification Challenge; Multi Labelling
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the IJNMT or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.