Finding Features of Multiple Linear Regression On Currency Exchange Pairs
Abstract
Due to the prospects for financial gain, forex is always attractive to many people. However, because forex market analysis is not simple, a computer is needed to assist in creating predictions using features that are understandable to people. This study employs the Multilinear Regression technique to identify these kinds of features. The features and prediction target have a very strong correlation. With a very low RMSE and a very high R square, the prediction quality is quite outstanding. The outcome will help academics in the forex field use machine learning algorithms to make better predictions.
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMA InfoSys or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.