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Abstract—The adoption of electric vehicles in 

Indonesia is a key strategy supporting the national “Go 

Green” agenda and the Net Zero Emission target by 2060. 

As electric vehicle usage rises, especially in West Java, 

strategically distributed Stasiun Pengisian Kendaraan 

Listrik Umum (SPKLU) locations are needed to ensure 

service accessibility and operational efficiency. Previous 

studies on SPKLU planning generally relied on buffer 

analysis focused on demographic variables, resulting in 

uneven infrastructure distribution. However, socio-

economic factors also influence purchasing power and 

charging demand, indicating the need for a more 

comprehensive analytical approach. This study aims to 

develop a reliable prediction model for identifying 

potential SPKLU locations by integrating spatial and 

socio-economic variables. Geographic Information 

System (GIS) techniques are combined with machine 

learning algorithms, namely Multi-Layer Perceptron 

(MLP) and Support Vector Machine (SVM). Spatial 

datasets from OSM, Geofabric, and Open Data West 

Java are collected and processed through proximity 

analysis to classify locations into Shared-Residential, 

Enroute, and Destination categories. These outputs are 

merged with socio-economic variables such as population 

density, income level, vehicle ownership, household 

characteristics, education level, and age distribution. The 

results show that the MLP model performs best, 

achieving an accuracy of 92.8%. The most influential 

variable is the number of productive-age residents, 

minority population, unemployment, and total 

population. The study concludes that demographic and 

socio-economic factors significantly influence SPKLU 

suitability. 

Keywords: SPKLU, GIS, Multi-Layer Perceptron, 

Support Vector Machine, Socio-Economic 

I. INTRODUCTION 

The use of electric vehicles in Indonesia is one of 

the Government's efforts to realize the "Go Green and 

Net Zero Emission" program in 2060. To realize this 

challenge, proactive steps and strict management 

implementation are needed to control and minimize 

emissions produced by vehicles[1]. 

The Head of the Energy and Mineral Resources 

Agency revealed that the number of electric vehicle 

users in West Java as the research, reached 29,465 in 

2024[2]. This shows that interest in using electric 

vehicles is increasing every year. This growth indicates 

an urgent need for supporting infrastructure to ensure 

the convenience and sustainability of electric vehicle 

use, particularly Stasiun Pengisian Kendaraan Listrik 

Umum (SPKLU) as the primary charging facilities. 

Previous studies on SPKLU planning have 
predominantly relied on spatial buffer analysis and 
demographic indicators to identify suitable charging 
locations, which often led to infrastructure 
recommendations that were uneven and spatially biased 
[3]. Although demographic variables such as 
population density and vehicle ownership provide 
useful baseline insights, they do not fully capture the 
complex behavioral and economic dimensions that 
influence EV adoption [4]. Recent literature highlights 
that socioeconomic attributes including income level, 
household expenditure, employment status, and poverty 
distribution play a critical role in determining 
purchasing power, charging affordability, and long-
term EV market demand [5] . However, these variables 
were frequently simplified or excluded in earlier 
suitability models, resulting in limited predictive 
accuracy and reduced planning relevance at local scales 
[6]. For instance, several location-allocation studies 
prioritized proximity and mobility factors without 
incorporating income inequality or economic 
segmentation, which led to planning outcomes that 
favored high-density urban areas while neglecting 
suburban and lower-income communities [7]. 

Addressing this gap, the present study introduces a 
more comprehensive predictive framework by 
integrating both spatial and socioeconomic variables to 
access SPKLU feasibility. By incorporating indicators 
such as income distribution, employment ratios, 
household composition, and socio-demographic 
structure, the proposed model improves the contextual 
relevance of suitability results and enhances sensitivity 
to real-world EV adoption potential. This expanded 
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variable set supports a more accurate, equitable, and 
demand-responsive understanding of charging needs, 
representing a significant methodological advancement 
beyond previous approaches. Addressing this gap, the 
present research introduces a more comprehensive 
predictive by integrating both spatial and 
socioeconomic variables to assess SPKLU feasibility.  

Spatial analysis in this research is conducted using 
Geographic Information System (GIS), to integrate 
diverse geospatial layers such as proximity to 
infrastructure, land use, and accessibility criteria into a 
unified suitability model that captures spatial patterns 
which cannot be captured by simple buffer or 
demographic techniques alone, as demonstrated in 
recent EV charging station studies that combine GIS 
with advanced analytical methods [8]. The spatial 
outputs generated through GIS are then combined with 
socio-economic variables and processed using machine 
learning algorithms such as Multi-Layer Perceptron 
(MLP) and Support Vector Machine (SVM) to capture 
complex nonlinear relationships and classification 
boundaries within the data, resulting in a robust 
predictive model for optimal SPKLU location 
identification [9]. 

A similar approach was also found in the multistage 
model [10], which incorporated MLP within a spatio-
temporal demand prediction framework to produce 
more precise infrastructure needs estimates. MLP, as a 
multilayer neural network, is capable of learning 
intricate and nonlinear variable interactions, which 
strengthens its ability to identify spatial and socio-
economic patterns associated with charging demand. 
Prior studies have reported that MLP achieved high 
prediction accuracy often exceeding 90% in EV 
charging usage modelling and demand forecasting 
scenarios, outperforming basic neural structures and 
decision-tree-based approaches [11]. On the other hand, 
the SVM algorithm is widely used for classification 
tasks related to the feasibility of charging station 
locations, [12] which utilized SVM to assess potential 
locations based on demographic criteria, accessibility, 
and traffic density. Furthermore, the [13] showed that 
SVM excels in predicting the availability and success 
of charging slot reservations at stations, thereby helping 
operators identify points at risk of over and under-
utilization. Recent comparative evaluations have shown 
that SVM models achieved accuracy levels between 
85% and 92% in EV infrastructure feasibility 
classification tasks, surpassing several baseline models 
such as logistic regression and random forest in smaller 
sample settings [11]. Overall, MLP provides strong 
demand prediction capabilities, while SVM plays an 
important role in classification and determining 
location feasibility, making it a relevant combination in 
SPKLU analysis and planning. 

Building upon these previous findings, the present 

research expands the application of MLP and SVM by 

focusing the analysis on the integration of spatial data 

and geolocation parameters such as road networks, 

housing, apartment, parking and amenities (university, 

school and hospital) by GIS technology to form 

indicators of the feasibility of SPKLU locations in West 

Java Province. The purpose of this research is to assess 

the feasibility of locations based on the type of charging 

usage and compare the effectiveness of MLP and SVM 

algorithms in classifying SPKLU feasibility using 

features obtained from spatial data extraction. In 

addition, this research also visualizes the distribution of 

feasible SPKLU locations based on the best-performing 

model into a thematic map, thereby providing spatial 

information support for future infrastructure planning. 

II. METHODOLOGY 

The research methodology was carried out using 

two phases, namely data preparation for the analysis 

process with GIS and the analysis stage using the MLP 

and SVM algorithms. 

A. Studi Area 

The study area in this research is the administrative 

area of West Java province, as presented in Fig. 1. West 

Java is located in the western part of Java Island, 

bordering the DKI Jakarta province to the north, Banten 

Province to the west, and Central Java Province to the 

east. To the south, West Java borders the Indian Ocean. 

The total area of West Java is approximately ± 35,378 

km², making it one of the largest provinces in 

Indonesia[14]. West Java Province has high geological 

complexity, consisting of various rock formations that 

are divided into three main zones, namely, the geology 

of the North zone (Bekasi, Karawang, Subang) which 

has the characteristics of young alluvial lowlands, 

dominated by clay and sand deposits, fertile and 

relatively stable soil suitable for housing and industry, 

then the central zone (Bandung, Sumedang, Cianjur) 

which has the characteristics of volcanic plateaus, 

dominated by andesite rocks, breccias, tuffs, traces of 

ancient volcanic activity, has the risk of earthquakes 

and landslides. This region is very densely populated, 

especially Greater Bandung and the southern zone 

(Garut, Tasikmalaya, and Sukabumi). It features folded 

mountains and igneous/plutonic rocks, numerous active 

faults, relatively unstable, steep, and landslide-prone 

soils, but is fertile for agriculture, and the population is 

more sparsely distributed. West Java Province has a 

total of 27 administrative regions, divided into nine 

cities: Bandung, Banjar, Bekasi, Bogor, Cimahi, 

Cirebon, Depok, Sukabumi, and Tasikmalaya. It also 

comprises 18 administrative districts: Bandung, West 

Bandung, Bekasi, Bogor, Ciamis, Cianjur, Cirebon, 

Garut, Indramayu, Karawang, Kuningan, Majalengka, 

Pangandaran, Purwakarta, Subang, Sukabumi, 

Sumedang, and Tasikmalaya. 
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Fig. 1. Study area of research West Java with SPKLU point 

B. Methodology 

Research methodology process begins by determining 

the location parameters for SPKLU based on spatial 

analysis using QGIS software, then modeling 

classifying SPKLU location types using a comparison 

of the MLP and SVM algorithms 

1. Preparation Data 

• Gather spatial datasets from the three sources 

shown: OpenStreetMap (OSM) for road 

networks, housing, apartments, parking, and 

public amenities (schools, hospitals, 

universities); Geofabrik for administrative 

boundary shapefiles (West Java); and 

OpenData Jabar  for existing SPKLU point 

locations. 

• Data sample preparation to inspect the SPKLU 

point dataset for duplicates, missing 

coordinates, incorrect attributes, or outliers. 

• Boundary clipping using Administrative 

Boundaries 

• Use the West Java administrative polygon to 

clip all OSM-derived layers and other datasets 

so the analysis extent is constrained to the 

study area. This ensures consistency and 

reduces processing load. 

• Convert each thematic vector layer to raster at 

a defined spatial resolution (cell size). 

• For each raster layer, compute proximity 

(distance-to-feature) raster’s using GIS 

proximity/distance tools. 

• Optionally compute Kernel Density Raster’s 

(KDE) for point datasets to capture 

concentration. 

• Convert raw distance raster’s to suitability 

indicators with reclassify distances into 

suitability scores or continuous normalized 

values. 

• Normalization of data values 

• Overlay Data 

• From the composite suitability map, segment 

areas into the three target categories: 

• Shared Residential SPKLU: locations of 

housing 

• Road Route SPKLU: Enroute locations 

• Destination Type SPKLU: Malls, 

University, Office. 

2. Kernel Density Estimation (KDE), compute KDE 

for relevant point data (e.g., existing SPKLU, 

population centers, amenities) to produce 

continuous density surfaces. Extract KDE values 

at sample locations and add them as features to the 

dataset. 

3. Input parameter of socio-economic as variable 

predictor such as population, median household 

income, total household, vehicles mode, minority 

population, population below poverty level, 

population density, population with college 

education, household size, vehicle ownership, and 

median age 

4. Data Analysis, the extracted data was analyzed 

and divided into two parts such as testing and 

training data 

5. Architecture Model, two types of machine 

learning algorithms were used as the model 

architecture such as Multi-Layer Perceptron 

(MLP) and Support Vector Machine (SVM) 

6. Evaluation Model, the two models were compared 

using the following evaluation metrics such as 

Precision, Accuracy, Recall, and F1 Score 

7. Best Model, the model with the best performance 

based on the evaluation was selected as the final 

model for classifying SPKLU locations. 

8. Map Layout, the classification results were 

visualized as a map of SPKLU locations classified 

according to their types. 
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Fig. 2. Methodology 

C. Multi-Layer Perceptron (MLP) 

The Multi-Layer Perceptron (MLP) is a type of 

artificial neural network designed to learn complex, 

non-linear relationships between input variables and an 

output target. In the context of predicting potential 

SPKLU locations, MLP is used to determine whether a 

given location (represented as feature data) has high 

suitability for SPKLU placement[15]. The MLP 

architecture is as follows (Fig. 3.): 

1. Input Layer: Feeding the SPKLU Predictors 

In this research, each sampled location is 

represented using many features derived from 

spatial and socio-economic data. These include: 

• Spatial suitability scores (Shared-Residential, 

Enroute, Destination) 

• KDE-based density scores 

• Population characteristics (productive-age 

population, minority population, total 

population) 

• Socio-economic indicators (income, poverty, 

unemployment) 

• Infrastructure-related variables (vehicle 

ownership, household distribution) 

• Educational and demographic variables 

(education index, median age) 

2. Hidden Layers: Learning Non-Linear 

Relationships 

MLP contains one or more hidden layers with 

neurons that apply activation functions such as 

ReLU or sigmoid [16]. These layers learn: 

• Patterns between demographic variables and 

demand for charging stations 

• Spatial relationships (e.g., distance to roads or 

public facilities) 

• Interactions between socio-economic 

conditions and EV adoption potential 

• Non-linear combinations of variables that a 

simple statistical model cannot capture 

3. Output Layer: Predicting SPKLU Suitability 

The output layer produces a binary prediction or 

probability score indicating whether the location 

is suitable for SPKLU development: 

• 1 or high probability → Suitable 

• 0 or low probability → Not suitable 

4. Learning Process: Training With Existing SPKLU 

Locations 

The MLP learns by comparing its predictions with 

known existing SPKLU points: 

• Training samples with “SPKLU” (positive 

class) 

• Background or non-SPKLU samples (negative 

class) 

 

Fig. 3. Architecture of MLP 

D. Support Vector Machine (SVM) 

A Support Vector Machine (SVM) is a supervised 

classifier that learns to separate “suitable” vs. 

“unsuitable” locations for SPKLU by finding an 

optimal decision boundary (hyperplane) in a multi-

dimensional feature space. Concretely, an SVM 

computes a function of the form  

𝑓(𝑥)  =  𝑠𝑖𝑔𝑛(𝑤 · 𝑥 +  𝑏)            (1) 
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where 𝑥 is the input feature vector (e.g. spatial 

coordinates and socio-demographic attributes of a 

candidate site), 𝑤 is a learned weight vector, and 𝑏 is a 

bias term. The algorithm chooses 𝑤 and 𝑏 to maximize 

the margin, the distance between the boundary and the 

nearest training points of each class[17]. 

The SVM takes as input a vector of spatial and 
socio-economic features describing each candidate site. 
Spatial features might include the site’s geographic 
coordinates or derived measures such as distance to the 
nearest road, proximity to city centres or public transit, 
or local land-use indicators. Socio-demographic 
features can include population density, average 
income, vehicle ownership levels, existing SPKLU 
adoption rates, or usage patterns in the area. SVM 
handles nonlinearity via kernel functions that implicitly 
map the input features into a higher-dimensional space. 
Instead of computing 𝜑(𝑥) explicitly, the SVM uses a 
kernel function 

𝐾(𝑥, 𝑥′) = 𝜑(𝑥) · 𝜑(𝑥′)             (2) 

that returns inner products in feature space. Common 
kernels include linear, polynomial, sigmoid, and the 
Radial Basis Function (RBF)[18]. The SVM 
architecture is as follows (Fig. 4.): 

 

Fig. 4. Architecture of SVM 

E. Evaluation Model 

After developing the prediction models, we performed 

a validation test to assess their accuracy by comparing 

the predicted values with the actual values from the 

previously partitioned testing dataset. To evaluate 

model performance, a confusion matrix was employed, 

where accuracy is calculated as the percentage ratio 

between the sum of true negatives (TN) and true 

positives (TP) and the total number of testing samples, 

as shown in Table 1. 

TABLE I.  CONFUSION MATRIX OF MODEL VALIDATION 

 Predicted: 

No SPKLU (0) 

Predicted: 

SPKLU exist (1) 

Actual: 

No SPKLU (0) 

True Negative 

(RN) 

False Positive (FP) 

Actual: 

SPKLU exist (1) 

False Negative 
(FN) 

True Positive (TP) 

 

III. PREVIOUS RESEARCH 

Several previous researches have explored the 

spatial aspects of SPKLU. One such research, 

“Examining Spatial Disparities in Electric Vehicle 

Charging Station Placements Using Machine 

Learning,” examined the spatial disparities in the 

distribution of Electric Vehicle Charging Stations 

(EVCS) in Orange County, California. Random Forest 

algorithm successfully identified areas with low access 

to charging facilities 11.04% of the county that required 

prioritizing investment. The model achieved 94.9% 

accuracy at a spatial resolution of 3 km, demonstrating 

that social, economic, and demographic factors have a 

significant influence on more equitable and equitable 

EVCS planning[19]. 

Another research in Indonesia highlighted the 

optimization of SPKLU locations through a geospatial 

approach. The research, titled "Optimizing SPKLU 

Development Locations Using Geographic Information 

Systems in Medan City with the Buffer Analysis 

Method," utilized buffer analysis to determine the most 

potential areas for providing SPKLU[20]. Through 

spatial data processing, the research produced a digital 

map depicting the adequacy of SPKLU coverage in 

Medan City. These findings underscore the importance 

of utilizing GIS to support equitable access and electric 

vehicle infrastructure planning in urban areas. 

Furthermore, "Research of Electric Vehicle 

Charging Facility Development in the Greater Bandung 

Area," broadens the scope of the analysis by 

incorporating the perspectives of various 

stakeholders[21]. Conducted over three years through 

literature review, field surveys, and focus group 

discussions. The research emphasized the role of 

collaboration between the government, academics, and 

the electric vehicle user community. The research 

resulted in recommendations for infrastructure 

development aimed at reducing greenhouse gas 

emissions, minimizing dependence on fossil fuels, and 

strengthening the electric vehicle ecosystem in the 

Bandung metropolitan area. 

A machine learning-based approach to determining 

SPKLU locations is also seen in the research "Decision 

Support System for Determining the Location of 

Stasiun Pengisian Kendaraan Listrik Umum (SPKLU) 

with Machine Learning." with combining the Analytic 

Hierarchy Process (AHP) method and geospatial data 

processing. This research assesses the feasibility of 

SPKLU locations in Ambon City based on criteria of 

accessibility, population density, and electricity 

infrastructure conditions. The model results 

recommend several strategic points, including Jalan 

Yos Sudarso, which is considered the most effective for 

SPKLU development and has a positive impact on 

economic growth and carbon footprint reduction. 

In addition to location and spatial feasibility 

approaches, several studies have highlighted the 
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technical aspects of electric vehicle charging. The 

research of, "Application of Deep Learning and 

Reinforcement Learning with Convolutional Neural 

Network Methods for Electric Vehicle Charging in 

Smart Grids," focuses on predicting charging load 

profiles in smart grids[22]. The study utilized various 

deep learning architectures such as ANN, LSTM, GRU, 

and ANFIS. The results showed that ANFIS provided 

the highest accuracy in predicting charging patterns 

influenced by seasonal factors. These findings provide 

an important basis for electric vehicle energy 

management to be more efficient and responsive to 

demand fluctuations[23]. 

IV. RESULT AND DISCUSSION 

A. Data Preparation 

Several predictor and respon variables used in the 

analysis process are converted into raster map. The 

response variables used in this research are proximity 

of Kernel Density Estimation (KDE) that obtained 

from phase 1 divided into three categories  such as 

SPKLU Shared-Residential, SPKLU Enroute and 

SPKLU Destination [24] (Fig. 5.). 

 

Fig. 5. Kernel Density Estimation (KDE) 

Next, the predictor variables used in the analysis 

process are socio-economic. (Fig. 6.). 

 

 

 

Fig. 6. Variabel predictor such as number of productive-age 

population, number of minority population, number of unemployed, 
total population, number of poor popuation, per capita expenditure, 

percentage of poor population, number of household, education 

index, population density, and number of motor vehicles 

The data used in this research amounted to 147,911 

with a total of 12 variables. As for the predictor 

variables encompass key socio-economic indicators, 

including the number of productive-age individuals, 

minority populations, unemployed persons, total 

population, poor populations, per capita expenditure, 

percentage of poverty, number of households, 

education index, population density, and the number of 

motor vehicles. These variables collectively represent 

demographic pressure, economic capacity, and 

mobility demand, making them essential determinants 

for spatial modeling and strategic planning of SPKLU 

infrastucture [25](Table II). 

TABLE II.  PREDICTOR AND RESPON VARIABLE 

No KDE 

number 

of poor 

popuation 

number 

of 

motor 

vehicles 

population 

density 

number 

of 

household 

number of 

minority 

population 

education 

index 

total 

population 

number of 

unemployed 

per capita 

expenditure 

percentage 

of poor 

population 

number of 

productive-

age 

population 

1 2 204500 307404 3.196 14296 164728 69.14 40845 142818 12500000 4.80 2354038 

2 2 204500 307404 3.196 14296 164728 69.14 40845 142818 12500000 4.80 2354038 

3 2 204500 307404 3.196 14296 164728 69.14 40845 142818 12500000 4.80 2354038 

4 2 204500 307404 3.196 14296 164728 69.14 40845 142818 12500000 4.80 2354038 

5 2 204500 307404 3.196 14296 164728 69.14 40845 142818 12500000 4.80 2354038 

… … … … … … … … … … … … … 
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114 1 187800 135737 4.637 20516 51786 60.75 52050 100404 12942000 7.86 1810263 

115 1 187800 135737 4.637 20516 51786 60.75 52050 100404 12942000 7.86 1810263 

116 1 187800 135737 4.637 20516 51786 60.75 52050 100404 12942000 7.86 1810263 

117 1 187800 135737 4.637 20516 51786 60.75 52050 100404 12942000 7.86 1810263 

118 1 187800 135737 4.637 20516 51786 60.75 52050 100404 12942000 7.86 1810263 

… … … … … … … … … … … … … 

67187 3 175900 67146 12.656 32349 8980 58.88 87354 107550 9815000 6.87 1934988 

67188 3 175900 67146 14.830 17838 8980 58.88 54697 107550 9815000 6.87 1934988 

67189 3 175900 67146 14.830 17838 8980 58.88 54697 107550 9815000 6.87 1934988 

67190 3 175900 67146 14.830 17838 8980 58.88 54697 107550 9815000 6.87 1934988 

67191 3 175900 67146 14.830 17838 8980 58.88 54697 107550 9815000 6.87 1934988 

B. Model of Multi-Layer Perceptron 

The train:test dataset ratio in this research is 80:20. The 

variable importance results from the MLP analysis can 

be seen in Fig. 7. 

 

 

Fig. 7. Variable importance of MLP 

Based on Fig. 8, the three variables that most influence 

the SPKLU prediction are the productive-age 

population (40%), the minority population (35%-

40%), and the unemployed (30%-35%). The analysis 

results are then mapped to the West Java region. The 

map layout for the predicted SPKLU placement 

generated using the Multi-Layer Perceptron (MLP) 

method for the West Java region is shown in Fig. 8. 

 

Fig. 8. Model MLP SPKLU 

C. Model of Support Vector Machine 

The variable importance results from the SVM analysis 

can be seen in Fig. 9. 

 

 

Fig. 9. Variable importance of MLP 

 

The analysis in Fig. 10 indicates that the most 

influential predictors for SPKLU placement are total 

population (20%-25%), followed by per capita 

expenditure (17.5%–20%) and the number of 

household (15%–17.5%). These findings were 

subsequently visualized across the West Java area. The 

resulting spatial distribution of predicted SPKLU 

locations produced by the SVM model for West Java 

is presented in Fig. 10. 

 

Fig. 10. Model MLP SPKLU 

D. Model Evalution 

The performance comparison between MLP and SVM 

shows (Table III) that both models achieve strong 

classification results across all three classes, with MLP 

demonstrating a slightly more balanced performance 

overall. For Class 1, MLP attains marginally higher 

precision, recall, and F1-score than SVM, indicating 

better consistency in identifying Shared-Residential 
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locations. In Class 2, MLP again performs slightly 

better in all metrics, suggesting stronger reliability for 

Enroute category predictions. Although SVM achieves 

the highest precision for Class 3, MLP maintains 

superior recall, resulting in an equal or slightly higher 

F1-score, reflecting more stable performance for 

Destination class classification. Overall, MLP exhibits 

slightly stronger and more consistent predictive 

capability across all classes, reinforcing its suitability 

as the preferred model for SPKLU location prediction. 

TABLE III.  CLASS-WISE METRICS 

Class 
Precision Recall F1 

MLP SVM MLP SVM MLP SVM 

1 0.938 0.934 0.931 0.919 0.935 0.926 

2 0.903 0.891 0.910 0.912 0.906 0.901 

3 0.955 0.963 0.955 0.954 0.955 0.958 

 

Meanwhile, the accuracy results of the two models can 

be seen in the following table IV: 

TABLE IV.  ACCURACY MODEL 

Model Accuracy (%) AUC 

MLP 92.8 0.93 

SVM 92.4 0.90 

 

At Table IV, the accuracy comparison shows that both 

models between MLP and SVM perform very well in 

predicting SPKLU location classifications, with only a 

slight difference between the two. MLP achieves the 

highest accuracy at 92.8% and AUC 0.93, indicating 

its slightly superior ability to learn complex spatial–

socio-economic patterns in the dataset. Meanwhile, 

SVM also demonstrates strong performance with an 

accuracy of 92.4% and AUC 0.90, suggesting that it 

remains a reliable alternative despite its marginally 

lower score. Overall, these results confirm that both 

machine learning models are highly effective, but MLP 

provides the best predictive capability for this study. 

V. CONCLUSION 

This study demonstrates that integrating GIS-based 

spatial analysis with machine learning provides an 

effective framework for predicting optimal SPKLU 

locations in West Java. By combining proximity 

features with socio-economic variables processed 

through KDE, the model particularly the MLP classifier 

with 92.8% accuracy successfully identifies areas with 

high potential demand. The dominance of demographic 

predictors, especially the productive-age population, 

underscores the importance of human-activity patterns 

in determining strategic SPKLU charging infrastructure 

placement. These findings highlight that data-driven 

spatial modeling can significantly support evidence-

based decision-making for SPKLU infrastructure 

planning, ultimately enhancing the efficiency, 

accessibility, and sustainability of Indonesia’s 

transition toward low-carbon mobility. 
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