

54 Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 16, No. 2 | December 2025

ISSN 2085-4579

Extraction of Class Candidates from Scenario

in Software Requirements Specifications

Rasi Aziizah Andrahsmara1, Daniel Oranova Siahaan2

1,2 Departement of Informatics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
1 rasiaziza@gmail.com

2 daniel@if.its.ac.id

Accepted on July 08th, 2025

Approved on July 24th, 2025

Abstract— The development of a software application

involves a comprehensive process of defining and

documenting software requirements. Among various

modeling activities, sequence diagrams serve a vital role

in illustrating dynamic interactions among system

components. However, manually constructing these

diagrams from natural language Software Requirements

Specifications (SRS) is often labor-intensive, inconsistent,

and prone to human error, especially when the text is

complex and unstructured. This study focuses on

automating the extraction of candidate elements

specifically classes, subclasses, and attributes from the

scenario sections of SRS documents. These sections are

typically written in narrative form and are rich in

behavioral information. The proposed method integrates

Natural Language Processing (NLP) using Bidirectional

Encoder Representations from Transformers (BERT) for

contextual embeddings and a Support Vector Machine

(SVM) classifier to categorize each noun phrase

accordingly. Two datasets, SIData and SILo, with distinct

domain characteristics and writing styles, were used to

evaluate the system's performance. While the system

demonstrates the feasibility of the approach in identifying

relevant elements, limitations such as low precision and

false-positive rates highlight the need for further

refinement in classification accuracy, generalizability,

and semantic understanding of entity relationships.

These challenges present opportunities for future work,

including improvements in preprocessing strategies, data

augmentation, and the use of ontologies for domain-

specific consistency.

Index Terms—Software Requirement Specifications;

Class Diagram; Sequence Diagram; Class Extraction;

UML; Natural Language Processing; SVM; Scenario;

Scenario in SRS;

I. INTRODUCTION

The Unified Modeling Language (UML) has long

been used as a standard way to describe how software

systems are structured and how they behave. As noted

by the Object Management Group (OMG), UML acts

as a general-purpose visual language that helps various

stakeholders understand and communicate the

system’s design elements. Among the many diagrams

in UML, class diagrams are typically used to show the

system’s static structure, while sequence diagrams

focus more on how components interact over time.

These diagrams are valuable not only for

communication but also for documenting and

maintaining complex systems throughout the

development lifecycle.

In real-world software engineering, the Software

Requirements Specification (SRS) is one of the most

crucial documents [1]. It outlines what the system

should be able to do covering both functional and non-

functional aspects. Often, the SRS contains narrative

scenarios to help convey system behavior in a more

intuitive way. Converting these narratives into

structured diagrams such as class or sequence diagrams

is essential, but doing it manually can be time-

consuming, prone to errors, and difficult to maintain

especially when the system grows more complex [2].

method for classifying sentences in Software

Requirements Specifications (SRS) using Natural

Language Processing (NLP) techniques and BERT

embeddings. Their work highlights the effectiveness of

deep contextual representation in improving the

understanding of requirement-related sentences in

software documentation [3].

Several researchers have tried to address this problem.

For example, Yang and Sahraoui [4] highlighted how

tricky it is to convert natural language into UML

because of the ambiguity and inconsistency of human

language. Others, like Shweta et al [5], began

experimenting with transformer models to get better at

identifying diagram components in textual

requirements. Malik et al. [6] used BERT to pick out

specific entities from SRS documents, and Ferrari et al.

[7] looked into how large language models (LLMs)

could help generate sequence diagrams automatically.

These efforts show that there's growing interest in

using Natural Language Processing (NLP) to simplify

software modeling. [8] Even so, a number of

challenges remain. One of the biggest gaps is in

extracting fine-grained elements like deciding whether

a noun phrase refers to a class, a subclass, or just an

attribute. This becomes even more difficult when the

system relies on scenario sections, which are usually

written in free-form narratives. These parts can be rich

mailto:rasiaziza@gmail.com
mailto:daniel@if.its.ac.id

Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 16, No. 2 | December 2025 55

ISSN 2085-4579

in context but hard for machines to understand without

deeper language processing.

That’s where this study comes in. We propose a

method to automatically extract useful UML entities

specifically candidate classes, subclasses, and

attributes from the scenario sections in SRS

documents. To do this, we combine the power of

BERT embeddings with a Support Vector Machine

(SVM) classifier that assigns each noun phrase to the

right category based on its context [9]. The idea is to

create a rough structure that can later support the

construction of sequence diagrams.

To see how well this method works, we tested it on

two different datasets: SIData and SILo. The SIData

and SILo datasets used in this study were specifically

selected due to their completeness and availability of

both Software Requirements Specifications (SRS) and

corresponding class diagrams, which are essential for

evaluation. The SIData dataset originates from an

internal project related to environmental assessment

systems, while SILo is derived from a logistics

information system used in academic environments.

Both datasets were obtained from the Department of

Informatics, Institut Teknologi Sepuluh Nopember

(ITS), Indonesia. The SIData dataset has more

technical and domain-specific language, while the

SILo dataset uses a more narrative tone, similar to how

people describe scenarios in real-life situations. This

contrast helps us see how flexible and reliable our

method is across different writing styles. In our

evaluation, we used common metrics like precision,

recall, and F1-score to measure how accurately the

system could identify and classify the elements. The

results gave us useful insights into where the system

performs well and where it still needs improvement.

II. METHODOLOGY

This section outlines the methodological framework

employed to automatically extract class-related

elements from scenario-based Software Requirements

Specifications (SRS). The process consists of several

sequential steps, beginning with the extraction of noun

phrases from the scenario text using BERT

embeddings, followed by classification of these

phrases into class candidates. The extracted elements

are then compiled and compared with ground truth data

derived from corresponding class diagrams to evaluate

the system’s accuracy. Each step is designed to ensure

a systematic and replicable approach for validating the

effectiveness of the proposed method as can be seen in

Fig 1.

Fig. 1. Methodology

A. Extraction of Scenario in SRS Scenario using

BERT

This stage focuses on capturing user interaction

flows with the system as described in the functional

requirements. Specifically, the research concentrates

on processing only the scenario sections of SRS

documents, as these are considered the most

informative for identifying critical entities namely,

classes, subclasses, and attributes which will later form

part of the class diagram model [10].

The rationale behind focusing on scenarios stems

from prior studies, which have shown that scenario

narratives often encapsulate rich behavioral

information essential for generating models such as

sequence or class diagrams. In this study, the dataset

used is stored in plain text (.txt) format. One example

is a scenario excerpt from the SIData dataset, as shown

in Fig. 2.

To extract relevant information, the text undergoes

several Natural Language Processing (NLP) steps.

These include noun phrase identification using the

spaCy library [11], followed by embedding

representations using BERT. These embeddings are

then classified into predefined categories (class,

subclass, attribute) using a Support Vector Machine

(SVM) classifier. This hybrid technique aligns with

recent advancements in contextual entity recognition,

which have demonstrated high performance in

extracting domain-relevant entities from unstructured

documents. Implemented BERT models to classify of

contextual embeddings and sequential modeling can

yield strong classification performance on sentiment-

based datasets [12]. In a comparative analysis,

examined the influence of different pre-trained models

on the accuracy of BERT for text classification,

emphasizing the importance of selecting suitable base

models to optimize performance in domain-specific

tasks [13].

The extracted entities are then evaluated by comparing

them with the reference class diagrams, which have

been manually constructed and serve as the ground

truth for this experiment.

56 Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 16, No. 2 | December 2025

ISSN 2085-4579

Fig. 2. Scenario of SIData

B. Compilation and Classification of Extraction

Results using SVM

Fig. 3. Extraction Process

The preprocessing phase starts by cleaning the raw

text to remove non-alphabetic characters, converting all

words to lowercase, and eliminating stopwords. These

are common techniques in Natural Language

Processing (NLP) workflows, aimed at minimizing

noise and improving the performance of later

processing steps . After the text is cleaned, noun phrases

are identified using spaCy’s built-in linguistic features,

which rely on part-of-speech (POS) tagging and

syntactic dependency parsing to detect meaningful

noun chunks.

Next, each identified noun phrase is transformed

into a contextual embedding using a BERT model that

has been fine-tuned specifically for the task of entity

classification in software requirement texts. This fine-

tuning process involves training BERT on manually

annotated scenario data from SRS documents and

appending a classification layer to label each noun

phrase as a class, subclass, or attribute [14].

To improve categorization accuracy, these BERT-

generated embeddings are then passed to a Support

Vector Machine (SVM) classifier. The process consists

of several sequential steps, beginning with the

extraction of noun phrases from the scenario text using

BERT embeddings. These embeddings are then fed into

a Support Vector Machine (SVM) classifier to

distinguish between valid and non-valid class

candidates, as illustrated in Fig. 3. The extracted

elements are then compiled and compared with ground

truth data derived from corresponding class diagrams to

evaluate the system’s accuracy. Each step is designed

to ensure a systematic and replicable approach for

validating the effectiveness of the proposed method.

This hybrid method leveraging deep contextual

understanding from BERT alongside the robustness of

SVM decision boundaries has been shown in previous

studies to yield reliable results in entity classification

tasks [15]. Support Vector Machine (SVM) approach to

classif. The study confirmed the robustness of SVM in

handling tasks with limited training data [16].

C. Comparison with Ground Truth

To assess the effectiveness of the proposed

extraction method, an evaluation was conducted by

comparing the extracted entities with a manually

constructed class diagram, which serves as the ground

truth. This comparison focuses on identifying matches

between the predicted and actual elements, including

class names, attributes, and subclass hierarchies.

To facilitate automated comparison, the reference

class diagram was converted into a structured JSON

format, enabling consistent parsing and element-wise

alignment . The evaluation process then involves

checking for the presence or absence of each predicted

entity within the reference diagram.

Through this approach, the system's performance is

quantitatively assessed, providing insight into its

accuracy and relevance in identifying meaningful

entities. Metrics such as precision, recall, and F1-score

are used to measure how well the extracted results

align with the expected outputs, thereby reflecting the

practical applicability of the method in real-world

software modeling tasks.

D. Accuracy Evaluation

The performance of the proposed extraction

method is evaluated using a set of well-established

metrics: accuracy, precision, recall, and F1-score.

quantifies how many of the elements identified by the

system are actually correct, while recall measures how

many of the relevant elements present in the ground

truth were successfully detected. The F1-score, serving

as the harmonic mean of precision and recall, provides

a balanced indicator of the system’s ability to minimize

both false positives and false negatives.

Beyond these core metrics, a descriptive statistical

analysis is also performed to gain deeper insight into

the model's performance. This includes calculating the

minimum, maximum, mean, and standard deviation for

each entity category namely class, subclass, and

attribute [17]. The minimum and maximum values

indicate the range of model performance, highlighting

its best and worst outcomes across the evaluation. The

mean reflects the central tendency, offering a general

impression of accuracy across multiple test cases [18].

Meanwhile, the standard deviation captures the degree

of performance variability, providing an indirect

measure of the model’s consistency and reliability

when applied to datasets with differing linguistic

characteristics.

Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 16, No. 2 | December 2025 57

ISSN 2085-4579

Table 1. Confusion Matrix for Entity Extraction

Dataset True

Positive

False

Positive

False

Negative

SIData 2 27 18

SILo 3 24 9

The information extraction process using the BERT

and SVM approach revealed that the overall

performance of the system could not yet be classified

as satisfactory. This is reflected in the evaluation

metrics precision, recall, and F1-score which tend to be

relatively low. Based on the evaluation results, the

obtained performance metrics indicate the extent to

which the system succeeded in accurately extracting

information from the SRS documents, as presented in

Table 2.

Table 2. Performance Evaluation

Dataset Accuracy Precision Recall F1-Score

SIData 4.2 0.069 0.10 0.250

SILo 8.3 0.111 0.25 0,157

To gain deeper insights into the classification

performance of the BERT and SVM model across two

datasets SIData and SILo a visual evaluation was

conducted using a whisker plot. This diagram provides

an intuitive overview of the distribution of three key

metrics: precision, recall, and F1-score. Powers argues

that common metrics (precision, recall, F1-score) can

be misleading without understanding underlying

biases. It explores alternative metrics like

informedness and Markedness for a more principled

evaluation [19]. This consolidates common

performance metrics for classification and provides

guidance on when to apply statistical significance

testing [20].

For the SIData dataset, the plot reveals a tightly

clustered boxplot within the lower range (below 0.10),

highlighting the model’s overall poor performance in

identifying and categorizing entities accurately.

Specifically, the model achieved a precision of 0.069,

recall of 0.100, and F1-score of 0.082. The short

whiskers in Figure 5 further reinforce this outcome,

indicating low variance and minimal dispersion among

prediction results suggesting that most classification

attempts consistently performed poorly.

In contrast, the SILo dataset exhibits a broader

distribution and noticeably improved metric values.

The model attained a precision of 0.111, recall of

0.250, and F1-score of 0.157, with the whisker plot

showing longer whiskers and a wider interquartile

range. This implies greater variability in the model's

performance and a modest improvement in its ability

to generalize across different types of textual

structures. Although the overall precision remains

relatively low, the wider distribution reflects the

model's potential to more effectively capture relevant

phrases in less rigid, narrative-style documents such as

those in the SILo dataset.

Fig. 5. Whisker Plot of Dataset

The observed differences in performance

distribution between the two datasets can be attributed

to their inherent linguistic characteristics. The SIData

dataset generally features more informal and context-

dependent phrasing, which introduces ambiguity and

challenges in accurately identifying and classifying

entities. In contrast, the SILo dataset is composed of

more structured and repetitive terminology, often

found in formal technical documentation, which aids in

improving classification consistency. Furthermore,

disparities in the total number of noun phrases, as well

as the syntactic clarity of those phrases, play a

significant role in influencing the classification

performance across both datasets.

III. RESULT AND DISCUSSION

Fig. 6. Training loss of Dataset

The figure above illustrates a comparative analysis

of training and validation loss curves observed during

the BERT fine-tuning process across several epochs,

using the SIData and SILo datasets. The orange line

depicts the validation loss for the SIData dataset, which

demonstrates a steady decline from epoch 1 through

epoch 5. This downward trend suggests a stable and

consistent learning process. The red dot, positioned at

epoch 5, represents the training loss at that stage,

providing a benchmark for evaluating how well the

model has learned.

On the other hand, the blue line, which corresponds

to the SILo dataset, shows a more erratic validation loss

trajectory. Notably, there is a temporary increase in

validation loss at epoch 3 before it eventually decreases

58 Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 16, No. 2 | December 2025

ISSN 2085-4579

to its lowest point at epoch 5. The green dots indicate

training loss values captured at various epochs, offering

further insight into the model’s convergence behavior.

This fluctuation suggests that the SILo dataset presents

greater variability or complexity, which may challenge

the model's ability to consistently internalize training

patterns.

Table 3. Training Log of SIData

Epoch Iteration Training

Loss

Validation Loss

1.0 2 - 1.1422637701034546

2.0 4 - 1.1105989217758179

3.0 6 - 1.0732616186141968

4.0 8 - 1.048999309539795

5.0 10 1.0507 -

5.0 10 - 1.0393873453140259

Table 4. Training Log of SILo

Epoch Iteration Training

Loss
Validation Loss

1.0 3 - 0.9941515326499939

2.0 6 - 0.9894852042198181

3.0 9 - 1.0273746252059937

3.3335 10 0.9951 -

4.0 12 - 1.0067888498306274

5.0 15 - 0.9593325257301331

Tables 3 and 4 display the detailed training logs of

the BERT fine-tuning process for both SIData and SILo

datasets, including the training loss and validation loss

values across various epochs and iterations. For SIData

(Table 3), the validation loss shows a consistent decline

from epoch 1.0 to epoch 5.0, indicating a steady

learning curve. The lowest validation loss,

1.039837435140259, was achieved at epoch 5.0 with

10 iterations, while the only recorded training loss value

was 1.0507 at epoch 5.0 with 1 iteration.

In contrast, Table 4 illustrates the SILo dataset’s

training progression, where validation loss exhibits

more fluctuation. Despite a slight increase at epoch 3.0,

the validation loss eventually decreased to its lowest

value of 0.9593325257301331 at epoch 5.0 with 15

iterations. The training loss was recorded at epoch

3.3335, reaching 0.9951. These variations reinforce the

earlier observation that SILo’s data complexity affects

the stability and convergence of the model during

training.

In this evaluation, the program demonstrated a

significant dependence on the characteristics of the

dataset. For the SILo dataset, which contains more

natural and narrative-style text, the system exhibited

better performance in information extraction.

Conversely, for the SIData dataset, which is more

formal and includes many technical terminologies, the

system’s performance declined considerably. This

indicates that the system’s generalization capability

across various document styles is still limited and

requires further improvement through increased

training data variation and more refined classification

methods. These results suggest that the model is better

at identifying entities in datasets with certain structural

and editorial patterns, though enhancements are needed

both in the labeling process and in the classification

architecture to ensure more stable and accurate

performance across diverse data types.

Based on two scenario-based tests using different

datasets, there is a clear tendency for the system to

perform better when the data exhibits a more natural

and explicit structure. This is evident from the stronger

results observed on the SILo dataset, which utilizes

operational descriptive narratives, as opposed to the

SIData dataset that employs a more rigid and

technically formatted language. The model tends to

extract entities more effectively from sentences

resembling everyday human communication. For

instance, in the SILo dataset example: “After

completing the payment, Ratna printed a receipt and

handed it over to Yakub. ... Ratna sent Yakub to the

warehouse. Yakub immediately went to the

warehouse,” the system could accurately extract entities

such as Yakub, receipt, and warehouse due to the

narrative structure. In contrast, a sentence like

“AssignmentForm consists of various attributes such as

SamplingID, TestingDevice, and SampleType which

are stored in MasterData” from the SIData dataset

proved more difficult to process due to its dense,

technical form and lack of explicit actor interactions.

Such discrepancies contribute to unstable system

performance, as reflected in the fluctuating precision,

recall, and F1-Score values across the two datasets. It is

crucial to recognize that the alignment between

extracted results and ground truth data does not rely

solely on the presence of entity names (e.g., attributes),

but also on the contextual accuracy specifically, the

correct class hierarchy to which those elements belong.

For example, while the attribute invoiceNumber may

appear in the extraction output, if it is assigned to the

class Payment or Receipt instead of Invoice (as defined

in the reference data), the system fails to classify it

correctly. Therefore, despite being lexically correct,

such attributes are considered contextually invalid and

are treated as False Negatives (FN) in the evaluation.

Similar misclassifications were observed for

attributes such as status and supplierName, where the

system extracted the correct term but linked it to the

wrong class. Even when such attributes are extracted, if

they do not match their intended contextual placement

in the reference class structure, they are still categorized

as classification errors contributing to FN rates.

During evaluation, anomalies were identified where

entities matching the ground truth terminology were

extracted but placed under incorrect class contexts.

Examples include entities like invoiceNumber and

status, which were correctly recognized but

misclassified into inappropriate categories. These

misalignments resulted in the entities being counted as

False Negatives, indicating a deeper issue in the

system’s understanding of semantic relationships and

hierarchical structures among components in the

Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 16, No. 2 | December 2025 59

ISSN 2085-4579

document. This highlights the ongoing challenge of

enabling the system to comprehend and preserve the

semantic and structural fidelity expected in UML-based

document analysis.

IV. CONSLUSION

This study proposed a method to automatically

extract conceptual elements namely classes (object),

subclasses, and attributes from scenario-based

Software Requirements Specification (SRS)

documents. The process involved several stages,

including text preprocessing, noun phrase extraction

using spaCy, contextual embedding using BERT, and

classification with an SVM classifier. The extracted

candidates were then compared with the ground truth

in class diagrams to evaluate structural alignment and

accuracy. Overall, the method demonstrates the

feasibility of integrating NLP and machine learning

techniques for supporting early-stage software design

automation.

The result of the extraction process consists of

conceptual elements such as objects, subclasses, and

attributes, which are then compared with the reference

structure in the class diagram to measure their

alignment and accuracy. This research process began

with the collection and conversion of datasets in the

form of Software Requirements Specification (SRS)

documents into a compatible format, followed by text

pre-processing stages such as the removal of non-

alphabetic characters, lowercasing, and stopword

elimination. After the text cleaning phase, noun phrase

extraction was carried out using the spaCy NLP model,

which was subsequently processed using BERT vector

representations and classified using an SVM classifier

to map entities into classes, subclasses, and attributes.

Qualitatively, the primary objective of this study was

achieved, which is the development of a framework

capable of processing SRS documents and producing

outputs that can be directly compared. The developed

program has successfully identified several entities

from the text and classified them into categories of

class, subclass, or attribute, albeit with limited

precision. Quantitatively, the system performance was

evaluated using precision, recall, and F1-Score metrics

on two different datasets: SIData and SILo. The results

show that the precision values ranged from 8.3% to

16.1%, with an average of 12.2%. Recall values ranged

from 9.5% to 38.5%, with an average of 24%. The F1-

Score, which reflects the balance between precision

and recall, ranged from 8.9% to 22.9%, with an

average value of 15.9%. These values indicate that,

although the system has functioned according to its

intended purpose, the accuracy and relevance of the

extraction results still require significant improvement

for practical application in software development.

Overall, the performance of the extraction system

remains far from optimal, with low accuracy rates

across both datasets. The model tends to produce high

false positive (FP) rates and still fails to recognize a

significant portion of entities present in the reference

data.

For further study, a few specific improvements may

help strengthen the method. One is refining the

preprocessing step to handle camelcase terms, since

these often include multiple meaningful parts. It may

also help to include linguistic cues, such as Part-of-

Speech (POS) tags or the position of a noun phrase in

a sentence, which can guide more accurate

classification. Adding training data through

paraphrased or reworded sentences could improve

generalization. Using domain specific glossaries or

ontologies might also support better consistency when

dealing with specialized terms. Finally, future

evaluations should consider reporting performance

separately for classes, subclasses, and attributes to

better understand where the model performs well or

struggles.

REFERENCES

[1] A. Ferrari, “From Natural Language Requirements to

Sequence Diagrams via Large Language Models,” Proc. 31st
IEEE Int. Requirements Engineering Conf. (RE’23), IEEE,

pp. 220–231, 2023. doi: 10.1109/RE57524.2023.00032.

[2] A. Ferrari, "Model Generation with LLMs: From
Requirements to UML Sequence Diagrams," in IEEE, DOI:

10.1109/REW61692.2024.00044, 2024.

[3] H. Casanova, "BERT_SE: A Pre-trained Language

Representation Model for Software Engineering," ULTIMA

InfoSys: Jurnal Ilmu Sistem Informasi, vol. 14, no. 2, pp.
139–148, 2021. doi: 10.31937/si.v14i2.1750.

[4] H. Yang, "Towards Automatically Extracting UML Class

Diagrams from Natural Language Specifications," in
Proceedings of the 27th IEEE International Conference on

Software Analysis, Evolution and Reengineering (SANER),

London, ON, Canada, pp. 548–552, 2020. doi:
10.1109/SANER48235.2020.9055078

[5] S. Shweta, "Advancing Class Diagram Extraction from

Requirement Text: A Transformer Based Approach," in
Proceedings of the 61st Annual Meeting of the Association

for Computational Linguistics (ACL), New Delhi, India,

2023. doi: 10.18653/v1/2023.acl-long.872

[6] M. Malik, "BERT Based Domain Entity Recognition in

Software Requirements," IEEE Access, vol. 9, pp. 73096–

73105, 2021. doi: 10.1109/ACCESS.2021.3081234

[7] G. Kmetty, R. Gulyás, and A. Nyisztor, "Boosting

classification reliability of NLP transformer models,"

Information Processing & Management, vol. 60, no. 2, p.
103254, 2023. doi: 10.1016/j.ipm.2022.103254

[8] P. K. Mahajan and R. Mahajan, "Information extraction using

NLP techniques," Journal of King Saud University -
Computer and Information Sciences, vol. 34, no. 5, pp. 1949–

1957, 2022. doi: 10.1016/j.jksuci.2020.05.004

[9] S. Yang and H. Sahraoui, "Towards Automatically

Extracting UML Class Diagrams from Natural Language

Specifications," in Proceedings of the 2020 IEEE 27th

International Conference on Software Analysis, Evolution
and Reengineering (SANER), London, ON, Canada, 2022,

pp. 573–577. doi: 10.1109/SANER48235.2020.9055078

[10] R. M. Putra and N. Yudistira, “Extractive Text
Summarization Using BERT-Based Model on Bahasa

60 Ultima Infosys : Jurnal Ilmu Sistem Informasi, Vol. 16, No. 2 | December 2025

ISSN 2085-4579

Indonesia Scientific Articles,” ULTIMA InfoSys: Jurnal Ilmu

Sistem Informasi, vol. 14, no. 2, pp. 128–138, 2023. doi:
10.31937/si.v14i2.3021

[11] N. Yudistira, "Analisis Pengaruh Pre-Trained Model

Terhadap Akurasi Model BERT Untuk Klasifikasi Teks,"
ULTIMA InfoSys: Jurnal Ilmu Sistem Informasi, vol. 13, no.

2, p. 98–106, 2022.

[12] H. Zhaou, “A Survey of Deep Learning Approaches for
NLP,” ACM Transactions on Intelligent Systems and

Technology (TIST), vol. 11, no. 5, Article 49, pp. 1–41, 2020.

doi: 10.1145/3383316

[13] N. Yudistira, "Penerapan Support Vector Machine dalam

Klasifikasi Emosi pada Ulasan Produk," ULTIMA InfoSys:
Jurnal Ilmu Sistem Informasi, vol. 112–120, no. 2, p. 12,

2021.

[14] Y. Li, "Automatic UML Class Diagram Generation from
Natural Language Requirements Using BERT and Graph

Convolutional Networks," IEEE Access, vol. 10, pp. 31207–

31219, 2022. doi: 10.1109/ACCESS.2022.3156205

[15] J. Devlin, M. Chang, K. Lee, and K. Toutanova, "BERT: Pre-

training of deep bidirectional transformers for language

understanding," in Proc. of the 2019 Conf. of the North
American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT),

vol. 1, pp. 4171–4186, 2019. doi: 10.18653/v1/N19-1423

[16] T. Wolf et al., "Transformers: State-of-the-art natural

language processing," in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing:

System Demonstrations (EMNLP), pp. 38–45, 2020. doi:

10.18653/v1/2020.emnlp-demos.6

[17] Yildirim, "Adaptive Fine-tuning for Multiclass Classification

over Software Requirement Data," 2023.

[18] T. Okuda, A. Okada, and Y. Morikawa, "Transformation
Method from Scenario to Sequence Diagram," in

Proceedings of the 10th International Joint Conference on

Knowledge Discovery, Knowledge Engineering and
Knowledge Management (IC3K), vol. 1: KDIR, pp. 136–143,

2018.

[19] D. M. W. Powers, “Evaluation: From Precision, Recall and

F-Measure to ROC, Informedness, Markedness &

Correlation,” arXiv preprint, Oct. 2020.
doi:10.48550/arXiv.2010.16061.

[20] A. Author et al., “Evaluation metrics and statistical tests for

machine learning,” Scientific Reports, vol. 13, article 9821,
May 2023. doi:10.1038/s41598-024-56706-x.

