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Abstract—The adoption of electric vehicles in
Indonesia is a key strategy supporting the national “Go
Green” agenda and the Net Zero Emission target by 2060.
As electric vehicle usage rises, especially in West Java,
strategically distributed Stasiun Pengisian Kendaraan
Listrik Umum (SPKLU) locations are needed to ensure
service accessibility and operational efficiency. Previous
studies on SPKLU planning generally relied on buffer
analysis focused on demographic variables, resulting in
uneven infrastructure distribution. However, socio-
economic factors also influence purchasing power and
charging demand, indicating the need for a more
comprehensive analytical approach. This study aims to
develop a reliable prediction model for identifying
potential SPKLU locations by integrating spatial and
socio-economic variables. Geographic Information
System (GIS) techniques are combined with machine
learning algorithms, namely Multi-Layer Perceptron
(MLP) and Support Vector Machine (SVM). Spatial
datasets from OSM, Geofabric, and Open Data West
Java are collected and processed through proximity
analysis to classify locations into Shared-Residential,
Enroute, and Destination categories. These outputs are
merged with socio-economic variables such as population
density, income level, vehicle ownership, household
characteristics, education level, and age distribution. The
results show that the MLP model performs best,
achieving an accuracy of 92.8%. The most influential
variable is the number of productive-age residents,
minority  population, unemployment, and total
population. The study concludes that demographic and
socio-economic factors significantly influence SPKLU
suitability.

Keywords: SPKLU, GIS, Multi-Layer Perceptron,
Support Vector Machine, Socio-Economic

. INTRODUCTION

The use of electric vehicles in Indonesia is one of
the Government's efforts to realize the "Go Green and
Net Zero Emission” program in 2060. To realize this
challenge, proactive steps and strict management
implementation are needed to control and minimize
emissions produced by vehicles[1].

The Head of the Energy and Mineral Resources
Agency revealed that the number of electric vehicle
users in West Java as the research, reached 29,465 in
2024[2]. This shows that interest in using electric
vehicles is increasing every year. This growth indicates
an urgent need for supporting infrastructure to ensure
the convenience and sustainability of electric vehicle
use, particularly Stasiun Pengisian Kendaraan Listrik
Umum (SPKLU) as the primary charging facilities.

Previous studies on SPKLU planning have
predominantly relied on spatial buffer analysis and
demographic indicators to identify suitable charging
locations, which often led to infrastructure
recommendations that were uneven and spatially biased
[3]. Although demographic variables such as
population density and vehicle ownership provide
useful baseline insights, they do not fully capture the
complex behavioral and economic dimensions that
influence EV adoption [4]. Recent literature highlights
that socioeconomic attributes including income level,
household expenditure, employment status, and poverty
distribution play a critical role in determining
purchasing power, charging affordability, and long-
term EV market demand [5] . However, these variables
were frequently simplified or excluded in earlier
suitability models, resulting in limited predictive
accuracy and reduced planning relevance at local scales
[6]. For instance, several location-allocation studies
prioritized proximity and mobility factors without
incorporating income inequality or economic
segmentation, which led to planning outcomes that
favored high-density urban areas while neglecting
suburban and lower-income communities [7].

Addressing this gap, the present study introduces a
more comprehensive predictive framework by
integrating both spatial and socioeconomic variables to
access SPKLU feasibility. By incorporating indicators
such as income distribution, employment ratios,
household composition, and socio-demographic
structure, the proposed model improves the contextual
relevance of suitability results and enhances sensitivity
to real-world EV adoption potential. This expanded
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variable set supports a more accurate, equitable, and
demand-responsive understanding of charging needs,
representing a significant methodological advancement
beyond previous approaches. Addressing this gap, the
present research introduces a more comprehensive
predictive by integrating both spatial and
socioeconomic variables to assess SPKLU feasibility.

Spatial analysis in this research is conducted using
Geographic Information System (GIS), to integrate
diverse geospatial layers such as proximity to
infrastructure, land use, and accessibility criteria into a
unified suitability model that captures spatial patterns
which cannot be captured by simple buffer or
demographic techniques alone, as demonstrated in
recent EV charging station studies that combine GIS
with advanced analytical methods [8]. The spatial
outputs generated through GIS are then combined with
socio-economic variables and processed using machine
learning algorithms such as Multi-Layer Perceptron
(MLP) and Support Vector Machine (SVM) to capture
complex nonlinear relationships and classification
boundaries within the data, resulting in a robust
predictive model for optimal SPKLU location
identification [9].

A similar approach was also found in the multistage
model [10], which incorporated MLP within a spatio-
temporal demand prediction framework to produce
more precise infrastructure needs estimates. MLP, as a
multilayer neural network, is capable of learning
intricate and nonlinear variable interactions, which
strengthens its ability to identify spatial and socio-
economic patterns associated with charging demand.
Prior studies have reported that MLP achieved high
prediction accuracy often exceeding 90% in EV
charging usage modelling and demand forecasting
scenarios, outperforming basic neural structures and
decision-tree-based approaches [11]. On the other hand,
the SVM algorithm is widely used for classification
tasks related to the feasibility of charging station
locations, [12] which utilized SVM to assess potential
locations based on demographic criteria, accessibility,
and traffic density. Furthermore, the [13] showed that
SVM excels in predicting the availability and success
of charging slot reservations at stations, thereby helping
operators identify points at risk of over and under-
utilization. Recent comparative evaluations have shown
that SVM models achieved accuracy levels between
85% and 92% in EV infrastructure feasibility
classification tasks, surpassing several baseline models
such as logistic regression and random forest in smaller
sample settings [11]. Overall, MLP provides strong
demand prediction capabilities, while SVM plays an
important role in classification and determining
location feasibility, making it a relevant combination in
SPKLU analysis and planning.

Building upon these previous findings, the present
research expands the application of MLP and SVM by
focusing the analysis on the integration of spatial data
and geolocation parameters such as road networks,
housing, apartment, parking and amenities (university,
school and hospital) by GIS technology to form

indicators of the feasibility of SPKLU locations in West
Java Province. The purpose of this research is to assess
the feasibility of locations based on the type of charging
usage and compare the effectiveness of MLP and SVM
algorithms in classifying SPKLU feasibility using
features obtained from spatial data extraction. In
addition, this research also visualizes the distribution of
feasible SPKLU locations based on the best-performing
model into a thematic map, thereby providing spatial
information support for future infrastructure planning.

Il.  METHODOLOGY

The research methodology was carried out using
two phases, namely data preparation for the analysis
process with GIS and the analysis stage using the MLP
and SVM algorithms.

A. Studi Area

The study area in this research is the administrative
area of West Java province, as presented in Fig. 1. West
Java is located in the western part of Java Island,
bordering the DKI Jakarta province to the north, Banten
Province to the west, and Central Java Province to the
east. To the south, West Java borders the Indian Ocean.
The total area of West Java is approximately + 35,378
km?, making it one of the largest provinces in
Indonesia[14]. West Java Province has high geological
complexity, consisting of various rock formations that
are divided into three main zones, namely, the geology
of the North zone (Bekasi, Karawang, Subang) which
has the characteristics of young alluvial lowlands,
dominated by clay and sand deposits, fertile and
relatively stable soil suitable for housing and industry,
then the central zone (Bandung, Sumedang, Cianjur)
which has the characteristics of volcanic plateaus,
dominated by andesite rocks, breccias, tuffs, traces of
ancient volcanic activity, has the risk of earthquakes
and landslides. This region is very densely populated,
especially Greater Bandung and the southern zone
(Garut, Tasikmalaya, and Sukabumi). It features folded
mountains and igneous/plutonic rocks, numerous active
faults, relatively unstable, steep, and landslide-prone
soils, but is fertile for agriculture, and the population is
more sparsely distributed. West Java Province has a
total of 27 administrative regions, divided into nine
cities: Bandung, Banjar, Bekasi, Bogor, Cimahi,
Cirebon, Depok, Sukabumi, and Tasikmalaya. It also
comprises 18 administrative districts: Bandung, West
Bandung, Bekasi, Bogor, Ciamis, Cianjur, Cirebon,
Garut, Indramayu, Karawang, Kuningan, Majalengka,
Pangandaran, = Purwakarta, Subang, Sukabumi,
Sumedang, and Tasikmalaya.
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Fig. 1. Study area of research West Java with SPKLU point

B. Methodology

Research methodology process begins by determining
the location parameters for SPKLU based on spatial
analysis using QGIS software, then modeling
classifying SPKLU location types using a comparison
of the MLP and SVM algorithms

1.  Preparation Data

o Gather spatial datasets from the three sources
shown: OpenStreetMap (OSM) for road
networks, housing, apartments, parking, and
public  amenities  (schools,  hospitals,
universities); Geofabrik for administrative
boundary shapefiles (West Java); and
OpenData Jabar for existing SPKLU point
locations.

e Data sample preparation to inspect the SPKLU
point dataset for duplicates, missing
coordinates, incorrect attributes, or outliers.

e Boundary clipping using Administrative
Boundaries

e Use the West Java administrative polygon to
clip all OSM-derived layers and other datasets
so the analysis extent is constrained to the
study area. This ensures consistency and
reduces processing load.

e Convert each thematic vector layer to raster at
a defined spatial resolution (cell size).

e For each raster layer, compute proximity
(distance-to-feature) raster’s using GIS
proximity/distance tools.

e Optionally compute Kernel Density Raster’s
(KDE) for point datasets to capture
concentration.

e Convert raw distance raster’s to suitability
indicators with reclassify distances into
suitability scores or continuous normalized
values.

e Normalization of data values
e Overlay Data
e From the composite suitability map, segment

areas into the three target categories:

e Shared Residential SPKLU: locations of

housing
e Road Route SPKLU: Enroute locations
e Destination Type SPKLU: Malls,
University, Office.

Kernel Density Estimation (KDE), compute KDE
for relevant point data (e.g., existing SPKLU,
population centers, amenities) to produce
continuous density surfaces. Extract KDE values
at sample locations and add them as features to the
dataset.
Input parameter of socio-economic as variable
predictor such as population, median household
income, total household, vehicles mode, minority
population, population below poverty level,
population density, population with college
education, household size, vehicle ownership, and
median age
Data Analysis, the extracted data was analyzed
and divided into two parts such as testing and
training data
Architecture Model, two types of machine
learning algorithms were used as the model
architecture such as Multi-Layer Perceptron
(MLP) and Support Vector Machine (SVM)
Evaluation Model, the two models were compared
using the following evaluation metrics such as
Precision, Accuracy, Recall, and F1 Score
Best Model, the model with the best performance
based on the evaluation was selected as the final
model for classifying SPKLU locations.
Map Layout, the classification results were
visualized as a map of SPKLU locations classified
according to their types.
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Fig. 2. Methodology

C. Multi-Layer Perceptron (MLP)
The Multi-Layer Perceptron (MLP) is a type of
artificial neural network designed to learn complex,
non-linear relationships between input variables and an
output target. In the context of predicting potential
SPKLU locations, MLP is used to determine whether a
given location (represented as feature data) has high
suitability for SPKLU placement[15]. The MLP
architecture is as follows (Fig. 3.):
1. Input Layer: Feeding the SPKLU Predictors
In this research, each sampled location is
represented using many features derived from
spatial and socio-economic data. These include:
e Spatial suitability scores (Shared-Residential,
Enroute, Destination)
e KDE-based density scores
e Population
population,
population)

characteristics  (productive-age

minority  population, total

e Socio-economic indicators (income, poverty,
unemployment)

e Infrastructure-related  variables
ownership, household distribution)

(vehicle

e Educational and demographic variables
(education index, median age)
2. Hidden Layers: Learning Non-Linear

Relationships

MLP contains one or more hidden layers with

neurons that apply activation functions such as

ReLU or sigmoid [16]. These layers learn:

e Patterns between demographic variables and
demand for charging stations

e Spatial relationships (e.g., distance to roads or
public facilities)

between socio-economic

conditions and EV adoption potential

e Interactions

e Non-linear combinations of variables that a
simple statistical model cannot capture

3. Output Layer: Predicting SPKLU Suitability
The output layer produces a binary prediction or
probability score indicating whether the location
is suitable for SPKLU development:
e 1 or high probability — Suitable

e 0 or low probability — Not suitable

4. Learning Process: Training With Existing SPKLU
Locations
The MLP learns by comparing its predictions with
known existing SPKLU points:
e Training samples with “SPKLU” (positive
class)
e Background or non-SPKLU samples (negative
class)

*, Output
‘,’ layer

*, Hidden
/| layer

Fig. 3. Architecture of MLP

D. Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a supervised
classifier that learns to separate “suitable” vs.
“unsuitable” locations for SPKLU by finding an
optimal decision boundary (hyperplane) in a multi-
dimensional feature space. Concretely, an SVM
computes a function of the form

f(x) = sign(w-x + b) 1)
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where x is the input feature vector (e.g. spatial
coordinates and socio-demographic attributes of a
candidate site), w is a learned weight vector, and b is a
bias term. The algorithm chooses w and b to maximize
the margin, the distance between the boundary and the
nearest training points of each class[17].

The SVM takes as input a vector of spatial and
socio-economic features describing each candidate site.
Spatial features might include the site’s geographic
coordinates or derived measures such as distance to the
nearest road, proximity to city centres or public transit,
or local land-use indicators. Socio-demographic
features can include population density, average
income, vehicle ownership levels, existing SPKLU
adoption rates, or usage patterns in the arca. SVM
handles nonlinearity via kernel functions that implicitly
map the input features into a higher-dimensional space.
Instead of computing ¢ (x) explicitly, the SVM uses a
kernel function

K, x) = o(x) - 9 (x) @)

that returns inner products in feature space. Common
kernels include linear, polynomial, sigmoid, and the
Radial Basis Function (RBF)[18]. The SVM
architecture is as follows (Fig. 4.):

@.

s U p pori Negative Hyperplane Vmi\
Vector Machine

Fig. 4. Architecture of SVM

E. Evaluation Model

After developing the prediction models, we performed
a validation test to assess their accuracy by comparing
the predicted values with the actual values from the
previously partitioned testing dataset. To evaluate
model performance, a confusion matrix was employed,
where accuracy is calculated as the percentage ratio
between the sum of true negatives (TN) and true
positives (TP) and the total number of testing samples,
as shown in Table 1.

TABLE I. CONFUSION MATRIX OF MODEL VALIDATION
Predicted: Predicted:
No SPKLU (0) SPKLU exist (1)
Actual: True Negative False Positive (FP)
No SPKLU (0) (RN)
Actual: False Negative True Positive (TP)
SPKLU exist (1) (FN)

I1l.  PREVIOUS RESEARCH

Several previous researches have explored the
spatial aspects of SPKLU. One such research,
“Examining Spatial Disparities in Electric Vehicle
Charging Station Placements Using Machine
Learning,” examined the spatial disparities in the
distribution of Electric Vehicle Charging Stations
(EVCS) in Orange County, California. Random Forest
algorithm successfully identified areas with low access
to charging facilities 11.04% of the county that required
prioritizing investment. The model achieved 94.9%
accuracy at a spatial resolution of 3 km, demonstrating
that social, economic, and demographic factors have a
significant influence on more equitable and equitable
EVCS planning[19].

Another research in Indonesia highlighted the
optimization of SPKLU locations through a geospatial
approach. The research, titled "Optimizing SPKLU
Development Locations Using Geographic Information
Systems in Medan City with the Buffer Analysis
Method," utilized buffer analysis to determine the most
potential areas for providing SPKLU[20]. Through
spatial data processing, the research produced a digital
map depicting the adequacy of SPKLU coverage in
Medan City. These findings underscore the importance
of utilizing GIS to support equitable access and electric
vehicle infrastructure planning in urban areas.

Furthermore, "Research of Electric Vehicle
Charging Facility Development in the Greater Bandung
Area," broadens the scope of the analysis by
incorporating  the  perspectives  of  various
stakeholders[21]. Conducted over three years through
literature review, field surveys, and focus group
discussions. The research emphasized the role of
collaboration between the government, academics, and
the electric vehicle user community. The research
resulted in recommendations for infrastructure
development aimed at reducing greenhouse gas
emissions, minimizing dependence on fossil fuels, and
strengthening the electric vehicle ecosystem in the
Bandung metropolitan area.

A machine learning-based approach to determining
SPKLU locations is also seen in the research "Decision
Support System for Determining the Location of
Stasiun Pengisian Kendaraan Listrik Umum (SPKLU)
with Machine Learning." with combining the Analytic
Hierarchy Process (AHP) method and geospatial data
processing. This research assesses the feasibility of
SPKLU locations in Ambon City based on criteria of
accessibility, population density, and electricity
infrastructure  conditions. The model results
recommend several strategic points, including Jalan
Yos Sudarso, which is considered the most effective for
SPKLU development and has a positive impact on
economic growth and carbon footprint reduction.

In addition to location and spatial feasibility
approaches, several studies have highlighted the
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technical aspects of electric vehicle charging. The
research of, "Application of Deep Learning and
Reinforcement Learning with Convolutional Neural
Network Methods for Electric Vehicle Charging in
Smart Grids," focuses on predicting charging load
profiles in smart grids[22]. The study utilized various
deep learning architectures such as ANN, LSTM, GRU,
and ANFIS. The results showed that ANFIS provided
the highest accuracy in predicting charging patterns
influenced by seasonal factors. These findings provide
an important basis for electric vehicle energy
management to be more efficient and responsive to
demand fluctuations[23].

IV.  RESULT AND DISCUSSION

A. Data Preparation

Several predictor and respon variables used in the
analysis process are converted into raster map. The
response variables used in this research are proximity
of Kernel De”S_'tY ESt_lmatlon (KDE) that obtained Fig. 6. Variabel predictor such as number of productive-age

from phase 1 divided into three categories such as  population, number of minority population, number of unemployed,
SPKLU Shared-Residential, SPKLU Enroute and total population, number of poor popuation, per capita expenditure,

SPKLU Destination [24] (Fig. 5.). percentage of poor popula@ion, number of household, ed_ucation
index, population density, and number of motor vehicles

Farnal Density Estimstion of £V Charging stations

w5000

. The data used in this research amounted to 147,911
Y with a total of 12 variables. As for the predictor
variables encompass key socio-economic indicators,
including the number of productive-age individuals,
minority populations, unemployed persons, total
population, poor populations, per capita expenditure,
percentage of poverty, number of households,
education index, population density, and the number of
motor vehicles. These variables collectively represent
demographic pressure, economic capacity, and
mobility demand, making them essential determinants
for spatial modeling and strategic planning of SPKLU
infrastucture [25](Table I1).

ey

250000

Fig. 5. Kernel Density Estimation (KDE)

Next, the predictor variables used in the analysis
process are socio-economic. (Fig. 6.).

TABLE Il PREDICTOR AND RESPON VARIABLE
number number of
number of population number nur.nbel.’ of education total number of per capita percentage productive-
No KDE of poor densi of minority ind lati loved di of poor
opuation motor ensity household | population index population | unemployed | expenditure population age
P vehicles population
1 2 204500 307404 3.196 14296 164728 69.14 40845 142818 12500000 4.80 2354038
2 2 204500 307404 3.196 14296 164728 69.14 40845 142818 12500000 4.80 2354038
3 2 204500 307404 3.196 14296 164728 69.14 40845 142818 12500000 4.80 2354038
4 2 204500 307404 3.196 14296 164728 69.14 40845 142818 12500000 4.80 2354038
5 2 204500 307404 3.196 14296 164728 69.14 40845 142818 12500000 4.80 2354038
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114 1 187800 135737 4.637 20516 51786 60.75 52050 100404 12942000 7.86 1810263
115 1 187800 135737 4.637 20516 51786 60.75 52050 100404 12942000 7.86 1810263
116 1 187800 135737 4.637 20516 51786 60.75 52050 100404 12942000 7.86 1810263
117 1 187800 135737 4.637 20516 51786 60.75 52050 100404 12942000 7.86 1810263
118 1 187800 135737 4.637 20516 51786 60.75 52050 100404 12942000 7.86 1810263
67187 3 175900 67146 12.656 32349 8980 58.88 87354 107550 9815000 6.87 1934988
67188 3 175900 67146 14.830 17838 8980 58.88 54697 107550 9815000 6.87 1934988
67189 3 175900 67146 14.830 17838 8980 58.88 54697 107550 9815000 6.87 1934988
67190 3 175900 67146 14.830 17838 8980 58.88 54697 107550 9815000 6.87 1934988
67191 3 175900 67146 14.830 17838 8980 58.88 54697 107550 9815000 6.87 1934988

B. Model of Multi-Layer Perceptron

The train:test dataset ratio in this research is 80:20. The
variable importance results from the MLP analysis can
be seen in Fig. 7.

Variable Importance (Permutation - MLP)

Number of Productive-Age Population
Number of Minority Population
Number of Unemployed

Total Population

Number of Poor Population
Per Capita Expenditure
Percentage of Poor Population
Number of Households
Education Index

Population Density

Number of Motor Vehicles

Feature

0.0 0.1

0.2
Importance

o
»
o
IS

Fig. 7. Variable importance of MLP

Based on Fig. 8, the three variables that most influence
the SPKLU prediction are the productive-age
population (40%), the minority population (35%-
40%), and the unemployed (30%-35%). The analysis
results are then mapped to the West Java region. The
map layout for the predicted SPKLU placement
generated using the Multi-Layer Perceptron (MLP)
method for the West Java region is shown in Fig. 8.

Fig. 8. Model MLP SPKLU

C. Model of Support Vector Machine

The variable importance results from the SVM analysis
can be seen in Fig. 9.

Variable Importance (Permutation - SVM)

Total Population

Per Capita Expenditure
Number of Households
Number of Motor Vehicles
Number of Minority Population
Percentage of Poor Population
Population Density

Education Index

Number of Unemployed
Number of Poor Population
Number of Productive-Age Population

e
2
©
®©
w

o
1=}
s}

0.05 0.10 0.15 0.20
Importance

o
N
&

Fig. 9. Variable importance of MLP

The analysis in Fig. 10 indicates that the most
influential predictors for SPKLU placement are total
population (20%-25%), followed by per capita
expenditure (17.5%-20%) and the number of
household (15%-17.5%). These findings were
subsequently visualized across the West Java area. The
resulting spatial distribution of predicted SPKLU
locations produced by the SVM model for West Java
is presented in Fig. 10.

Fig. 10. Model MLP SPKLU

D. Model Evalution

The performance comparison between MLP and SVM
shows (Table 1I1) that both models achieve strong
classification results across all three classes, with MLP
demonstrating a slightly more balanced performance
overall. For Class 1, MLP attains marginally higher
precision, recall, and F1-score than SVM, indicating
better consistency in identifying Shared-Residential

106
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locations. In Class 2, MLP again performs slightly
better in all metrics, suggesting stronger reliability for
Enroute category predictions. Although SVM achieves
the highest precision for Class 3, MLP maintains
superior recall, resulting in an equal or slightly higher
Fl-score, reflecting more stable performance for
Destination class classification. Overall, MLP exhibits
slightly stronger and more consistent predictive
capability across all classes, reinforcing its suitability
as the preferred model for SPKLU location prediction.

TABLE III. CLASS-WISE METRICS

Precision Recall F1

Class
MLP SVM MLP SVM MLP | SVM

1 0.938 0.934 0.931 | 0.919 | 0.935 | 0.926
2 0.903 0.891 0.910 | 0.912 | 0.906 | 0.901
3 0.955 0.963 0.955 | 0.954 | 0.955 | 0.958

Meanwhile, the accuracy results of the two models can
be seen in the following table 1V:

TABLE IV. ACCURACY MODEL
Model Accuracy (%) AUC
MLP 92.8 0.93
SVM 92.4 0.90

At Table 1V, the accuracy comparison shows that both
models between MLP and SVM perform very well in
predicting SPKLU location classifications, with only a
slight difference between the two. MLP achieves the
highest accuracy at 92.8% and AUC 0.93, indicating
its slightly superior ability to learn complex spatial—
socio-economic patterns in the dataset. Meanwhile,
SVM also demonstrates strong performance with an
accuracy of 92.4% and AUC 0.90, suggesting that it
remains a reliable alternative despite its marginally
lower score. Overall, these results confirm that both
machine learning models are highly effective, but MLP
provides the best predictive capability for this study.

V. CONCLUSION

This study demonstrates that integrating GIS-based
spatial analysis with machine learning provides an
effective framework for predicting optimal SPKLU
locations in West Java. By combining proximity
features with socio-economic variables processed
through KDE, the model particularly the MLP classifier
with 92.8% accuracy successfully identifies areas with
high potential demand. The dominance of demographic
predictors, especially the productive-age population,
underscores the importance of human-activity patterns
in determining strategic SPKLU charging infrastructure
placement. These findings highlight that data-driven
spatial modeling can significantly support evidence-
based decision-making for SPKLU infrastructure
planning, ultimately enhancing the efficiency,

accessibility, and sustainability of Indonesia’s

transition toward low-carbon mobility.
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