Triangulation Approach Using K-Means, Hierarchical Clustering, and DBSCAN for Beef Production Analysis
DOI:
https://doi.org/10.31937/ijnmt.v12i2.4481Abstract
This study implements a methodological triangulation approach for clustering highly skewed data using three algorithms with different paradigms: K-Means (partitional-based), Agglomerative Hierarchical Clustering with Ward Linkage (hierarchical-based), and DBSCAN (density-based). Applied to beef production data from 38 Indonesian provinces in 2024, the dataset exhibited extreme characteristics with a coefficient of variation of 171.89%, skewness of 2.87, and a maximum-minimum ratio of 664:1. Data were standardised using Z-score transformation to address scale differences. Evaluation using the Silhouette Score for K-Means and Hierarchical Clustering, alongside qualitative outlier detection with DBSCAN, revealed high consistency across all algorithms in identifying k=2 as the optimal structure, with a Silhouette Score of 0.9155. K-Means and Hierarchical Clustering produced identical groupings, separating three observations (7.89%) from 35 observations (92.11%), while DBSCAN confirmed this by explicitly labelling the three provinces as outliers. Robustness analysis via bootstrap resampling (100 iterations) demonstrated clustering stability with membership consistency of 99.7-100% and standard deviation of 0.0089. Sensitivity analysis validated the stability of outlier detection across the epsilon range 0.5-0.55. This research demonstrates that algorithmic triangulation provides robust cross-validation for data with extreme outliers, yielding consistent and stable clustering structures across sampling variation and parameter changes.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Nurfia Oktaviani Syamsiah, Indah Purwandani, Mia Rosmiati, Siti Nurwahyuni

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the IJNMT or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.












