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Abstract— The development of a software application
involves a comprehensive process of defining and
documenting software requirements. Among various
modeling activities, sequence diagrams serve a vital role
in illustrating dynamic interactions among system
components. However, manually constructing these
diagrams from natural language Software Requirements
Specifications (SRS) is often labor-intensive, inconsistent,
and prone to human error, especially when the text is
complex and unstructured. This study focuses on
automating the extraction of candidate elements
specifically classes, subclasses, and attributes from the
scenario sections of SRS documents. These sections are
typically written in narrative form and are rich in
behavioral information. The proposed method integrates
Natural Language Processing (NLP) using Bidirectional
Encoder Representations from Transformers (BERT) for
contextual embeddings and a Support Vector Machine
(SVM) classifier to categorize each noun phrase
accordingly. Two datasets, SIData and SlLo, with distinct
domain characteristics and writing styles, were used to
evaluate the system's performance. While the system
demonstrates the feasibility of the approach in identifying
relevant elements, limitations such as low precision and
false-positive rates highlight the need for further
refinement in classification accuracy, generalizability,
and semantic understanding of entity relationships.
These challenges present opportunities for future work,
including improvements in preprocessing strategies, data
augmentation, and the use of ontologies for domain-
specific consistency.

Index Terms—Software Requirement Specifications;
Class Diagram; Sequence Diagram; Class Extraction;
UML; Natural Language Processing; SVM; Scenario;
Scenario in SRS;

. INTRODUCTION

The Unified Modeling Language (UML) has long
been used as a standard way to describe how software
systems are structured and how they behave. As noted
by the Object Management Group (OMG), UML acts
as a general-purpose visual language that helps various
stakeholders understand and communicate the
system’s design elements. Among the many diagrams
in UML, class diagrams are typically used to show the
system’s static structure, while sequence diagrams

focus more on how components interact over time.
These diagrams are valuable not only for
communication but also for documenting and
maintaining complex systems throughout the
development lifecycle.

In real-world software engineering, the Software
Requirements Specification (SRS) is one of the most
crucial documents [1]. It outlines what the system
should be able to do covering both functional and non-
functional aspects. Often, the SRS contains narrative
scenarios to help convey system behavior in a more
intuitive way. Converting these narratives into
structured diagrams such as class or sequence diagrams
is essential, but doing it manually can be time-
consuming, prone to errors, and difficult to maintain
especially when the system grows more complex [2].
method for classifying sentences in Software
Requirements Specifications (SRS) using Natural
Language Processing (NLP) techniques and BERT
embeddings. Their work highlights the effectiveness of
deep contextual representation in improving the
understanding of requirement-related sentences in
software documentation [3].

Several researchers have tried to address this problem.
For example, Yang and Sahraoui [4] highlighted how
tricky it is to convert natural language into UML
because of the ambiguity and inconsistency of human
language. Others, like Shweta et al [5], began
experimenting with transformer models to get better at
identifying  diagram  components in  textual
requirements. Malik et al. [6] used BERT to pick out
specific entities from SRS documents, and Ferrari et al.
[7] looked into how large language models (LLMs)
could help generate sequence diagrams automatically.
These efforts show that there's growing interest in
using Natural Language Processing (NLP) to simplify
software modeling. [8] Even so, a number of
challenges remain. One of the biggest gaps is in
extracting fine-grained elements like deciding whether
a noun phrase refers to a class, a subclass, or just an
attribute. This becomes even more difficult when the
system relies on scenario sections, which are usually
written in free-form narratives. These parts can be rich

Ultima Infosys : Jurnal llmu Sistem Informasi, Vol. 16, No. 2 | December 2025


mailto:rasiaziza@gmail.com
mailto:daniel@if.its.ac.id

in context but hard for machines to understand without
deeper language processing.

That’s where this study comes in. We propose a
method to automatically extract useful UML entities
specifically candidate classes, subclasses, and
attributes from the scenario sections in SRS
documents. To do this, we combine the power of
BERT embeddings with a Support Vector Machine
(SVM) classifier that assigns each noun phrase to the
right category based on its context [9]. The idea is to
create a rough structure that can later support the
construction of sequence diagrams.

To see how well this method works, we tested it on
two different datasets: SIData and SILo. The SlData
and SlLo datasets used in this study were specifically
selected due to their completeness and availability of
both Software Requirements Specifications (SRS) and
corresponding class diagrams, which are essential for
evaluation. The SlIData dataset originates from an
internal project related to environmental assessment
systems, while SlLo is derived from a logistics
information system used in academic environments.
Both datasets were obtained from the Department of
Informatics, Institut Teknologi Sepuluh Nopember
(ITS), Indonesia. The SlData dataset has more
technical and domain-specific language, while the
SlLo dataset uses a more narrative tone, similar to how
people describe scenarios in real-life situations. This
contrast helps us see how flexible and reliable our
method is across different writing styles. In our
evaluation, we used common metrics like precision,
recall, and F1-score to measure how accurately the
system could identify and classify the elements. The
results gave us useful insights into where the system
performs well and where it still needs improvement.

1. METHODOLOGY

This section outlines the methodological framework
employed to automatically extract class-related
elements from scenario-based Software Requirements
Specifications (SRS). The process consists of several
sequential steps, beginning with the extraction of noun
phrases from the scenario text using BERT
embeddings, followed by classification of these
phrases into class candidates. The extracted elements
are then compiled and compared with ground truth data
derived from corresponding class diagrams to evaluate
the system’s accuracy. Each step is designed to ensure
a systematic and replicable approach for validating the

effectiveness of the proposed method as can be seen in
Fig 1.

2. Compilation &

1. Extr_a{:_ﬂon of w| Classification of
Scenario in SRS > -
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using BERT using SVM
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3. Comparison with
4 Accur?cy < Ground Truth (Class
Evaluation Diagram)

Fig. 1. Methodology

A. Extraction of Scenario in SRS Scenario using
BERT

This stage focuses on capturing user interaction
flows with the system as described in the functional
requirements. Specifically, the research concentrates
on processing only the scenario sections of SRS
documents, as these are considered the most
informative for identifying critical entities namely,
classes, subclasses, and attributes which will later form
part of the class diagram model [10].

The rationale behind focusing on scenarios stems
from prior studies, which have shown that scenario
narratives often encapsulate rich  behavioral
information essential for generating models such as
sequence or class diagrams. In this study, the dataset
used is stored in plain text (.txt) format. One example
is a scenario excerpt from the SlData dataset, as shown
in Fig. 2.

To extract relevant information, the text undergoes
several Natural Language Processing (NLP) steps.
These include noun phrase identification using the
spaCy library [11], followed by embedding
representations using BERT. These embeddings are
then classified into predefined categories (class,
subclass, attribute) using a Support Vector Machine
(SVM) classifier. This hybrid technique aligns with
recent advancements in contextual entity recognition,
which have demonstrated high performance in
extracting domain-relevant entities from unstructured
documents. Implemented BERT models to classify of
contextual embeddings and sequential modeling can
yield strong classification performance on sentiment-
based datasets [12]. In a comparative analysis,
examined the influence of different pre-trained models
on the accuracy of BERT for text classification,
emphasizing the importance of selecting suitable base
models to optimize performance in domain-specific
tasks [13].

The extracted entities are then evaluated by comparing
them with the reference class diagrams, which have
been manually constructed and serve as the ground
truth for this experiment.
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Fig. 2. Scenario of SIData
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Fig. 3. Extraction Process

The preprocessing phase starts by cleaning the raw
text to remove non-alphabetic characters, converting all
words to lowercase, and eliminating stopwords. These
are common techniques in Natural Language
Processing (NLP) workflows, aimed at minimizing
noise and improving the performance of later
processing steps . After the text is cleaned, noun phrases
are identified using spaCy’s built-in linguistic features,
which rely on part-of-speech (POS) tagging and
syntactic dependency parsing to detect meaningful
noun chunks.

Next, each identified noun phrase is transformed
into a contextual embedding using a BERT model that
has been fine-tuned specifically for the task of entity
classification in software requirement texts. This fine-
tuning process involves training BERT on manually
annotated scenario data from SRS documents and
appending a classification layer to label each noun
phrase as a class, subclass, or attribute [14].

To improve categorization accuracy, these BERT-
generated embeddings are then passed to a Support
Vector Machine (SVM) classifier. The process consists
of several sequential steps, beginning with the
extraction of noun phrases from the scenario text using
BERT embeddings. These embeddings are then fed into
a Support Vector Machine (SVM) classifier to
distinguish  between valid and non-valid class
candidates, as illustrated in Fig. 3. The extracted
elements are then compiled and compared with ground
truth data derived from corresponding class diagrams to
evaluate the system’s accuracy. Each step is designed
to ensure a systematic and replicable approach for
validating the effectiveness of the proposed method.
This hybrid method leveraging deep contextual
understanding from BERT alongside the robustness of
SVM decision boundaries has been shown in previous
studies to yield reliable results in entity classification
tasks [15]. Support Vector Machine (SVM) approach to

classif. The study confirmed the robustness of SVM in
handling tasks with limited training data [16].

C. Comparison with Ground Truth

To assess the effectiveness of the proposed
extraction method, an evaluation was conducted by
comparing the extracted entities with a manually
constructed class diagram, which serves as the ground
truth. This comparison focuses on identifying matches
between the predicted and actual elements, including
class names, attributes, and subclass hierarchies.

To facilitate automated comparison, the reference
class diagram was converted into a structured JSON
format, enabling consistent parsing and element-wise
alignment . The evaluation process then involves
checking for the presence or absence of each predicted
entity within the reference diagram.

Through this approach, the system's performance is
quantitatively assessed, providing insight into its
accuracy and relevance in identifying meaningful
entities. Metrics such as precision, recall, and F1-score
are used to measure how well the extracted results
align with the expected outputs, thereby reflecting the
practical applicability of the method in real-world
software modeling tasks.

D. Accuracy Evaluation

The performance of the proposed extraction
method is evaluated using a set of well-established
metrics: accuracy, precision, recall, and F1-score.
quantifies how many of the elements identified by the
system are actually correct, while recall measures how
many of the relevant elements present in the ground
truth were successfully detected. The F1-score, serving
as the harmonic mean of precision and recall, provides
a balanced indicator of the system’s ability to minimize
both false positives and false negatives.

Beyond these core metrics, a descriptive statistical
analysis is also performed to gain deeper insight into
the model's performance. This includes calculating the
minimum, maximum, mean, and standard deviation for
each entity category namely class, subclass, and
attribute [17]. The minimum and maximum values
indicate the range of model performance, highlighting
its best and worst outcomes across the evaluation. The
mean reflects the central tendency, offering a general
impression of accuracy across multiple test cases [18].
Meanwhile, the standard deviation captures the degree
of performance variability, providing an indirect
measure of the model’s consistency and reliability
when applied to datasets with differing linguistic
characteristics.
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Table 1. Confusion Matrix for Entity Extraction

Dataset True False False
Positive Positive Negative

SlIData 2 27 18

SlLo 3 24 9

The information extraction process using the BERT
and SVM approach revealed that the overall
performance of the system could not yet be classified
as satisfactory. This is reflected in the evaluation
metrics precision, recall, and F1-score which tend to be
relatively low. Based on the evaluation results, the
obtained performance metrics indicate the extent to
which the system succeeded in accurately extracting
information from the SRS documents, as presented in
Table 2.

Table 2. Performance Evaluation

Dataset | Accuracy | Precision | Recall | F1-Score
SlData | 4.2 0.069 0.10 0.250
SlLo 8.3 0.111 0.25 0,157

To gain deeper insights into the classification
performance of the BERT and SVM model across two
datasets SlData and SlLo a visual evaluation was
conducted using a whisker plot. This diagram provides
an intuitive overview of the distribution of three key
metrics: precision, recall, and F1-score. Powers argues
that common metrics (precision, recall, F1-score) can
be misleading without understanding underlying
biases. It explores alternative metrics like
informedness and Markedness for a more principled
evaluation [19]. This consolidates common
performance metrics for classification and provides
guidance on when to apply statistical significance
testing [20].

For the SIData dataset, the plot reveals a tightly
clustered boxplot within the lower range (below 0.10),
highlighting the model’s overall poor performance in
identifying and categorizing entities accurately.
Specifically, the model achieved a precision of 0.069,
recall of 0.100, and F1-score of 0.082. The short
whiskers in Figure 5 further reinforce this outcome,
indicating low variance and minimal dispersion among
prediction results suggesting that most classification
attempts consistently performed poorly.

In contrast, the SILo dataset exhibits a broader
distribution and noticeably improved metric values.
The model attained a precision of 0.111, recall of
0.250, and F1-score of 0.157, with the whisker plot
showing longer whiskers and a wider interquartile
range. This implies greater variability in the model's
performance and a modest improvement in its ability
to generalize across different types of textual
structures. Although the overall precision remains
relatively low, the wider distribution reflects the
model's potential to more effectively capture relevant

phrases in less rigid, narrative-style documents such as
those in the SILo dataset.

Whiskers Plot Presisi, Recall, dan F1-Score
Dataset SIDATA vs SILO
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Fig. 5. Whisker Plot of Dataset

The observed differences in performance
distribution between the two datasets can be attributed
to their inherent linguistic characteristics. The SIData
dataset generally features more informal and context-
dependent phrasing, which introduces ambiguity and
challenges in accurately identifying and classifying
entities. In contrast, the SILo dataset is composed of
more structured and repetitive terminology, often
found in formal technical documentation, which aids in
improving classification consistency. Furthermore,
disparities in the total number of noun phrases, as well
as the syntactic clarity of those phrases, play a
significant role in influencing the classification
performance across both datasets.

I1l.  RESULT AND DISCUSSION

Grafik Epoch vs Loss
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Fig. 6. Training loss of Dataset

The figure above illustrates a comparative analysis
of training and validation loss curves observed during
the BERT fine-tuning process across several epochs,
using the SlData and SlLo datasets. The orange line
depicts the validation loss for the SIData dataset, which
demonstrates a steady decline from epoch 1 through
epoch 5. This downward trend suggests a stable and
consistent learning process. The red dot, positioned at
epoch 5, represents the training loss at that stage,
providing a benchmark for evaluating how well the
model has learned.

On the other hand, the blue line, which corresponds
to the SILo dataset, shows a more erratic validation loss
trajectory. Notably, there is a temporary increase in
validation loss at epoch 3 before it eventually decreases
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to its lowest point at epoch 5. The green dots indicate
training loss values captured at various epochs, offering
further insight into the model’s convergence behavior.
This fluctuation suggests that the SILo dataset presents
greater variability or complexity, which may challenge
the model's ability to consistently internalize training
patterns.

Table 3. Training Log of SIData

Epoch | Iteration | Training Validation Loss
Loss

1.0 2 1.1422637701034546

2.0 4 1.1105989217758179

3.0 6 1.0732616186141968

4.0 8 - 1.048999309539795

5.0 10 1.0507 -

5.0 10 - 1.0393873453140259

Table 4. Training Log of SILo

Epoch | Iteration | Training Validation Loss
Loss

1.0 3 - 0.9941515326499939

2.0 6 0.9894852042198181

3.0 9 - 1.0273746252059937

3.3335 | 10 0.9951 -

4.0 12 - 1.0067888498306274

5.0 15 - 0.9593325257301331

Tables 3 and 4 display the detailed training logs of
the BERT fine-tuning process for both SIData and SILo
datasets, including the training loss and validation loss
values across various epochs and iterations. For SIData
(Table 3), the validation loss shows a consistent decline
from epoch 1.0 to epoch 5.0, indicating a steady
learning curve. The lowest validation loss,
1.039837435140259, was achieved at epoch 5.0 with
10 iterations, while the only recorded training loss value
was 1.0507 at epoch 5.0 with 1 iteration.

In contrast, Table 4 illustrates the SILo dataset’s
training progression, where validation loss exhibits
more fluctuation. Despite a slight increase at epoch 3.0,
the validation loss eventually decreased to its lowest
value of 0.9593325257301331 at epoch 5.0 with 15
iterations. The training loss was recorded at epoch
3.3335, reaching 0.9951. These variations reinforce the
earlier observation that SILo’s data complexity affects
the stability and convergence of the model during
training.

In this evaluation, the program demonstrated a
significant dependence on the characteristics of the
dataset. For the SlLo dataset, which contains more
natural and narrative-style text, the system exhibited
better performance in information extraction.
Conversely, for the SlData dataset, which is more
formal and includes many technical terminologies, the
system’s performance declined considerably. This
indicates that the system’s generalization capability
across various document styles is still limited and
requires further improvement through increased
training data variation and more refined classification
methods. These results suggest that the model is better
at identifying entities in datasets with certain structural
and editorial patterns, though enhancements are needed

both in the labeling process and in the classification
architecture to ensure more stable and accurate
performance across diverse data types.

Based on two scenario-based tests using different
datasets, there is a clear tendency for the system to
perform better when the data exhibits a more natural
and explicit structure. This is evident from the stronger
results observed on the SlLo dataset, which utilizes
operational descriptive narratives, as opposed to the
SIData dataset that employs a more rigid and
technically formatted language. The model tends to
extract entities more effectively from sentences
resembling everyday human communication. For
instance, in the SILo dataset example: “After
completing the payment, Ratna printed a receipt and
handed it over to Yakub. ... Ratna sent Yakub to the
warehouse. Yakub immediately went to the
warehouse,” the system could accurately extract entities
such as Yakub, receipt, and warehouse due to the
narrative structure. In contrast, a sentence like
“AssignmentForm consists of various attributes such as
SamplingID, TestingDevice, and SampleType which
are stored in MasterData” from the SlData dataset
proved more difficult to process due to its dense,
technical form and lack of explicit actor interactions.

Such discrepancies contribute to unstable system
performance, as reflected in the fluctuating precision,
recall, and F1-Score values across the two datasets. It is
crucial to recognize that the alignment between
extracted results and ground truth data does not rely
solely on the presence of entity names (e.g., attributes),
but also on the contextual accuracy specifically, the
correct class hierarchy to which those elements belong.
For example, while the attribute invoiceNumber may
appear in the extraction output, if it is assigned to the
class Payment or Receipt instead of Invoice (as defined
in the reference data), the system fails to classify it
correctly. Therefore, despite being lexically correct,
such attributes are considered contextually invalid and
are treated as False Negatives (FN) in the evaluation.

Similar misclassifications were observed for
attributes such as status and supplierName, where the
system extracted the correct term but linked it to the
wrong class. Even when such attributes are extracted, if
they do not match their intended contextual placement
in the reference class structure, they are still categorized
as classification errors contributing to FN rates.

During evaluation, anomalies were identified where
entities matching the ground truth terminology were
extracted but placed under incorrect class contexts.
Examples include entities like invoiceNumber and
status, which were correctly recognized but
misclassified into inappropriate categories. These
misalignments resulted in the entities being counted as
False Negatives, indicating a deeper issue in the
system’s understanding of semantic relationships and
hierarchical structures among components in the
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document. This highlights the ongoing challenge of
enabling the system to comprehend and preserve the
semantic and structural fidelity expected in UML-based
document analysis.

IV. CONSLUSION

This study proposed a method to automatically
extract conceptual elements namely classes (object),
subclasses, and attributes from scenario-based
Software  Requirements  Specification  (SRS)
documents. The process involved several stages,
including text preprocessing, noun phrase extraction
using spaCy, contextual embedding using BERT, and
classification with an SVM classifier. The extracted
candidates were then compared with the ground truth
in class diagrams to evaluate structural alignment and
accuracy. Overall, the method demonstrates the
feasibility of integrating NLP and machine learning
techniques for supporting early-stage software design
automation.

The result of the extraction process consists of
conceptual elements such as objects, subclasses, and
attributes, which are then compared with the reference
structure in the class diagram to measure their
alignment and accuracy. This research process began
with the collection and conversion of datasets in the
form of Software Requirements Specification (SRS)
documents into a compatible format, followed by text
pre-processing stages such as the removal of non-
alphabetic characters, lowercasing, and stopword
elimination. After the text cleaning phase, noun phrase
extraction was carried out using the spaCy NLP model,
which was subsequently processed using BERT vector
representations and classified using an SVM classifier
to map entities into classes, subclasses, and attributes.
Qualitatively, the primary objective of this study was
achieved, which is the development of a framework
capable of processing SRS documents and producing
outputs that can be directly compared. The developed
program has successfully identified several entities
from the text and classified them into categories of
class, subclass, or attribute, albeit with limited
precision. Quantitatively, the system performance was
evaluated using precision, recall, and F1-Score metrics
on two different datasets: SIData and SILo. The results
show that the precision values ranged from 8.3% to
16.1%, with an average of 12.2%. Recall values ranged
from 9.5% to 38.5%, with an average of 24%. The F1-
Score, which reflects the balance between precision
and recall, ranged from 8.9% to 22.9%, with an
average value of 15.9%. These values indicate that,
although the system has functioned according to its
intended purpose, the accuracy and relevance of the
extraction results still require significant improvement
for practical application in software development.

Overall, the performance of the extraction system
remains far from optimal, with low accuracy rates

across both datasets. The model tends to produce high
false positive (FP) rates and still fails to recognize a
significant portion of entities present in the reference
data.

For further study, a few specific improvements may
help strengthen the method. One is refining the
preprocessing step to handle camelcase terms, since
these often include multiple meaningful parts. It may
also help to include linguistic cues, such as Part-of-
Speech (POS) tags or the position of a noun phrase in
a sentence, which can guide more accurate
classification. Adding training data through
paraphrased or reworded sentences could improve
generalization. Using domain specific glossaries or
ontologies might also support better consistency when
dealing with specialized terms. Finally, future
evaluations should consider reporting performance
separately for classes, subclasses, and attributes to
better understand where the model performs well or
struggles.
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