
ISSN 2085-4579

ULTIMA InfoSys, Vol. VI, No. 1 | Juni 2015 1

Data Modeling for Big Data
M Misbachul Huda1, Dian Rahma Latifa Hayun1, Zhin Martun1

1 Informatics Engineering, ITS, Surabaya, Indonesia
misbachul.h@gmail.com,

Accepted on 26 Januari 2015
Approved on 25 Februari 2015

Abstract—Today the rapid growth of the
internet and the massive usage of the data have
led to the increasing CPU requirement, velocity
for recalling data, a schema for more complex
data structure management, the reliability and the
integrity of the available data. This kind of data is
called as Large-scale Data or Big Data. Big Data
demands high volume, high velocity, high veracity
and high variety. Big Data has to deal with two
key issues, the growing size of the datasets and
the increasing of data complexity. To overcome
these issues, today researches are devoted to
kind of database management system that can be
optimally used for big data management. There
are two kinds of database management system,
relational database management system and non-
relational system that can be optimally used for big
data management. There are two kinds of database
management, Relational Database Management
and Non-relational Database Management. This
paper will give reviews about these two database
management system, including description,
vantage, structure and the application of each
DBMS.

Index Terms—Big Data, DBMS, Large-
scale Data, Non-relational Database, Relational
Database

I.	 INTRODUCTION

The rapid growth of the internet and WWW
has led to vast amount of information available
online. The widespread use of information
technology also has led to a dramatic increase
in the data availability. More documents or data
are produced and stored in cloud or some kind
of database management system. These stored
and produced have more complex data structure,
need more storage, but also need to be executed
and recalled fast. This kind of data, nowadays, is
called as Large-scaled data or Big Data [1, 31].

Big data is high-volume, high-velocity and
high-variety information assets that demand
cost-effective, innovative forms of information
processing for enhanced insight and decision

making [2]. This definition challenges is twofold.
The first is about cost-effective innovative forms
of information processing. And the second is
enhanced insight and decision making [3]. Big
data is fundamentally about applying innovative
and cost-effective techniques for solving existing
and future business problems whose resource
requirements (for data management space,
computation resources, in memory representation
needs) exceed the capabilities of traditional
computing environments as currently configured
within the enterprise. The problem happened
in early 2000s when data volumes started
skyrocketing, storage and CPU technologies were
overwhelmed by the numerous terabytes of big
data to the point that Information Technology
faced a data scalability crisis. The Enterprise,
then, went from being unable to afford or manage
big data to lavishing budgets on its collection and
analysis.

Because of this background, nowadays
the scalable and distributed data management
has been the vision of the database research
community for more than three decades [4].
The research is devoted to kind of database
management system that can be optimally used
for big data management. There are two kinds of
database management system, relational database
management system and un-relational database
management system. The example of relational
database management system is MySQL, and the
example of un-relational database management
system is key-value, document, or graph database.

 This paper will give a more general overview
on the overall definition, description, vantage,
data structure, and application of relational and
non-relational database management system.

The remainder of this paper is organized as
follows: The review of the definition and the
characteristic of big data. Then, it will be the
approach of big data analysis. The next is the
modeling of big data, the application and the
discussion of this topic. And as the final part is the
conclusion of the overview.

ULTIMA InfoSys, Vol. VI, No. 1 | Juni 20152

ISSN 2085-4579

II.	BIG DATA CHARACTERISTIC

A.	 The Definition of Big Data

Most definitions of big data focus on the size
of data in storage. Size matters, but there are
other important attributes of big data, namely
data variety and data velocity. The three Vs of big
data (volume, variety, and velocity) constitute a
comprehensive definition, and they bust the myth
that big data is only about data volume. In addition,
each of the three Vs has its own ramifications for
analytics [5]. The simulation is shown at Figure
1.

It’s obvious that data volume is the primary
attribute of big data. With that in mind, most
people define big data in terabytes—sometimes
petabytes. Big data also can be described by its
velocity or speed. You may prefer to think of it as
the frequency of data generation or the frequency
of data delivery.

Fig 1. The 3 Vs of Big Data

B.	 Big Data Characteristic

Talking about Big Data is not only about the
big size, but also about the stream and the type. So,
it is important to define the characteristic of Big
Data. The defined characteristic will be used to
measure the quality of each database management
system to tackle the Big Data challenge.

	 The characteristics are defined below.

1.	 Volume

	 According to the 2011 IDC Digital Universe
Study, “In 2011, the amount of information
created and replicated will surpass 1.8 zeta bytes,
growing by a factor 9 in just five years [6].” The

scale of this growth surpasses the reasonable
capacity of traditional relational database
management system, or even typical hardware
configuration supporting file-based data access.
The rapid acceleration of data growth also causes
the increasing data volumes pushed into the
network. These makes Big Data can be described
by its volume or size of data [3].

2.	 Velocity

Big data also can be described by its velocity
or speed. There are two aspects to velocity, one
representing the throughput of data and the other
representing latency. Throughput represents
the data moving in the pipes. Latency is a time
interval between the stimulation or request or data
recalled and the responds [7].

3.	 Complexity/Variety

Nowadays, Data Warehouse technology is
rapidly introduced. The purpose is to create meta-
models to represents all the data in one standard
format. The data was compiled from a variety
of sources and transformed using ETL (Extract,
Transform, Load) or ELT (Extract the data and
Load it in the warehouse, then Transform it inside
the warehouse). The basic premise was narrow
variety and structured content. Big Data has
significantly expanded our horizons, enabled by
new data integration and analytics technologies.
A number of call center analytics solutions are
seeking analysis of call center conversations and
their correlation with emails, trouble tickets, and
social media blogs. The source data includes
unstructured text, sound, and video in addition
to structured data. A number of applications are
gathering data from emails, documents, or blogs.

4.	 Veracity

Most Big Data comes from sources outside
our control and therefore suffers from significant
correctness or accuracy problems. Veracity
represents both, the credibility of the data source
as well as the suitability of the data for the target
audience [7].

	 For example, if a company wants to
collect product information from third party
and offer it to their contact center employees
to support customer queries, the data would
have to be screened for source accuracy and
credibility. Otherwise, the contact centers could
end up recommending competitive offers that
might marginalize offerings and reduce revenue
opportunities. Likewise, the suitability for the
user or audience.

5.	 Reliability

The reliability in big data is about the accuracy
and completeness of computer processed data,
given the uses they are intended for. Those, in
Big Data challenge, when there are a lot of data

ISSN 2085-4579

ULTIMA InfoSys, Vol. VI, No. 1 | Juni 2015 3

that must be executed in some ways, the expected
output is the closes intention.

6.	 Extensibility

The extensibility is a system design principle
where the implementation takes future growth
into consideration. Because of the rapid growth
of the data, Big Data will lead to a new challenge
to overcome. Therefore, to accomplice the current
and the future goal of Big Data, the system must
consider what is going to be happened in the
future.

7.	 Interoperability

The available data in the cloud or in the Big
Data environment is going to be used together,
interchangeable, and interpreted. So, for a system
to be interoperable, it must be able to exchange
data and subsequently present that data such
that it can be understood by a user [10]. In
Big Data area, it is essential to take a global
approach to interoperability and discoverability
of information.

8.	 Scalability

Big Data can be considered as the tsunami
of information which has been steadily growing
and growing as result of the increasing of digital
world. Nowadays, every single people movement
or activity is captured and transformed to the
digital data. At the end, Big Data is going to keep
getting bigger, and more organization are going to
be looking to find out more about what to do[9].

9.	 Integrity

Instrumentation of data requires a complete
understanding of the data and the need to maintain
consistency of processing (if the data set is broken
into multiple pieces), the need to integrate
multiple data sets through the processing cycles
to maintain the integrity of the data, and the need
for complete associated computations within
the same processing cycle. The instrumentation
of transactional data has been a challenge
considering the discrete nature of the data, and
the magnitude of the problem amplifies with the
increase in the size of the data. This problem
has been handled in multiple ways within the
RDBMS-based ecosystem for online transaction
processing (OLTP) and data warehousing, but
the solutions cannot be extended to the Big Data
situation. So, one of the points is how to deal with
processing Big Data.

10.	Flexibility

The data growth affects the flourish of
data type spread in the universe. This makes
another challenge to effectively and efficiently
recalling the data. For some cases, SQL has
insufficient expressive prowess. To perform

more difficult or complex data structure and
schema, the user must using very complex query.
So, it is needed to leverage new programming
language functionality to implement an object-
relational mapping pattern. These programming
environments allow developers to benefit from
the robustness of DBMS technologies without the
burden of writing complex SQL [8].

11.	Fault tolerance

Managing large-scale data needs to concern
about the performance. One of the performance
points is handling the fault that occurs during the
execution of computation. Such as the system has
to deal with disk failures. Therefore, it is needed a
fault handling scheme. If a unit of work fails, then
the system must automatically restart the task on
an alternate node, in order to do not waste the time
by restarting the entire query [8].

III.	APPROACH OF BIG DATA ANALYSIS

There are two kinds of approach for big data
analysis, Map Reduce and parallel database
management system.

A.	 Map Reduce

The Map Reduce programming model is
designed to process large volumes of data
in parallel by dividing the Job into a set of
independent Tasks. The Job referred to here as a
full Map Reduce program, which is the execution
of a Mapper or Reducer across a set of data. A
Task is an execution of a Mapper or Reducer on a
slice of data. So the Map Reduce job usually splits
the input data set into independent chunks, which
are processed by the map tasks in a completely
parallel manner [11]. The simulation of task
partitioning is shown at Figure 2

Fig 2. Task Partitioning in Map Reduce [11]

ULTIMA InfoSys, Vol. VI, No. 1 | Juni 20154

ISSN 2085-4579

Map Reduce is being originally designed
for a largely different application (unstructured
text data processing). Map Reduce (or one of
its publicly available incarnations such as open
source Hadoop) can nonetheless be used to process
structured data, and can do so at tremendous
scale. For example, Hadoop is being used to
manage Facebook’s 2.5 petabyte data warehouse.
Unfortunately, as pointed out by DeWitt and
Stonebreaker [12], Map Reduce lacks many of the
features that have proven invaluable for structured
data analysis workloads and its immediate
gratification paradigm precludes some of the long
term benefits of first modeling and loading data
before processing. These shortcomings can cause
an order of magnitude slower performance than
parallel databases.

But despite of that, because Map Reduce is
designed to perform unstructured data analysis,
unlike a DBMS, Map Reduce systems do not
require users to define a schema for their data [13].

B.	 Parallel Database Management System

The background of having the parallel database
management system is the widespread adoption
of the relational database [14]. A parallel DBMS
can be defined as a DBMS implemented on a
multiprocessor computer. This includes many
alternatives ranging from the straightforward
porting of an existing DBMS, which may require
only rewriting the operating system interface
routines, to a sophisticated combination of
parallel processing and database system functions
into a new hardware/software architecture.
As always, we have the traditional trade-off
between portability (to several platforms) and
efficiency. The sophisticated approach is better
able to fully exploit the opportunities offered by a
multiprocessor at the expense of portability [15].
The parallel DBMS is shown at Figure 3.

Fig 3. Architecture Parallel DBMS

Ideally, a parallel DBMS (and to a lesser
degree a distributed DBMS) should demonstrate
two advantages, linear scale up and linear
speedup. Linear scale up refers to a sustained
performance for a linear increase in both database
size and processing and storage power. Linear
speedup refers to a linear increase in performance
for a constant database size, and a linear increase
in processing and storage power [15].

C.	 The Differences between Parallel Database
Management System and Map Reduce

At glance, Parallel DBMS and Map Reduce
have many common elements. But actually, there
are some basic differences. Parallel DBMSs
require data to fit into the relational paradigm of
rows and columns. In contrast, the MR model
does not require that data files adhere to a schema
defined using the relational data model. That is,
the MR programmer is free to structure their data
in any manner or even to have no structure at all.

All modern DBMSs use hash or B-tree indexes
to accelerate access to data. If one is looking for
a subset of records, then using a proper index
reduces the scope of the search dramatically. Most
database systems also support multiple indexes
per table. Thus, the query optimizer can decide
which index to use for each query or whether to
simply perform a brute-force sequential search.
Because the Map Reduce model is so simple.
Map Reduce frameworks do not provide built-
in indexes. To speed up accessing to the data
inside the application, any indexes must be
implemented. This is not easily accomplished, as
the framework’s data fetching mechanisms must
also be instrumented to use these indexes when
pushing data to running Map instances. Once more
this is an acceptable strategy if the indexes do not
need to be shared between multiple programmers,
despite requiring every Map Reduce programmer
re-implement the same basic functionality.

ISSN 2085-4579

ULTIMA InfoSys, Vol. VI, No. 1 | Juni 2015 5

IV.	Data Modeling for Big Data

Database model is a theory or specification
describing how a database is structured and used.
Several such models have been suggested such as
hierarchical, network, relational and non-relational
[20]. Nowadays, relational database models are
the dominant persistent storage technology. The
relational database model has been dominating
since 80s [16], with implementation like Oracle
databases [17], MySQL [18], and Microsoft SQL
Server [19].

A.	 Relational Database Model

A relational database is a collection of data
items organized in formally-described tables from
which data can be accessed or reassembled in
many different ways. Relational Database is a set
of tables referred to as relation with data category
described in columns similar to spreadsheets.
Each row contains a unique instance of data for
the corresponding data category. While creating
a relational database domain of possible values
along with constrains are applied to the data. It
is the relation between the tables that makes it
a ‘relation’ table. They require few assumptions
about how data will be extracted from the database.
As a result, the same database can be viewed in
many different ways. Mostly all the relational
databases use Structured Query Language (SQL)
to access and modify the data stored in the
database. Originally it was based upon relational
calculus and relational algebra and is subdivided
into elements such as clauses, predicates, queries
and statements [21].

The advantages of Relational Database Model
are as follow.

•	 The data in relational database model are
mostly stored in database, not in application.

•	 The database is structured in a tabular form
with highly-related tables.

•	 It is quite simple to make change in the
database schema.

But the Relational Database Model do not
support high scalability, until a certain point
better hardware can be employed using parallel
distributed management system. When the
amount of the data become huge, the database
has to be partitioned across multiple servers. The
other disadvantage is because of the structure
of relational database model, gives rise to
high complexity in case data cannot be easily
encapsulated in a table [21].

B.	 Relational Database Model

Nowadays, relational database models are the

dominant persistent storage technology. It has
many shortcomings which can hinder performance
levels. As more and more applications are
launched in environments that have massive
workloads such as cloud and web services, their
scalability requirements change very quickly and
also grow very large. It is difficult to manage with
a relational database sitting on a single in-house
server.

To solve all these matters, vendors can optimize
for non-relational database models. Non-Relational
databases enjoy schema-free architecture and
possess the power to manage highly unstructured
data. They can be easily deployed to multi-core
or multi-server clusters serving modularization,
scalability and incremental replication. Non-
relational databases being extremely scalable,
offer high availability and reliability, even while
running on hardware that is typically prone to
failure, thereby challenging relational database,
where consistency, data integrity, uptime and
performance are of prime importance [20,21,33].

Non-relational database model is unlike
Relational database model. It does not guarantee
the ACID properties [32]. Non-relational
databases may primarily be classified on the basis
of way of organizing data as follows.

1.	 Key Value Store

Key value store allows us to store schema-
less data. This data consists of a key which is
represented by a string and the actual data which
is the value in key-value pair. The data can be
any primitive of programming language, which
may be a string, an integer or an array or it can
be an object. Thus it loosens the requirement of
formatted data for storage, eliminating the need
for fixed data model [21].

Fig 4. Key Value Store Structure

2.	 Document Store

Document Store supports more complex
data than the key-value stores. The meaning of
document here is not like a document in Microsoft
Word file or such kind. But it refers to any kind
of pointer less object. This kind of non-relational
database supports secondary indexes and multiple
types of object.

ULTIMA InfoSys, Vol. VI, No. 1 | Juni 20156

ISSN 2085-4579

Fig 5. Document Store Structure

The Document Store are schema-less. It
provides a mechanism to query collections based
on multiple attribute value constraints [22].
Document Store is good for storing and managing
kind of text documents, email messages, and
XML documents. It also good for storing semi-
structured data [23].

3.	 Graph Store

The other approach for storing data is to model
the database directly and entirely as a graph. Big
Data has to deal with two key issues, the growing
size of the datasets and the increasing of data
complexity. Therefore, the alternative database
models such as graph databases are more and
more used to address this second problem [26].

A graph model is one whose single underlying
data structure is a labeled directed graph. The
Graph Store consists of single digraph [24]. A
database schema in this model is a directed graph,
where leaves represent data and internal nodes
represent connections between the data. Directed
labeled graphs are used as the formalism to specify
and represent database schemes, instances, and
rules [25].

Fig 6. Graph Store Structure

The reason why using the graph database is
the requirement of the application itself. In Graph
Store, the interconnectivity or the topology of the
data is more important than or at least as important
as the data itself. The advantages of Graph Store
usage are, it leads to a more natural modeling,
because graph structure is visible to the user.
Graph can keep all the information about an entity
in a single node and show related information by
arcs connected to it. The queries can refer directly
to this graph structure. Explicit graphs and graph
operations allow a user to express a query at a
very high level [25]. As far as the implementation
is concerned, Graph Store may provide special
storage graph structures for the representation of
graphs and the most efficient graph algorithms
available for realizing specific operations [27].
Although the data may have some structure, the
structure is not as rigid, regular or complete as
traditional DBMS. The illustration of Graph Store
is shown at Figure 6.

4.	 Column-oriented Database(COD)

A column-oriented database stores data
in column order and not in row order as in
traditional relational database [28]. Regarding
for join algorithm, COD id better than relational
DB. With a column store architecture, a DBMS
need only read the values of columns required for
processing a given query, and can avoid bringing
into memory irrelevant attributes for some query
it’s better than row store[29].

Column-stores have the advantage that
dictionary entries may encode multiple
values at once [13]. Data stored in columns is
more compressible than data stored in rows.
Compression algorithms perform better on data
with low information entropy [30].

For example, a database containing
information about students that have attributes
name, registration number, address, and
department. Storing that data in column allows
all of the name to be stored together, all of the
registration number. Further, if the data is sorted
by one of the columns, that column will be super-
compressible (for example, runs of the same
value can be run-length encoded). But of course,
the above observation only immediately affects
compression ratio. It will lead to get cheap disk
space.

Fig 7. Column-oriented Database Structure

ISSN 2085-4579

ULTIMA InfoSys, Vol. VI, No. 1 | Juni 2015 7

V.	 COMPARISON OF RELATIONAL AND
NON RELATIONAL DATABASE MODEL

The equations are an exception to the prescribed
specifications of this template. You will need to
determine whether or not your equation should
be typed using either the Times New Roman or
the Symbol font (please no other font). To create
multileveled equations, it may be necessary to
treat the equation as a graphic and insert it into the
text after your paper is styled.

Figure 8 shows the Database Engine survey
done at January 2013 to November 2013. From
Figure 8, the points that can be taken are as follow
relational database has 90.8% presentation value
and non-relational database has 9.2% presentation
value.

From the data given, shows that relational
database is more popular than no relational
database. The user is more familiar to the
relational database, so that they use it more
that non-relational database model. But as new
comer the non-relational database having a good
presentation.

From the 9.2% of presentations value of
non-relational database, it can be divide into
four specific part. It is shown at Figure 9. That
four parts are:

1.	 Document Store 39.13%

2.	 Key-Value 22%

3.	 Wide Column/column oriented 17.39%

4.	 Graph and other database 21.74%

Fig 8. Relational and Non-Relational
Database Popularity Ranking [34]

Fig 9. Non-Relational Database Popularity Chart
[34]

After comparing the number of database
user between users of relational database a non-
relational database, it will be discussed about
the comparison of relational and non-relational
databases. We used 32 parameters for comparison
to define how good databases are. The parameters
used in the comparison are as follows.

1.	 Database Model

Database model is model data type represents
logical structure from a database. This model is
used to store, organize, and manipulate the data.
The examples of database model are relational,
document, key-value and graph.

2.	 Integrity model

Integrity model is a computer security rule
describing a set of access control rule that is
designed to ensure the data integrity. The integrity
has 3 purposes. The first is preventing data
modification by unauthorized user. The second
is preventing illegal data changing by authorized
user. And the last is to keep the data consistency
[35].

3.	 Embeddable

Embeddable is a capability for being able to be
embedded at some devices. Some databases have
the ability to be embedded at specific hardware
and software. This can increase the amount of the
available resources to expand the database.

4.	 Query language

Query language is an interface to communicate
to the database. This interface can be an application
to database, or database to database, and remote
database through a media like internet.

5.	 Isolation

A transaction in the database cannot be
discovered by another transaction. The isolation is
a feature to tackle this problem. The database has
the isolation function in its data model for having
high data integrity.

ULTIMA InfoSys, Vol. VI, No. 1 | Juni 20158

ISSN 2085-4579

6.	 Horizontal Scalable

Horizontal scalable is an ability for resource
growth and development. The development and
the growth of the resource are used to work up the
performance of a big data application. Horizontal
scalable is devoted to arisen amount of resource
usage.

7.	 Replication

Replication is reduplication process and
database object maintenance in databases at
distributed database system. The replication is
used to create a secondary data or data backup,
so that the user can take the data from distributed
database system by spending less cost.

8.	 Replication Mode

Replication is a part of node client definition
indicates whether the node client is managed to
receive or to send data replication. Besides that,
the replication mode is also used to indicate data
synchronization at first replication process.

9.	 Sharding

Sharding is splitting the collection into smaller
part that is called as chunks. Chunks, then spread
to cluster servers called Shard. Every shard is
responsible to the stored subset data.

10.	Shared Nothing Architecture

Shared nothing architecture is a distributed
computation architecture that every node is
independent to another node. Between the nodes,
there are no shared memory or disk storage. Every
node has memory and disk storage needed.

11.	Data types

Data type is a kind of data that can be stored
in database. In this attribute, data type is data type
in storage. Orin other words is the most primitive
data in a database.

12.	Graph Support

Graph is set of entity connected to the amount
of references. Graph may cause the cyclic
occurrence to the used reference. Graph support
is the ability of the database handling the cyclic
reference.

13.	Map and reduce

Map reduce is a parallel programming model
to execute a large number of Meta data in
computer cluster. Map reduce is based on scale-
out principal. It involves a large of computer
grouping. The main point using Map Reduce
is to move the computation to the data nodes,
rather than bringing the data to the computation
nodes, and thus fully utilize the advantage of data
locality. The code that divides the work, it provides

control, and incorporate output in Map Reduce
completely hidden from the user application
within the framework. In fact, most applications
can be implemented in the Map Reduce parallel
during synchronized and shared global state is not
required

14.	TTL for Entries

TTL for entries is the ability for limiting time
process in data changing. If the limitation is
exceeded, the transaction will be cancelled. TTL
for entries can clear up the long transaction and
keep the DBMS condition to be not so busy.

15.	Secondary Indexes

The secondary index represents a set of
attribute in an entity. The secondary index can be
used for query from some attributes to work out
the performance. Every entity can have 0, 1, 2,
or more secondary index according to the query
needed.

16.	Composite Keys

Composite Key is a key that consists of 2 or
more attributes that identify an entity. This key
is built for describing more specific entity from
some attributes.

17.	Geospatial Indexes

Spatial data type is difference from the
common data type. Geospatial data type is an
encoding from data spatial vector. Indexing ability
for geospatial will make the database have more
value for GIS application.

18.	Query cache

Query cache is used to increase the data
fetching for former query. With this ability, every
query and every query result will be stored until
a certain duration. Every redundant query will be
taken from cache data as long as there is no any
changing of the database.

19.	Data Storage

Data in database will be stored in a storage
media. The storage media can be a memory or a
file system. The data store is a storage media in a
database. Every database has different data store.

20.	Conditional Entry Update

This feature has ‘where’ and ‘when’ clause. The
ability to change the data in a certain condition.

21.	Unicode

Unicode is an industry standard designed to
allow text and symbol from all writing system
in the world to be shown and manipulated
consistently in a computer. Unicode guarantees
the data consistency to be treated in another

ISSN 2085-4579

ULTIMA InfoSys, Vol. VI, No. 1 | Juni 2015 9

platform or application.

22.	Compression

Compression is a database ability used to
simplify the data in a smaller size. The advantage
is minimizing disk size. A better compression will
reduce disk usage.

23.	Atomicity

The atomicity is a simplest atomic activity that
must be done in the right time or cancelled. The
atomic activity cannot be executed partially.

24.	Consistency

Consistency is a resource retrieval condition
of one consistent part with the other parts.
Consistency preserves data integrity.

25.	Durability

The durability is the ability to save the data,
despite of system failure. This ability is concerned
to data stored rather than the active system that
handle the data.

26.	Transactions

The transaction is an activity or group of
activities used by user or application where
they access and modify the data in database.
The activities will not be stored before commit
command. The revocation is also can be done by
using rollback command. The database do not
have the ability to change the data in database
when the user or application is modifying the data.

27.	Referential Integrity

The referential integrity is a way used to
keep the consistency between the correlated data
model. With this ability the correlated data can be
ensured for having consistency. At the common,
this ability is had by the relational database and
graph database.

28.	Revision Control

The revision control is technique used to save
the system from the backdoor. Revision control
system is a system used to store configuration in
database. So, every single changing will be noted.
All the configuration changes will be stored in a
directory to be observed.

29.	Locking Model

Locking model is ability to lock the model
when changing data. This locking will be opened
when the commit and roll back command is given.
Locking model is very useful for transaction
proses in a long database.

30.	Full Text Search

Full Text Search is searching document tube
done by the computer by browsing the entire
part of a document. The way is by searching the
document that has user query word. The query
result will be arranged according to the level of
words and commonly the frequency will be sorted
from high to low. The document browsing will
only use basic operation string matching without
any other algorithm operation [36, 37].

31.	Active

Active database is the ability of the database
used to perform computation. Active database
clears the perception that a database is only a
place to store data. An example of a database can
be called as active database is the store procedure
database.

32.	Value Size Max

Maximum data size handled by database.

At Table 1 shows some examples of the
database represent each of database model. These
databases will be compared using the explained
attribute. The attributes have been classified based
on the characteristic of big data. The classification
is made to show the quality of a database to the
Big Data challenges.

Table 1. Case Study Application Database

No Model Database Name Ranking
1 Relational Database Oracle 1
2 Postgre 4
3 Document Store CouchDB 19
4 MongoDB 6
5 Key Value Store Hbase 17
6 Cassandra 10
7 Wide Column Store Oracle Coherence 51
8 Redis 13
9 Graph Store Neo4j 24
10 Titan 74

As shown at Table 2 is the comparison
table between the relational database and the
non-relational database by using the explained
attribute. From the table, it can be concluded
that non-relational database have more complex
attribute than relational database. For example, as
can be seen in the Table 2 some of non-relational
database have more attributes than relational
database

Such as the Horizontal scalable attribute. All
of the non-relational database given in the table
have this attribute. But one of relational database,

ULTIMA InfoSys, Vol. VI, No. 1 | Juni 201510

ISSN 2085-4579

object relational, has no this attribute. Another prove is that the relational database has no Map reduce
attribute that can accelerate the computation process. Unlike the non-relational database that almost all
of them having this attribute.

Table 2. Comparison some of Relational and Non-Relational Database with basic few attributes-
scalability, variety, velocity, veracity, volume.

Relational Object Relational

Database Name Oracle Postgre CouchDB MongoDB Hbase Cassandra Oracle Coherence Redis Neo4j Titan
Database Model Relational Object-Relational Document-Stored Document-Stored Column-oriented Column-oriented Key-value Key-value Graph-Oriented Graph-Oriented
Query language

SQL, HTTP, SparQL, Xquery,
Xpath, API calls, Java API

SQL
JavaScript, REST,

Erlang
API calls, JavaScript,

REST
API calls, REST, XML

Thrift
API calls, CQL Thrift API calls, CohQL API calls, Lua

API calls, REST, SparQL,
Cypher, Tinkerpop,

remlin

Tinkerpop, Gremlin, REST,
API calls

Horisontal Scalable Yes No Yes Yes Yes Yes Yes Yes Yes Yes
Replication Mode

Master-Slave Replication
Multi-master replication

Master-Slave
Replication

Master-Master
Replication

Master-Slave-Replica
Replication

Master-Slave
Replication

Master-Master
Replication

Master-Slave-Replica
Replication

Master-Master Replication

Master-Slave
Replication

Master-Slave Replication Symmetric Replication

Sharding No Yes No Yes Yes Yes Yes No No Yes
Shared Nothing
Architecture

No Yes No Yes Yes Yes Yes Yes No Yes

Data types Binnary Binnary JSON BSON, Binnary Binnary Binnary Binnary Binnary Binnary
Graph Support Yes Yes No Yes No No Yes No Yes Yes
Map and reduce No No Yes Yes Yes Yes Yes No No No
Replication Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
TTL for entries Yes Yes No Yes Yes Yes Yes Yes No No
Secondary Indexes Yes Yes Yes Yes No Yes Yes No Yes Yes
Composite keys Yes Yes Yes Yes Yes Yes Yes No Yes Yes
Geospatial Indexes Yes Yes Yes Yes No No No No Yes Yes
Query Cache Yes Yes No Yes No Yes Yes Yes Yes Yes
Data Storage

ASM File System File System File System
Volatile memory

File System
HDFS File System Volatile Memory

 Volatile memory
File System

File System
Volatile memory

Berkeley DB
Cassandra Hadoop

Conditional entry updates
Yes Yes Yes Yes Yes Yes Yes Yes No No

Isolation Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Unicode Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Compression Yes Yes Yes Yes Yes Yes Yes Yes No Yes
Atomicity Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Consistency Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Durability (data storage) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Transactions Yes Yes Yes No No No Yes Yes Yes Yes
Referential integrity Yes Yes No No No No Yes No Yes Yes
Revision control No No Yes No Yes Yes Yes No No No
Locking model

Lock on Model MVCC No
Optimistic Locking

Lock on write
MVCC MVCC Explicit locking Lock Free Model Lock on write Distributed Locking

Full Text Search Yes Yes No Yes No No Yes No Yes Yes
Integrity model

ACID ACID MVCC ACID BASE Log Replication BASE ACID ACID
ACID

Log Replication
Eventual consistency

ACID
Volume Value size max. 4GB 1GB 4GB 500000GB 2000GB 2GB 64000GB 0.5GB 4GB 64GB

Scalability

Variety

Velocity

Veracity

Characteristic
Attribute

Relational Database Non Relational Database

Document-Stored Wide-Column Store Key-Value Stored Graph-Oriented

VI.	CONCLUSION

Big data be real in the present case. Volume,
velocity, variety, veracity, and scalability is a
challenge that must be resolved by the database.
A variety of modeling approaches, both relational
and non-relational been used to try to overcome
the problems Big data. From the data shown in
section V can be concluded that the relational
database has high popularity. But in the case
studies of big data, non-relational database has
better attributes to satisfy criteria of big data.

In this paper it has been shown that the
non-relational databases have attributes more
appropriate to resolve the problem big data.

References

[1]	 Cubrid. Database Technology for Large Scale
Data. Accesed 29th December 2013. Available:
http://www.cubrid.org/blog/dev-platform/
database-technology-for-large-scale-data/

[2]	 Gartner’s IT Glossary. Accessed 29th December
2013. Available: http://www.gartner.com/it-
glossary/big-data/

[3]	 D. Loshin, Big Data Analytics: From Strategic
Planning to Enterprise Integration with Tools,
Techniques, NoSQL and Graph. USA: Elsevier,
2013.

[4]	 D. Agrawal, S. Das, and A. El Abadi . Big Data
and Cloud Computing: Current State and Future
Opportunities. ACM, March 2011.

[5]	 P. Russom. Big Data Analytics. IBM: The Data
Warehousing Institute. 2011.

[6]	 IDC Digital Universe Study, Study: Extracting
Value from Chaos. Accessed 29th December
2013. Available: http://www.emc.com/collateral/
demos/microsites/emc-digital-universe-2011/
index.htm.

[7]	 A. Sathi. Bid Data Analytics. USA: MC Press
Online. IBM, October 2012.

[8]	 A. Pavlo, E. Paulson, and A. Rasin. A Comparison
of Approaches to Large-Scale Analyisis. ACM,
June 2009.

[9]	 Sand. Simple Scalability Key Big Data. Accessed
29th December 2013. Available: ttp://www.sand.
com/simple-scalability-key-big-data/

[10]	 Himss. What is Interoperability. Accessed 28th
December 2013. Available:http://www.himss.
org/library/interoperability-standards/what-is

[11]	 L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit,

ISSN 2085-4579

ULTIMA InfoSys, Vol. VI, No. 1 | Juni 2015 11

J. Chen, and D. Chen. G-Hadoop: MapReduce
Across Distributed Data Centers for Data
Intensive Computing. ACM, New York, USA,
NY, USA, 2012, pp. 739-750.

[12]	 M. Stonebreaker, D. Abadi, D.J. Dewitt, S.
Madden, E. Paulson, A. Pavlo, And A. Rasin.
MapReduce and Parallel DBMS: Friends or
Foes?. 2010.

[13]	 S. Harizopoulos, D. Abadi, and P. Boncz.
Column-Oriented Database System. 2009.
Available: www.cs.yale.edu/homes/dna/talks/
Column_Store_Tutorial_VLDB09.pdf‎

[14]	 D. J. Dewitt, J. Gray. Parallel Database Systems:
The Future of High Performance Database
processing. June, 1992.

[15]	 [15] M.T. Ozsu, P.. Distributed and Parallel
Database Systems. -. Available: www.cs.uoi.
gr/~pitoura/courses/ddbs03/paper-to-translate.
pdf‎

[16]	 [16] A. B. M. Moniruzzaman, S. A. Hossain.
NoSQL Database: New Era of Databases for Big
data Analytics - Classification, Characteristics and
Comparison. International Journal of Database
Theory and Application. 2013.

[17]	 Oracle. Oracle Databases. Accessed: 29th
December 2013. Available: Oracle Databases
from web: http://www.oracle.com/us/products/
database/overview/index.html.

[18]	 MySQL. MySQL Database. Accessed 29th
December 2013. Avalable: web: http://www.
mysql.com.

[19]	 Microsoft. Microsoft SQL Server Databases.
Accessed: 29th December 2013. Available: http://
www.microsoft.com/en-us/sqlserver/default.
aspx.

[20]	 U. Bhat, S. Jadhav. Moving towards Non-
Relational Databases. International Journal of
Computer Applications, 2010.

[21]	 N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D.
Gosain. A Survey and Comparison of Relational
and Non-Relational Database. International
Journal of Engineering Research & Technology,
August 2012.

[22]	 R. Cattell. Scalable SQL and NoSQL Datastore.
2011.

[23]	 K. Orend, (2010) “Analysis and Classification of
NoSQL Databases and Evaluation of their Ability
to Replace an Object-relational Persistence
Layer,” Master Thesis, Technical University of
Munich, Munich.

[24]	 M. Levene and G. Loizou. A Graph-Based Data
Model and its Ramifications. IEEE Transactions
on Knowledge and Data Engineering (TKDE),
7(5):809–823, 1995.

[25]	 R. Angles, C. Gutierrez. Survey of Graph
Database Models. Technical Report Number TR/
DCC-2005-10, Computer Science Department:
Universidad de Chile. 2005.

[26]	 S.Jouili, V. Vansteenberghe. An Empirical
Comparison of Graph Databases.

[27]	 R. H. G¨uting. GraphDB: Modeling and Querying
Graphs in Databases. In Proc. of 20th Int. Conf.
on Very Large Data Bases (VLDB), pages 297–
308. Morgan Kaufmann, September 1994.

[28]	 K. C. Kim, C. S. Kim. Parallel Processing of
Sensor Network Data using Column-Oriented
Databases. AASRI Conference on Parallel and
Distributed Computing Systems, pp. 2-8. 2013.

[29]	 M. Stonebraker, D.J. Abadi, A. Batkin, X.
Chen, M. Cherniack, M Ferreira, E. Lau, A.Lin,
S. Madden, E. O’Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik. C-Store: A Column-
oriented DBMS. Proceedings of the 31st VLDB
Conference, Trondheim, Norway, 2005.

[30]	 D.J. Abadi, S. R. Madden, and N. Hachem.
Column-Store vs Row-Store. SIGMOD’08,
Vancouver, BC, Canada. June, 2008.

[31]	 L. Wang, M. Kunze, J. Tao, G. von Laszewski,
Towards building a cloud for scientific
applications, Advances in Engineering Software
42 (9), pp. 714–722. 2011.

[32]	 T. A. M. C Thantriwatte, C. I. Keppetiyagama.
NoSQL Query Processing System for Wireless
Ad-hoc and Sensor Networks. In Advances in ICT
for Emerging Regions (ICTer), 2011 International
Conference on (pp. 78-82). IEEE. September,
2011.

[33]	 J. Han, E. Haihong, Guan Le, and Jian Du. Survey
on NoSQL Database. Pervasive Computing
and Applications (ICPCA), 6th International
Conference, pp.363-366. October, 2011.

[34]	 A. Paul, RDBMS dominate the database market,
but NoSQL systems are catching up, Accessed
28th December 2013. Available: http://db-
engines.com/en/blog_post/23

[35]	 Z. Belal, A. Essam. The Constraints of Object-
Oriented Databases, Int. J. Open Problems
Compt. Math., Vol. 1, No. 1, June 2008.

[36]	 Beall, J.: The Weaknesses of Full-Text Searching.
The Journal of Academic Librarianship
(September 2008)

[37]	 Yates, R.B., Neto, B.R.: Modern Information
Re-trieval. Addison Weasley Longman Limited
(1999)

[38]	 M. Young, The Technical Writer’s Handbook.
Mill Valley, CA: University Science, 1989.

