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Abstract— The development of a software application 

involves a comprehensive process of defining and 

documenting software requirements. Among various 

modeling activities, sequence diagrams serve a vital role 

in illustrating dynamic interactions among system 

components. However, manually constructing these 

diagrams from natural language Software Requirements 

Specifications (SRS) is often labor-intensive, inconsistent, 

and prone to human error, especially when the text is 

complex and unstructured. This study focuses on 

automating the extraction of candidate elements 

specifically classes, subclasses, and attributes from the 

scenario sections of SRS documents. These sections are 

typically written in narrative form and are rich in 

behavioral information. The proposed method integrates 

Natural Language Processing (NLP) using Bidirectional 

Encoder Representations from Transformers (BERT) for 

contextual embeddings and a Support Vector Machine 

(SVM) classifier to categorize each noun phrase 

accordingly. Two datasets, SIData and SILo, with distinct 

domain characteristics and writing styles, were used to 

evaluate the system's performance. While the system 

demonstrates the feasibility of the approach in identifying 

relevant elements, limitations such as low precision and 

false-positive rates highlight the need for further 

refinement in classification accuracy, generalizability, 

and semantic understanding of entity relationships. 

These challenges present opportunities for future work, 

including improvements in preprocessing strategies, data 

augmentation, and the use of ontologies for domain-

specific consistency. 

Index Terms—Software Requirement Specifications; 

Class Diagram; Sequence Diagram; Class Extraction; 

UML; Natural Language Processing; SVM; Scenario; 

Scenario in SRS;  

I. INTRODUCTION 

The Unified Modeling Language (UML) has long 

been used as a standard way to describe how software 

systems are structured and how they behave. As noted 

by the Object Management Group (OMG), UML acts 

as a general-purpose visual language that helps various 

stakeholders understand and communicate the 

system’s design elements. Among the many diagrams 

in UML, class diagrams are typically used to show the 

system’s static structure, while sequence diagrams 

focus more on how components interact over time. 

These diagrams are valuable not only for 

communication but also for documenting and 

maintaining complex systems throughout the 

development lifecycle. 

In real-world software engineering, the Software 

Requirements Specification (SRS) is one of the most 

crucial documents [1]. It outlines what the system 

should be able to do covering both functional and non-

functional aspects. Often, the SRS contains narrative 

scenarios to help convey system behavior in a more 

intuitive way. Converting these narratives into 

structured diagrams such as class or sequence diagrams 

is essential, but doing it manually can be time-

consuming, prone to errors, and difficult to maintain 

especially when the system grows more complex [2]. 

method for classifying sentences in Software 

Requirements Specifications (SRS) using Natural 

Language Processing (NLP) techniques and BERT 

embeddings. Their work highlights the effectiveness of 

deep contextual representation in improving the 

understanding of requirement-related sentences in 

software documentation [3]. 

Several researchers have tried to address this problem. 

For example, Yang and Sahraoui [4] highlighted how 

tricky it is to convert natural language into UML 

because of the ambiguity and inconsistency of human 

language. Others, like Shweta et al [5], began 

experimenting with transformer models to get better at 

identifying diagram components in textual 

requirements. Malik et al. [6] used BERT to pick out 

specific entities from SRS documents, and Ferrari et al.  

[7] looked into how large language models (LLMs) 

could help generate sequence diagrams automatically. 

These efforts show that there's growing interest in 

using Natural Language Processing (NLP) to simplify 

software modeling. [8] Even so, a number of 

challenges remain. One of the biggest gaps is in 

extracting fine-grained elements like deciding whether 

a noun phrase refers to a class, a subclass, or just an 

attribute. This becomes even more difficult when the 

system relies on scenario sections, which are usually 

written in free-form narratives. These parts can be rich 
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in context but hard for machines to understand without 

deeper language processing. 

That’s where this study comes in. We propose a 

method to automatically extract useful UML entities 

specifically candidate classes, subclasses, and 

attributes from the scenario sections in SRS 

documents. To do this, we combine the power of 

BERT embeddings with a Support Vector Machine 

(SVM) classifier that assigns each noun phrase to the 

right category based on its context [9]. The idea is to 

create a rough structure that can later support the 

construction of sequence diagrams. 

To see how well this method works, we tested it on 

two different datasets: SIData and SILo. The SIData 

and SILo datasets used in this study were specifically 

selected due to their completeness and availability of 

both Software Requirements Specifications (SRS) and 

corresponding class diagrams, which are essential for 

evaluation. The SIData dataset originates from an 

internal project related to environmental assessment 

systems, while SILo is derived from a logistics 

information system used in academic environments. 

Both datasets were obtained from the Department of 

Informatics, Institut Teknologi Sepuluh Nopember 

(ITS), Indonesia. The SIData dataset has more 

technical and domain-specific language, while the 

SILo dataset uses a more narrative tone, similar to how 

people describe scenarios in real-life situations. This 

contrast helps us see how flexible and reliable our 

method is across different writing styles. In our 

evaluation, we used common metrics like precision, 

recall, and F1-score to measure how accurately the 

system could identify and classify the elements. The 

results gave us useful insights into where the system 

performs well and where it still needs improvement. 

II. METHODOLOGY 

This section outlines the methodological framework 

employed to automatically extract class-related 

elements from scenario-based Software Requirements 

Specifications (SRS). The process consists of several 

sequential steps, beginning with the extraction of noun 

phrases from the scenario text using BERT 

embeddings, followed by classification of these 

phrases into class candidates. The extracted elements 

are then compiled and compared with ground truth data 

derived from corresponding class diagrams to evaluate 

the system’s accuracy. Each step is designed to ensure 

a systematic and replicable approach for validating the 

effectiveness of the proposed method as can be seen in 

Fig 1. 

 
Fig. 1. Methodology 

A. Extraction of Scenario in SRS Scenario using 

BERT 

This stage focuses on capturing user interaction 

flows with the system as described in the functional 

requirements. Specifically, the research concentrates 

on processing only the scenario sections of SRS 

documents, as these are considered the most 

informative for identifying critical entities namely, 

classes, subclasses, and attributes which will later form 

part of the class diagram model [10].  

The rationale behind focusing on scenarios stems 

from prior studies, which have shown that scenario 

narratives often encapsulate rich behavioral 

information essential for generating models such as 

sequence or class diagrams. In this study, the dataset 

used is stored in plain text (.txt) format. One example 

is a scenario excerpt from the SIData dataset, as shown 

in Fig. 2. 

To extract relevant information, the text undergoes 

several Natural Language Processing (NLP) steps. 

These include noun phrase identification using the 

spaCy library [11], followed by embedding 

representations using BERT. These embeddings are 

then classified into predefined categories (class, 

subclass, attribute) using a Support Vector Machine 

(SVM) classifier. This hybrid technique aligns with 

recent advancements in contextual entity recognition, 

which have demonstrated high performance in 

extracting domain-relevant entities from unstructured 

documents. Implemented BERT models to classify of 

contextual embeddings and sequential modeling can 

yield strong classification performance on sentiment-

based datasets [12]. In a comparative analysis, 

examined the influence of different pre-trained models 

on the accuracy of BERT for text classification, 

emphasizing the importance of selecting suitable base 

models to optimize performance in domain-specific 

tasks [13]. 

The extracted entities are then evaluated by comparing 

them with the reference class diagrams, which have 

been manually constructed and serve as the ground 

truth for this experiment. 
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Fig. 2. Scenario of SIData 

B. Compilation and Classification of Extraction 

Results using SVM 

 

Fig. 3. Extraction Process 

The preprocessing phase starts by cleaning the raw 

text to remove non-alphabetic characters, converting all 

words to lowercase, and eliminating stopwords. These 

are common techniques in Natural Language 

Processing (NLP) workflows, aimed at minimizing 

noise and improving the performance of later 

processing steps . After the text is cleaned, noun phrases 

are identified using spaCy’s built-in linguistic features, 

which rely on part-of-speech (POS) tagging and 

syntactic dependency parsing to detect meaningful 

noun chunks. 

Next, each identified noun phrase is transformed 

into a contextual embedding using a BERT model that 

has been fine-tuned specifically for the task of entity 

classification in software requirement texts. This fine-

tuning process involves training BERT on manually 

annotated scenario data from SRS documents and 

appending a classification layer to label each noun 

phrase as a class, subclass, or attribute [14]. 

To improve categorization accuracy, these BERT-

generated embeddings are then passed to a Support 

Vector Machine (SVM) classifier. The process consists 

of several sequential steps, beginning with the 

extraction of noun phrases from the scenario text using 

BERT embeddings. These embeddings are then fed into 

a Support Vector Machine (SVM) classifier to 

distinguish between valid and non-valid class 

candidates, as illustrated in Fig. 3. The extracted 

elements are then compiled and compared with ground 

truth data derived from corresponding class diagrams to 

evaluate the system’s accuracy. Each step is designed 

to ensure a systematic and replicable approach for 

validating the effectiveness of the proposed method. 

This hybrid method leveraging deep contextual 

understanding from BERT alongside the robustness of 

SVM decision boundaries has been shown in previous 

studies to yield reliable results in entity classification 

tasks [15]. Support Vector Machine (SVM) approach to 

classif. The study confirmed the robustness of SVM in 

handling tasks with limited training data [16]. 

C. Comparison with Ground Truth 

To assess the effectiveness of the proposed 

extraction method, an evaluation was conducted by 

comparing the extracted entities with a manually 

constructed class diagram, which serves as the ground 

truth. This comparison focuses on identifying matches 

between the predicted and actual elements, including 

class names, attributes, and subclass hierarchies. 

To facilitate automated comparison, the reference 

class diagram was converted into a structured JSON 

format, enabling consistent parsing and element-wise 

alignment . The evaluation process then involves 

checking for the presence or absence of each predicted 

entity within the reference diagram. 

Through this approach, the system's performance is 

quantitatively assessed, providing insight into its 

accuracy and relevance in identifying meaningful 

entities. Metrics such as precision, recall, and F1-score 

are used to measure how well the extracted results 

align with the expected outputs, thereby reflecting the 

practical applicability of the method in real-world 

software modeling tasks. 

D. Accuracy Evaluation 

The performance of the proposed extraction 

method is evaluated using a set of well-established 

metrics: accuracy, precision, recall, and F1-score.  

quantifies how many of the elements identified by the 

system are actually correct, while recall measures how 

many of the relevant elements present in the ground 

truth were successfully detected. The F1-score, serving 

as the harmonic mean of precision and recall, provides 

a balanced indicator of the system’s ability to minimize 

both false positives and false negatives. 

Beyond these core metrics, a descriptive statistical 

analysis is also performed to gain deeper insight into 

the model's performance. This includes calculating the 

minimum, maximum, mean, and standard deviation for 

each entity category namely class, subclass, and 

attribute [17]. The minimum and maximum values 

indicate the range of model performance, highlighting 

its best and worst outcomes across the evaluation. The 

mean reflects the central tendency, offering a general 

impression of accuracy across multiple test cases [18]. 

Meanwhile, the standard deviation captures the degree 

of performance variability, providing an indirect 

measure of the model’s consistency and reliability 

when applied to datasets with differing linguistic 

characteristics. 
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Table 1. Confusion Matrix for Entity Extraction 

Dataset True 

Positive 

False 

Positive 

False 

Negative 

SIData 2 27 18 

SILo 3 24 9 

The information extraction process using the BERT 

and SVM approach revealed that the overall 

performance of the system could not yet be classified 

as satisfactory. This is reflected in the evaluation 

metrics precision, recall, and F1-score which tend to be 

relatively low. Based on the evaluation results, the 

obtained performance metrics indicate the extent to 

which the system succeeded in accurately extracting 

information from the SRS documents, as presented in 

Table 2. 

 

Table 2. Performance Evaluation  

Dataset Accuracy Precision Recall F1-Score 

SIData 4.2 0.069 0.10 0.250 

SILo 8.3 0.111 0.25 0,157 

To gain deeper insights into the classification 

performance of the BERT and SVM model across two 

datasets SIData and SILo a visual evaluation was 

conducted using a whisker plot. This diagram provides 

an intuitive overview of the distribution of three key 

metrics: precision, recall, and F1-score. Powers argues 

that common metrics (precision, recall, F1-score) can 

be misleading without understanding underlying 

biases. It explores alternative metrics like 

informedness and Markedness for a more principled 

evaluation [19]. This consolidates common 

performance metrics for classification and provides 

guidance on when to apply statistical significance 

testing [20]. 

For the SIData dataset, the plot reveals a tightly 

clustered boxplot within the lower range (below 0.10), 

highlighting the model’s overall poor performance in 

identifying and categorizing entities accurately. 

Specifically, the model achieved a precision of 0.069, 

recall of 0.100, and F1-score of 0.082. The short 

whiskers in Figure 5 further reinforce this outcome, 

indicating low variance and minimal dispersion among 

prediction results suggesting that most classification 

attempts consistently performed poorly. 

In contrast, the SILo dataset exhibits a broader 

distribution and noticeably improved metric values. 

The model attained a precision of 0.111, recall of 

0.250, and F1-score of 0.157, with the whisker plot 

showing longer whiskers and a wider interquartile 

range. This implies greater variability in the model's 

performance and a modest improvement in its ability 

to generalize across different types of textual 

structures. Although the overall precision remains 

relatively low, the wider distribution reflects the 

model's potential to more effectively capture relevant 

phrases in less rigid, narrative-style documents such as 

those in the SILo dataset. 

 
Fig. 5. Whisker Plot of Dataset 

The observed differences in performance 

distribution between the two datasets can be attributed 

to their inherent linguistic characteristics. The SIData 

dataset generally features more informal and context-

dependent phrasing, which introduces ambiguity and 

challenges in accurately identifying and classifying 

entities. In contrast, the SILo dataset is composed of 

more structured and repetitive terminology, often 

found in formal technical documentation, which aids in 

improving classification consistency. Furthermore, 

disparities in the total number of noun phrases, as well 

as the syntactic clarity of those phrases, play a 

significant role in influencing the classification 

performance across both datasets. 

III. RESULT AND DISCUSSION 

 

Fig. 6. Training loss of Dataset 

The figure above illustrates a comparative analysis 

of training and validation loss curves observed during 

the BERT fine-tuning process across several epochs, 

using the SIData and SILo datasets. The orange line 

depicts the validation loss for the SIData dataset, which 

demonstrates a steady decline from epoch 1 through 

epoch 5. This downward trend suggests a stable and 

consistent learning process. The red dot, positioned at 

epoch 5, represents the training loss at that stage, 

providing a benchmark for evaluating how well the 

model has learned. 

On the other hand, the blue line, which corresponds 

to the SILo dataset, shows a more erratic validation loss 

trajectory. Notably, there is a temporary increase in 

validation loss at epoch 3 before it eventually decreases 
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to its lowest point at epoch 5. The green dots indicate 

training loss values captured at various epochs, offering 

further insight into the model’s convergence behavior. 

This fluctuation suggests that the SILo dataset presents 

greater variability or complexity, which may challenge 

the model's ability to consistently internalize training 

patterns. 

Table 3. Training Log of SIData 

Epoch Iteration Training 

Loss 

Validation Loss 

1.0 2 - 1.1422637701034546 

2.0 4 - 1.1105989217758179 

3.0 6 - 1.0732616186141968 

4.0 8 - 1.048999309539795 

5.0 10 1.0507 - 

5.0 10 - 1.0393873453140259 

 
Table 4. Training Log of SILo 

Epoch Iteration Training 

Loss 
Validation Loss 

1.0 3 - 0.9941515326499939 

2.0 6 - 0.9894852042198181 

3.0 9 - 1.0273746252059937 

3.3335 10 0.9951 - 

4.0 12 - 1.0067888498306274 

5.0 15 - 0.9593325257301331 

Tables 3 and 4 display the detailed training logs of 

the BERT fine-tuning process for both SIData and SILo 

datasets, including the training loss and validation loss 

values across various epochs and iterations. For SIData 

(Table 3), the validation loss shows a consistent decline 

from epoch 1.0 to epoch 5.0, indicating a steady 

learning curve. The lowest validation loss, 

1.039837435140259, was achieved at epoch 5.0 with 

10 iterations, while the only recorded training loss value 

was 1.0507 at epoch 5.0 with 1 iteration. 

In contrast, Table 4 illustrates the SILo dataset’s 

training progression, where validation loss exhibits 

more fluctuation. Despite a slight increase at epoch 3.0, 

the validation loss eventually decreased to its lowest 

value of 0.9593325257301331 at epoch 5.0 with 15 

iterations. The training loss was recorded at epoch 

3.3335, reaching 0.9951. These variations reinforce the 

earlier observation that SILo’s data complexity affects 

the stability and convergence of the model during 

training. 

In this evaluation, the program demonstrated a 

significant dependence on the characteristics of the 

dataset. For the SILo dataset, which contains more 

natural and narrative-style text, the system exhibited 

better performance in information extraction. 

Conversely, for the SIData dataset, which is more 

formal and includes many technical terminologies, the 

system’s performance declined considerably. This 

indicates that the system’s generalization capability 

across various document styles is still limited and 

requires further improvement through increased 

training data variation and more refined classification 

methods. These results suggest that the model is better 

at identifying entities in datasets with certain structural 

and editorial patterns, though enhancements are needed 

both in the labeling process and in the classification 

architecture to ensure more stable and accurate 

performance across diverse data types. 

Based on two scenario-based tests using different 

datasets, there is a clear tendency for the system to 

perform better when the data exhibits a more natural 

and explicit structure. This is evident from the stronger 

results observed on the SILo dataset, which utilizes 

operational descriptive narratives, as opposed to the 

SIData dataset that employs a more rigid and 

technically formatted language. The model tends to 

extract entities more effectively from sentences 

resembling everyday human communication. For 

instance, in the SILo dataset example: “After 

completing the payment, Ratna printed a receipt and 

handed it over to Yakub. ... Ratna sent Yakub to the 

warehouse. Yakub immediately went to the 

warehouse,” the system could accurately extract entities 

such as Yakub, receipt, and warehouse due to the 

narrative structure. In contrast, a sentence like 

“AssignmentForm consists of various attributes such as 

SamplingID, TestingDevice, and SampleType which 

are stored in MasterData” from the SIData dataset 

proved more difficult to process due to its dense, 

technical form and lack of explicit actor interactions. 

Such discrepancies contribute to unstable system 

performance, as reflected in the fluctuating precision, 

recall, and F1-Score values across the two datasets. It is 

crucial to recognize that the alignment between 

extracted results and ground truth data does not rely 

solely on the presence of entity names (e.g., attributes), 

but also on the contextual accuracy specifically, the 

correct class hierarchy to which those elements belong. 

For example, while the attribute invoiceNumber may 

appear in the extraction output, if it is assigned to the 

class Payment or Receipt instead of Invoice (as defined 

in the reference data), the system fails to classify it 

correctly. Therefore, despite being lexically correct, 

such attributes are considered contextually invalid and 

are treated as False Negatives (FN) in the evaluation. 

Similar misclassifications were observed for 

attributes such as status and supplierName, where the 

system extracted the correct term but linked it to the 

wrong class. Even when such attributes are extracted, if 

they do not match their intended contextual placement 

in the reference class structure, they are still categorized 

as classification errors contributing to FN rates. 

During evaluation, anomalies were identified where 

entities matching the ground truth terminology were 

extracted but placed under incorrect class contexts. 

Examples include entities like invoiceNumber and 

status, which were correctly recognized but 

misclassified into inappropriate categories. These 

misalignments resulted in the entities being counted as 

False Negatives, indicating a deeper issue in the 

system’s understanding of semantic relationships and 

hierarchical structures among components in the 



 

 

 

 

Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 16, No. 2 | December 2025 59 

 

ISSN 2085-4579 

document. This highlights the ongoing challenge of 

enabling the system to comprehend and preserve the 

semantic and structural fidelity expected in UML-based 

document analysis. 

IV. CONSLUSION 

This study proposed a method to automatically 

extract conceptual elements namely classes (object), 

subclasses, and attributes from scenario-based 

Software Requirements Specification (SRS) 

documents. The process involved several stages, 

including text preprocessing, noun phrase extraction 

using spaCy, contextual embedding using BERT, and 

classification with an SVM classifier. The extracted 

candidates were then compared with the ground truth 

in class diagrams to evaluate structural alignment and 

accuracy. Overall, the method demonstrates the 

feasibility of integrating NLP and machine learning 

techniques for supporting early-stage software design 

automation. 

The result of the extraction process consists of 

conceptual elements such as objects, subclasses, and 

attributes, which are then compared with the reference 

structure in the class diagram to measure their 

alignment and accuracy. This research process began 

with the collection and conversion of datasets in the 

form of Software Requirements Specification (SRS) 

documents into a compatible format, followed by text 

pre-processing stages such as the removal of non-

alphabetic characters, lowercasing, and stopword 

elimination. After the text cleaning phase, noun phrase 

extraction was carried out using the spaCy NLP model, 

which was subsequently processed using BERT vector 

representations and classified using an SVM classifier 

to map entities into classes, subclasses, and attributes. 

Qualitatively, the primary objective of this study was 

achieved, which is the development of a framework 

capable of processing SRS documents and producing 

outputs that can be directly compared. The developed 

program has successfully identified several entities 

from the text and classified them into categories of 

class, subclass, or attribute, albeit with limited 

precision. Quantitatively, the system performance was 

evaluated using precision, recall, and F1-Score metrics 

on two different datasets: SIData and SILo. The results 

show that the precision values ranged from 8.3% to 

16.1%, with an average of 12.2%. Recall values ranged 

from 9.5% to 38.5%, with an average of 24%. The F1-

Score, which reflects the balance between precision 

and recall, ranged from 8.9% to 22.9%, with an 

average value of 15.9%. These values indicate that, 

although the system has functioned according to its 

intended purpose, the accuracy and relevance of the 

extraction results still require significant improvement 

for practical application in software development. 

Overall, the performance of the extraction system 

remains far from optimal, with low accuracy rates 

across both datasets. The model tends to produce high 

false positive (FP) rates and still fails to recognize a 

significant portion of entities present in the reference 

data. 

For further study, a few specific improvements may 

help strengthen the method. One is refining the 

preprocessing step to handle camelcase terms, since 

these often include multiple meaningful parts. It may 

also help to include linguistic cues, such as Part-of-

Speech (POS) tags or the position of a noun phrase in 

a sentence, which can guide more accurate 

classification. Adding training data through 

paraphrased or reworded sentences could improve 

generalization. Using domain specific glossaries or 

ontologies might also support better consistency when 

dealing with specialized terms. Finally, future 

evaluations should consider reporting performance 

separately for classes, subclasses, and attributes to 

better understand where the model performs well or 

struggles. 

REFERENCES 

 

[1]  A. Ferrari, “From Natural Language Requirements to 

Sequence Diagrams via Large Language Models,” Proc. 31st 
IEEE Int. Requirements Engineering Conf. (RE’23), IEEE, 

pp. 220–231, 2023. doi: 10.1109/RE57524.2023.00032.  

[2]  A. Ferrari, "Model Generation with LLMs: From 
Requirements to UML Sequence Diagrams," in IEEE, DOI: 

10.1109/REW61692.2024.00044, 2024.  

[3]  H. Casanova, "BERT_SE: A Pre-trained Language 

Representation Model for Software Engineering," ULTIMA 

InfoSys: Jurnal Ilmu Sistem Informasi, vol. 14, no. 2, pp. 
139–148, 2021. doi: 10.31937/si.v14i2.1750.  

[4]  H. Yang, "Towards Automatically Extracting UML Class 

Diagrams from Natural Language Specifications," in 
Proceedings of the 27th IEEE International Conference on 

Software Analysis, Evolution and Reengineering (SANER), 

London, ON, Canada, pp. 548–552, 2020. doi: 
10.1109/SANER48235.2020.9055078  

[5]  S. Shweta, "Advancing Class Diagram Extraction from 

Requirement Text: A Transformer Based Approach," in 
Proceedings of the 61st Annual Meeting of the Association 

for Computational Linguistics (ACL), New Delhi, India, 

2023. doi: 10.18653/v1/2023.acl-long.872  

[6]  M. Malik, "BERT Based Domain Entity Recognition in 

Software Requirements," IEEE Access, vol. 9, pp. 73096–

73105, 2021. doi: 10.1109/ACCESS.2021.3081234 

[7]  G. Kmetty, R. Gulyás, and A. Nyisztor, "Boosting 

classification reliability of NLP transformer models," 

Information Processing & Management, vol. 60, no. 2, p. 
103254, 2023. doi: 10.1016/j.ipm.2022.103254  

[8]  P. K. Mahajan and R. Mahajan, "Information extraction using 

NLP techniques," Journal of King Saud University - 
Computer and Information Sciences, vol. 34, no. 5, pp. 1949–

1957, 2022. doi: 10.1016/j.jksuci.2020.05.004  

[9]  S. Yang and H. Sahraoui, "Towards Automatically 

Extracting UML Class Diagrams from Natural Language 

Specifications," in Proceedings of the 2020 IEEE 27th 

International Conference on Software Analysis, Evolution 
and Reengineering (SANER), London, ON, Canada, 2022, 

pp. 573–577. doi: 10.1109/SANER48235.2020.9055078   

[10] R. M. Putra and N. Yudistira, “Extractive Text 
Summarization Using BERT-Based Model on Bahasa 



 

 

 

 

60 Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 16, No. 2 | December 2025 

 

ISSN 2085-4579 

Indonesia Scientific Articles,” ULTIMA InfoSys: Jurnal Ilmu 

Sistem Informasi, vol. 14, no. 2, pp. 128–138, 2023. doi: 
10.31937/si.v14i2.3021 

[11]  N. Yudistira, "Analisis Pengaruh Pre-Trained Model 

Terhadap Akurasi Model BERT Untuk Klasifikasi Teks," 
ULTIMA InfoSys: Jurnal Ilmu Sistem Informasi, vol. 13, no. 

2, p. 98–106, 2022. 

[12]  H. Zhaou, “A Survey of Deep Learning Approaches for 
NLP,” ACM Transactions on Intelligent Systems and 

Technology (TIST), vol. 11, no. 5, Article 49, pp. 1–41, 2020. 

doi: 10.1145/3383316  

[13]  N. Yudistira, "Penerapan Support Vector Machine dalam 

Klasifikasi Emosi pada Ulasan Produk," ULTIMA InfoSys: 
Jurnal Ilmu Sistem Informasi, vol. 112–120, no. 2, p. 12, 

2021.  

[14]  Y. Li, "Automatic UML Class Diagram Generation from 
Natural Language Requirements Using BERT and Graph 

Convolutional Networks," IEEE Access, vol. 10, pp. 31207–

31219, 2022. doi: 10.1109/ACCESS.2022.3156205  

[15]  J. Devlin, M. Chang, K. Lee, and K. Toutanova, "BERT: Pre-

training of deep bidirectional transformers for language 

understanding," in Proc. of the 2019 Conf. of the North 
American Chapter of the Association for Computational 

Linguistics: Human Language Technologies (NAACL-HLT), 

vol. 1, pp. 4171–4186, 2019. doi: 10.18653/v1/N19-1423  
 

[16]  T. Wolf et al., "Transformers: State-of-the-art natural 

language processing," in Proceedings of the 2020 Conference 
on Empirical Methods in Natural Language Processing: 

System Demonstrations (EMNLP), pp. 38–45, 2020. doi: 

10.18653/v1/2020.emnlp-demos.6 

[17]  Yildirim, "Adaptive Fine-tuning for Multiclass Classification 

over Software Requirement Data," 2023.  

[18]  T. Okuda, A. Okada, and Y. Morikawa, "Transformation 
Method from Scenario to Sequence Diagram," in 

Proceedings of the 10th International Joint Conference on 

Knowledge Discovery, Knowledge Engineering and 
Knowledge Management (IC3K), vol. 1: KDIR, pp. 136–143, 

2018. 

[19] D. M. W. Powers, “Evaluation: From Precision, Recall and 

F-Measure to ROC, Informedness, Markedness & 

Correlation,” arXiv preprint, Oct. 2020. 
doi:10.48550/arXiv.2010.16061. 

[20]  A. Author et al., “Evaluation metrics and statistical tests for 

machine learning,” Scientific Reports, vol. 13, article 9821, 
May 2023. doi:10.1038/s41598-024-56706-x. 

  

  

 

 

 

 


