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Abstract— The issue of image forgery through 

splicing has become increasingly relevant in the current 

digital era. Splicing involves the manipulation of images 

by combining parts of two or more different images to 

create a deceptive composite image. This technique can 

be employed for various purposes, including the 

dissemination of false information, damaging someone's 

reputation, or even creating confusion in specific 

contexts. Several techniques used to detect splicing 

involve statistical analysis, color analysis, and texture 

analysis. Additionally, artificial intelligence 

developments, such as deep learning, have been applied 

to enhance detection capabilities. In this study, we 

employed a Convolutional Neural Network (CNN) 

model to identify image deviations caused by splicing. 

Optimization was performed on the convolutional layers 

of the model to improve CNN performance. The 

integration of Error Level Analysis (ELA) was also 

implemented to aid in identifying splicing forgeries, 

where portions of one image are combined with parts of 

another. Areas that have undergone splicing may exhibit 

noticeable differences in error levels. The dataset 

utilized for this research was sourced from DVMM and 

CUISDE. The validation accuracy results for our CNN 

model before incorporating ELA were 61% for DVMM 

and 74% for CUISDE. After adding ELA, the CNN 

model demonstrated improved detection accuracy, 

achieving validation rates of 72% for DVMM and 71% 

for CUISDE. 

Index Terms—image forgery detection; splicing; 

error level analysis; cnn 

I. INTRODUCTION 

In the contemporary digital era, the pivotal role of 

images in disseminating information across diverse 

platforms, including social media, healthcare, 

television, and various online applications, cannot be 

overstated. The ubiquitous availability of image 

editing tools and software on portable devices, such as 

smartphones and laptops, has facilitated the 

manipulation of images for various purposes, 

rendering them easily accessible. While images may 

undergo editing for benevolent purposes, intentional 

alterations with malicious intent are categorized as 

manipulation or forgery. Manipulative practices may 

involve concealing crucial information, such as 

obscuring individuals or objects within the image. 

Such manipulated images are occasionally employed 

as deceptive evidentiary material in legal proceedings, 

for financial gain through heightened engagement on 

social media, or for attaining popularity in the media 

sphere. Consequently, authenticating the integrity of 

images assumes paramount significance in thwarting 

the dissemination and endorsement of misinformation. 

Furthermore, validating the authenticity of images is 

imperative to deter the reliance on edited visual 

content as legal evidence [1]. 

Image forgery detection techniques can be broadly 

classified into two main categories: active and passive 

methods. Active techniques involve incorporating 

specific information into the image during its creation. 

This may encompass embedding watermarks or digital 

signatures as deliberate markers or signatures 

indicating the image's authenticity. The objective of 

active techniques is to furnish authentication or 

verification, thereby rendering it more challenging to 

forge or tamper with the image without modifying or 

eliminating these embedded features [2]. 

Passive detection techniques, such as those 

employed in identifying copy-move and splicing, are 

preferred for their efficiency. Unlike active techniques, 

passive methods do not require incorporating 

additional information into the image during its 

creation. Instead, they rely on analyzing the intrinsic 

characteristics and patterns within the image itself. 

This makes passive techniques quicker to execute, as 

they do not involve the processing overhead of adding 

extra information to the image. Passive methods are 

particularly effective in detecting certain types of 

image manipulations without the need for additional 

embedded features [3]. 

Image manipulation, particularly through 

techniques like copy-move or splicing, involves a 

straightforward procedure of copying and pasting 

elements within the image. When this pasting 

operation occurs, it introduces clear structural changes 

to the original image. The micro-texture pattern 

present inside the pasted area and along its boundaries 

undergoes modifications, creating differences and 

irregularities that become apparent along the edges of 

the altered region [4].  

mailto:irmawati@umn.ac.id
mailto:naufal.prasetya@student.umn.ac.id


 

 

 

 

80 Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 14, No. 2 | December 2023 

 

ISSN 2085-4579 

The Convolutional layer comprises a sequence of 

kernels or filters adaptable for extracting local features 

from the input. Each kernel performs calculations on a 

feature map. The Pooling layer also called the 

downsampling layer, reduces the resolution of the 

preceding feature maps. Pooling introduces invariance 

to minor transformations and distortions by dividing 

inputs into separate regions with a specified size, 

generating one output from each region [5]. The Fully 

Connected layer is typically deployed at the network's 

conclusion for classification purposes. Diverging from 

pooling and convolution, it constitutes a global 

operation, aggregating input from the feature 

extraction stages and comprehensively analyzing the 

output from all preceding layers [6]. 

Numerous studies have been conducted on image 

forgery detection, as referenced in [7][8][9]. The 

existing research indicates that the outcomes in 

detecting image splicing forgery remain suboptimal. 

Therefore, our objective is to investigate this 

phenomenon using the model we have developed. 

This study proposes a deep learning algorithm 

incorporating a CNN and ELA to identify images 

subjected to splicing manipulation. The model is 

introduced and evaluated using image-splicing 

datasets available on the internet, including the 

DVMM and CUISDE datasets. 

II. RESEARCH MATERIALS 

A. Deep Learning  

 Deep learning is a machine learning technique that 

leverages neural networks. It is characterized by 

multiple processing layers structured to extract 

progressively intricate features from the data. The 

hierarchical architecture of deep learning networks 

enables them to autonomously learn and represent 

complex patterns and features as they progress through 

the layers. This characteristic makes deep learning 

particularly effective for tasks such as image and 

speech recognition, where the data exhibits 

hierarchical and intricate structures [10]. 

B. CNN 

CNN are a type of neural network widely 

recognized for their exceptional accuracy in image 

classification tasks. CNNs are organized into several 

layers, comprising three key components: the 

Convolutional layer, the Pooling layer, and the Fully 

Connected layer. Tailored for tasks such as image 

recognition and classification, CNNs derive their 

effectiveness from the architectural design of these 

layers—specifically, the Convolutional, Pooling, and 

Fully Connected layers. This design plays a pivotal 

role in achieving high accuracy in tasks of this nature 

[11].  

C.  Error Level Analysis (ELA)  

ELA is acknowledged as a significant method for 

detecting image alterations. This method involves 

saving the image at specific compression levels and 

assessing the variance resulting from the compression. 

When an image is initially saved as a JPEG, 

compression takes place, facilitated by various editing 

software tools such as Adobe Lightroom, GIMP, and 

Adobe Photoshop. ELA serves as a technique to 

emphasize differences between authentic and 

manipulated images by analyzing the error levels 

introduced during compression [7]. ELA is a forensic 

method involving the recompression of an image with 

a predetermined error rate after the initial compression 

using lossy techniques. The fundamental principle is to 

measure the absolute difference between the original 

and recompressed images under controlled error 

conditions. These calculated differences can reveal 

inconsistencies or variations that may arise during 

image manipulation or forgery [12]. 

III. RELATED WORK 

Detection methods for image forgery are primarily 

designed to identify irregular patterns that should not 

be present in manipulated images. Two approaches 

exist for detecting image forgery: active and passive 

[13]. Several researchers have studied detecting copy-

move and image splicing using convolutional neural 

network algorithms. In the paper by Mallick et al. [8]. 

CNN is employed with various models such as ELA, 

VGG16, and VGG19 to detect copy-move and 

splicing. The method was tested using CASIA V2 and 

NC2016 datasets, yielding accuracy values for the 

ELA model of 70%, VGG16 of 71%, and VGG19 of 

72%. 

In the following research conducted by 

Vijayalakshmi K et al. [7], ELA is employed to detect 

copy-paste images. The method was tested using the 

MICCF200 dataset. The MICCF200 dataset 

underwent an augmentation process in this study to 

maximize the image size. The dataset produced an 

accuracy value of 99% for detecting copy-paste 

images. 

 In a subsequent study by Pandey et al. [14], ELA 

was utilized to identify tampered images. The 

methodology was tested using the CASIA v2 dataset, 

and in this research, a localization process was applied 

to the CASIA v2 dataset. The outcomes of the dataset 

localization process resulted in an accuracy value of 

88% for detecting tampered images.  

 The research conducted by Muniappan et al. [9] 

employed a CNN to identify copy-move and splicing 

occurrences. The proposed method underwent testing 

on the MICCF2000, CASIA V1, and CASIA V2 

datasets. Specifically, on the MICCF2000 dataset, 

CNN was utilized to detect copy-move images, 

yielding an accuracy of 76%. For the CASIA V1 
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dataset, CNN was employed to identify splicing 

images, achieving an accuracy of 79%. Additionally, 

on the CASIA V2 dataset, CNN was utilized to detect 

copy-move and splicing images, demonstrating a 

notable accuracy of 89%. 

IV. METHODOLOGY 

CNN are advanced deep learning networks 

expertly trained for various computer vision 

applications. A notable advantage of CNNs lies in 

their adept utilization of local spatial coherence within 

input images, facilitating parameter sharing and 

reducing overall weight. Typically, a CNN consists of 

three key layers: the convolutional layer, the pooling 

layer, and the fully connected layer. Each of these 

layers performs a unique function in the overall 

processing of the network [15]. 

The convolutional layer consists of a sequence of 

kernels or filters that can be tailored to extract local 

features from the input. Each kernel is utilized to 

conduct computations on a feature map. The pooling 

layer, also known as the downsampling layer, 

diminishes the resolution of the preceding feature 

maps. Pooling introduces invariance to minor 

transformations and distortions by partitioning the 

inputs into distinct regions with a specified size, 

thereby generating one output from each region [5]. 

The fully connected layer is commonly employed after 

the network for classification purposes. Diverging 

from pooling and convolution, it constitutes a global 

operation. This layer aggregates input from the feature 

extraction stages and comprehensively analyzes the 

output from all preceding layers [6]. 

Building on prior research, we adopt ELA image 

processing [7]. This approach has exhibited a high 

accuracy score, prompting our interest in evaluating its 

performance on a model that we have developed. 

This study's methodology comprises six processes: 

data collection, preprocessing, data splitting, 

modelling, model evaluation, and model optimization. 

Data collection involved accessing the Columbia 

University repository, specifically utilizing the 

datasets titled "Columbia Image Splicing Detection 

Evaluation Dataset (DVMM)" and "Columbia 

Uncompressed Image Splicing Detection Evaluation 

Dataset (CUISDE)." Subsequently, during the 

preprocessing stage, the dimensions of images across 

all datasets were adjusted to 224 x 224 pixels and 

converted to the .jpg format. 

After preprocessing and data splitting, the dataset 

was divided into training, testing, and validation data. 

The subsequent step involved modelling the dataset. 

Following the modelling phase, the model underwent 

evaluation using the test data, and subsequent 

optimization was conducted to enhance the model's 

outcomes. 

 

Fig. 1. Research Methodology 

A. Data Collection 

In this study, datasets were obtained from the 

GitHub website under the titles "Columbia Image 

Splicing Detection Evaluation Dataset (DVMM)" and 

"Columbia Uncompressed Image Splicing Detection 

Evaluation Dataset (CUISDE)." The dataset comprises 

images categorized into two groups: "Au", 

representing original images, and "Sp", representing 

images tampered with. 

The DVMM Dataset includes a total of 1,845 

images, with 933 being original images and 912 being 

tampered images. Similarly, the CUISDE Dataset 

comprises 365 images, with 184 original images and 

181 tampered images. 

B. Pre-Processing 

The deep learning algorithm necessitates a 

consistent and standardized image format and size to 

ensure effective model training. Consequently, all 

datasets utilized in this research underwent a process 

of resizing and conversion. The images were resized 

to 224 × 224 pixels and converted to the .jpg format. 

Augmentation was implemented for the CUISDE 

dataset. This decision was motivated by the limited 

size of the image data and the need to maximize 

accuracy. The augmentation technique employed 

involved adding horizontal flips to diversify the 

dataset. Before processing the data, pre-processing is 

essential to undergo a cleaning process to eliminate 

duplicate entries and rectify or remove inconsistent 

and incomplete data. Transformation data 

transformation converts or consolidates data into a 

predefined format [16]. 

C. Split Dataset 

Additionally, the two datasets, featuring the 

categories 'Au' and 'Sp,' were partitioned into training, 

test, and validation data. Precisely, 10% of each 



 

 

 

 

82 Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 14, No. 2 | December 2023 

 

ISSN 2085-4579 

category was assigned to the test data, while the 

remaining 90% was split in an 80:20 ratio for training 

data and validation data, respectively. 

TABLE I.  SPLIT DATASET 

Dataset 

Number of Dataset 

Training Testing Validation 

Au Sp Au Sp Au Sp 

DVMM 587 574 94 92 252 246 

CUISDE 131 129 19 18 33 33 

D. Modelling 

The pre-processed dataset will be utilized to 

construct a model compatible with the CNN 

architecture. CNN provides flexibility in determining 

the desired number of convolutional layers. The 

activation function employed in the CNN is the 

Rectified Linear Unit (ReLU). The CNN model 

employed in this study consists of 5 layers. There are 

32 filters in the initial convolutional layer, followed 

by 64 filters in the second and third convolutional 

layers. The subsequent layer employs 128 filters in 

the fourth and fifth convolutional layers. The kernel 

size for each convolutional layer is 3x3. Additionally, 

the pooling window on the pooling layer is set at 2x2 

TABLE II.  CNN STRUCTURE MODEL 

Layer Type Activation 

Function 

Output  

Shape 

Kernel 

Size 

Total 

Filter 

1 input ReLu    

2 2D 
Convol

ution 

ReLu 224 3 32 

3 2D 

Max 

Poling 

ReLu 224 3 32 

4 2D 

Max 

Poling 

ReLu 109 3 64 

5 2D 
Convol

ution 

ReLu 54 3 64 

6 2D 

Max 

Poling 

ReLu 52 3 64 

7 2D 

Convol

ution 

ReLu 26 3 64 

8 2D 

Max 
Poling 

ReLu 24 3 128 

9 2D 

Convol

ution 

ReLu 12 3 128 

10 2D 
Max 

Poling 

ReLu 10 3 128 

11 Flatten - 5   

12 Dropou

t 

- 3200   

13 Dense - 3200   

E. Evaluation 

After successfully creating the model, a 

performance evaluation is carried out to assess the 

accuracy value. This evaluation involves examining 

various metrics, including accuracy and F1 score. The 

metrics are calculated using a confusion matrix and 

ROC curve. If the accuracy results are suboptimal, the 

subsequent step optimises model performance. 

 

  (1) 

 

  (2) 

F. Optimization Model 

Optimization steps are implemented after creating 

and evaluating the model if the achieved accuracy is 

deemed unsatisfactory. This optimization involves 

making adjustments, such as adding or modifying 

convolutional layers, adjusting the optimizer, and 

tweaking optimizer parameters. Multiple simulations 

of various experiments in model creation are 

conducted to identify the optimal configuration 

leading to the highest accuracy value. 

A low accuracy value was observed in the 

simulation conducted on the CNN model with four 

layers. In contrast, a notably improved accuracy was 

achieved when employing a CNN model with five 

layers. Consequently, the optimization strategy is 

focused on utilizing a CNN architecture with five 

layers. 

V. RESULT AND DISCUSSION 

We conducted experiments using the CNN 

architecture to develop a model for detecting forgery 

in spliced images. Subsequently, we integrated CNN 

with ELA to assess their accuracy values following the 

compression of the dataset using ELA. The training of 

the CNN model involved using an early stopping 

feature, a batch size of 10, and an error level of 90%, 

which was applied to ELA. 

The evaluation of the generated models included 

assessing their performance through a confusion 

matrix, providing a comprehensive breakdown of the 

performance of each model. The confusion matrix was 

generated in the evaluation phase using validation data 

specific to each dataset. 
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(A) DVMM  

 

 

(B) CUISDE  

Fig. 1  Confusion matrix CNN Models for validation data of 

DVMM and CUISDE dataset 

Based on the provided confusion matrix, the 

validation accuracy value for our CNN model is 61% 

for DVMM and 74% for CUISDE. The F1 score 

values are 0.565 for DVMM and 0.690 for CUISDE. 

The performance for DVMM is lower than that of 

CUISDE, possibly due to the DVMM dataset 

containing grayscale or black-and-white images. 

Using a small batch size can impact the training 

process on this dataset, potentially affecting the 

attainment of a high accuracy value. 

 

 
(A) DVMM  

 

 

 
(B) CUISDE  

 

Fig. 2  ROC Curves using CNN models validation dataset 

The performance of each model is also evident 

from the ROC curve. As depicted in the figure above, 

the ROC curve for CUISDE is superior to that of 

DVMM, consistent with the findings of the confusion 

matrix, which indicates higher performance for 

CUISDE compared to DVMM. 
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(A) DVMM  

 

 

 

 
(B) CUISDE 

 

Fig. 3  Confusion matrix CNN Models for testing data of 

DVMM and CUISDE 

According to the presented confusion matrix, the 

testing accuracy values for our CNN model are 59% 

for DVMM and 64% for CUISDE. 

 

 
 

 
 

(A) DVMM+ELA 
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(B) CUISDE+ELA 

 

Fig. 4  Confusion matrix and ROC Curva CNN + ELA Models 

for validation data of DVMM and CUISDE 

Based on the presented confusion matrix, the 

validation accuracy values for our CNN+ELA model 

are 72% for DVMM and 71% for CUISDE. The F1 

score values are 0.702 for DVMM and 0.783 for 

CUISDE. In the CUISDE dataset, we implemented 

augmentation by enabling horizontal flip to improve 

the accuracy value. 

 

 
 

 
(A) DVMM+ELA 

 

 
 

 

 
 

(B) CUISDE+ELA 

 

Fig. 5  Confusion matrix and ROC Curva CNN + ELA Models 

for testing data of DVMM and CUISDE 

 



 

 

 

 

86 Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 14, No. 2 | December 2023 

 

ISSN 2085-4579 

According to the provided confusion matrix, 

the testing accuracy values for our CNN+ELA model 

are 66% for DVMM and 72% for CUISDE. The 

resulting ROC curve values are 0.587 for DVMM and 

0.623 for CUISDE. 

TABLE III.  THE PERFORMANCE RESULT OF OUR CNN MODEL 

Dataset 

Evaluation Metrics 

Val 

Accuracy[%] 

F1-Score ROC-AUC 

DVMM 61.24 0.565 0.599 

CUISDE 74.24 0.690 0.742 

DVMM

+ELA 

72.09 0.702 0.650 

CUISDE

+ELA 

71.21 0.783 0.758 

TABLE IV.  THE PERFORMANCE COMPARISON OF OUR CNN 

MODEL AND RELATED WORK 

Work Dataset Method Accuracy 

(%) 

 

Mallick[8] 
CASIA V2 

NC2016 

ELA 70.00 

VGG 16 71.00 

VGG 19 72.00 

Vijayalakshmi 

K et al[7] 

MICC-F200 ELA 99.00 

Pandey & 

Mitra [14] 

CASIA V2 ELA+CNN 88.00 

 

Proposed 

 

DVMM 

CUISDE 

CNN 61.00 

CNN 74.00 

CNN+ELA 72.00 

CNN+ELA 71.00 

V. CONCLUSION 

In this study, a CNN model augmented with ELA 

was developed to detect image splicing, resulting in 

an increased validation accuracy of 72% from the 

initial 61% for DVMM. For CUISDE, the validation 

accuracy changed slightly from 74% to 71%, with an 

improvement in testing results from 64% to 72%. In 

conclusion, this research successfully applied CNN 

with ELA to identify image splicing, enhancing 

accuracy in the DVMM and CUISDE datasets. These 

findings underscore the potential of deep learning 

models in addressing challenges associated with 

digital image manipulation. As research progresses, 

ongoing efforts will be directed towards refining and 

expanding the capabilities of the CNN model for 

more accurate and reliable image splicing detection. 
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