

57 Ultima Computing : Jurnal Sistem Komputer, Vol. 13, No. 2 | December 2021

ISSN 2355-3286

Hand Gesture Detection for American Sign

Language using K-Nearest Neighbor with

Mediapipe

Arsheldy Alvin1, Nabila Husna Shabrina2, Aurelius Ryo3, Edgar Christian4

Fakultas Teknik dan Informatika, Universitas Multimedia Nusantara, Teknik Komputer

Tangerang, Indonesia
1 arsheldy.alvin@student.umn.ac.id, 2 nabila.husna@umn.ac.id, 3 aurelius.ryo@student.umn.ac.id,

4 edgar.christian@student.umn.ac.id

Accepted 10 June 2021

Approved 27 June 2021

Abstract— The most popular way of interfacing with

most computer systems is a mouse and keyboard. Hand

gestures are an intuitive and effective touchless way to

interact with computer systems. However, hand gesture-

based systems have seen low adoption among end-users

primarily due to numerous technical hurdles in detecting

in-air gestures accurately. This paper presents Hand

Gesture Detection for American Sign Language using K-

Nearest Neighbor with Mediapipe, a framework

developed to bridge this gap. The framework learns to

detect gestures from demonstrations, it is customizable

by end-users, and enables users to interact in real-time

with computers having only RGB cameras, using

gestures.

Index Terms— hand gesture, neural network,

mediapipe, image processing, touchless.

I. INTRODUCTION

In this modern era, technology is growing rapidly.

One of the goals of existing technologies is to facilitate

human life. Every existing device always has an

interface that allows the user to control the device. This

interface is always evolving from physical buttons,

touch screens, to no-touch at all like voice commands

and hand gestures.

Currently, there are many devices that use voice

commands, especially on smartphones that we often

use, voice commands themselves are based on speech

recognition algorithms, ranging from being used to

type text to performing commands to AI, such as

Google Assistant, Siri, Google Home, and Alexa uses

voice commands to control it. However, the voice

command itself has several shortcomings in its

implementation, namely the sound around the

environment should not be too noisy so that the

commands ordered can be delivered properly and the

system is not slow when processing incoming voice [1]

. Therefore, another alternative to interact with the

computer is to use hand gestures. Hand gestures can

facilitate user mobility and flexibility in using a device

or program. Coupled with the presence of the Covid-

19 pandemic which requires maintaining a distance so

that control with touch is enough to give its own sense

of worry.

In addition to being an option for the interface of a

device, hand gesture detection itself can also be applied

to the communication system for friends who have

hearing problems or are deaf. [16] Based on the official

website of the United Nations (UN), the World

Federation of the Deaf (WFD) states that there are

around 72 million people who have hearing problems

worldwide as of 2020. One of the communication

media for deaf friends is to use sign language.

Therefore, we created a project about hand gesture

detection that can detect the movement or pose of the

hand to be implemented in sign language recognition.

The method used to perform hand gesture detection, of

course, is to use computer vision which goes through

several adjustments and filters on the hand. Then, the

data obtained will be processed to be able to provide

the appropriate output.

We use the framework from MediaPipe to detect the

hand on the camera, and the K-Nearest Neighbor

(KNN) algorithm to predict the gesture on the hand.

MediaPipe is a cross-platform framework for building

multimodal applied machine learning pipelines that can

be used to detect hands. KNN is an algorithm used to

predict the hand gesture displayed on the camera. The

reason we chose MediaPipe to detect hands is that it is

easy to use and can provide output in the form of hand

landmark coordinates [14]. Furthermore, the KNN

method was chosen because it only needed to classify

an alphabet using hand coordinates from the MediaPipe

output plus the use of KNN which was quite easy to

implement and had a fairly high accuracy value. This

can be proven by various kinds of research conducted

[17]. We also use a sign language dataset with the

American Sign Language standard, please note that not

all sign languages are the same, for example people who

already know American Sign Language will not

understand when communicating with people who use

Ultima Computing : Jurnal Sistem Komputer, Vol. 13, No. 2 | December 2021 58

ISSN 2355-3286

British Sign Language [2]. The reason for choosing

American Sign Language as the dataset is that

American Sign Language is the main sign language

used in the United States and has been known and

adopted by several countries around the world, one of

which is Indonesia, namely SIBI (Indonesian Sign

Language System) which developed from ASL

absorption. SIBI itself has been inaugurated in Law No.

2 of 1989 and is an introduction to communication in

the Special School (SLB) curriculum [15]. However,

almost every country has its own sign language.

According to the European Union of the Deaf, on its

website it is explained that there is no universal use of

sign language in the world [18]. The method starts by

creating a dataset containing the hand coordinates of the

alphabet. The creation of this dataset uses the help of

MediaPipe which will provide hand coordinates from

hand drawings. After that the dataset will become data

to train the KNN model in order to classify the alphabet.

II. LITERATURE REVIEW

A. Hand Tracking

There are various kinds of literature that discuss

how to do hand tracking via video or static images. To

achieve this, a camera that can produce RGB images is

needed [10]. The camera will provide output in the

form of images or videos to the MediaPipe framework

[3]. MediaPipe will first run the palm detector on the

image. Palm detector on MediaPipe works using a

model that works like BlazeFace [4]. To detect the

hand, it is very difficult to detect the fingers at once,

therefore, MediaPipe uses a model that will detect the

palm first. This is because the palm is a fairly small

object and can be modeled easily using the Bounding

Box method which will not be affected by the aspect

ratio [5]. The model will then be run by mapping 21

coordinates on the detected palms. This model will

provide output in the form of 21 coordinates of the

fingers, a marker of the presence of a hand or not, and

a marker of the left or right hand.

Fig. 1. Hand Landmark

B. K Nearest Neighbor Classifier

K Nearest Neighbor or abbreviated KNN, is a

supervised learning method that classifies classes

based on the k closest neighbors. Where the purpose of

this method is to classify new objects based on

previous data. KNN classification is a well-known

method used for image classification [12]. KNN itself

first works by determining the value of k which

determines the number of neighbors to be used. Then

the distance from the k neighbors will be calculated

using the Euclidean distance.

(1)

After calculating the distance, k neighbors will be

taken according to the results of the distance

calculation. Then from the k neighbors, the number of

data points for each class that is included in the

calculation distance will be calculated. After that, to

determine the new data class, the largest number of

neighbors from the class will be seen. In KNN itself,

there are various ways to determine distance and

similarity [6]. Although this KNN method is easy to

implement, there are various weaknesses, namely poor

performance in overcoming data that has very large

dimensions and performance that is influenced by the

magnitude of the value of k neighbors [8].

C. Data Scaling

Data scaling is a process that is carried out before

classifying data. This process will transform the

existing value into the existing scale. To achieve this

process can be done normalization or standardization

of data [9]. This normalization process is carried out

with the aim of distributing data evenly and increasing

the value of system accuracy. There are several

normalization techniques including min-max

normalization, z-score normalization, decimal scaling

and sigmoidal normalization.

(2)

III. METHODOLOGY AND IMPLEMENTATION

A. Design Stage

Hand Gesture Detection for Sign Language is

intended to detect hands and provide output in the form

of letters from the sign language demonstrated by the

user's hand. To achieve this, the researcher uses the

MediaPipe framework to detect hands and cv2 to do

hand capture via a webcam as well as several libraries

that support data processing, namely matplotlib,

pandas, numpy, and sklearn. Matplotlib, pandas, and

numpy are used for reading dataset files to plotting

data, while sklearn is used for training data. The

following is an architectural design for alphabet

gesture recognition.

59 Ultima Computing : Jurnal Sistem Komputer, Vol. 13, No. 2 | December 2021

ISSN 2355-3286

Fig. 2. Project Architecture

B. Implementation Stage

The programming language used in this project is

Python. To facilitate the design, the researcher used the

Jupyter Notebook coding environment which was run

on the 2019 ASUS Vivobook A412FL laptop with the

following specifications :

CPU : Intel Core i5-8265U CPU @ 1.60GHz

GPU : NVIDIA GeForce MX250 2GB

RAM : 8GB

To implement hand gesture detection for sign

language, several stages are needed, namely:

1. Creating a sign language dataset in the form of

coordinates

This is due to the unavailability of a sign language

dataset that has the coordinates of 21 landmarks

belonging to Mediapipe. The dataset used is an image

dataset which contains a total of 87.000 images, with

each image having a size of 200 x 200 pixels. There are

29 classes in the dataset consisting of 26 alphabets and

3 classes of space, delete, and nothing. After finding

the dataset, each image in the dataset needs to be

modified using the MediaPipe Hands API [7] which

can output hand landmark coordinates from static

images. Each landmark output from MediaPipe will be

assigned a class according to the file name and inserted

into the csv table. [13] Every 21 landmarks produced

by MediaPipe will be entered in the form of values x[i]

and y[i] where i denotes the landmark number in Fig.

1. So that each alphabet will have 42 features

consisting of x1 and y1 to x21 and y21. Referring to

the weakness of KNN, namely KNN is prone to high

dimensionality where this can make the space that can

be occupied by each instance bigger so that there is a

possibility that the nearest neighbor of an instance can

no longer be said to be “near” because the dimensions

of the instance space increase [11], the researchers

choose to use only the landmark x[i] and y[i] even

though there are up to z[i] where x[i] and y[i] represent

the width and height, respectively. While z[i]

represents the depth, whose value will decrease when

the landmark is getting closer to the camera. When

using the z value, each alphabet will produce 63

features. This can cause a decrease in performance in

the KNN model, because KNN cannot handle very

large dimensional data. So the researchers decided that

only using x[i] and y[i] would provide more optimal

performance.

TABLE 1. DISPLAY OF OUTPUT IN CSV

In this implementation, the researcher created 1000

training datasets with 24 alphabets. The making of

1000 training datasets is because not all data in the

image dataset is readable, then the researcher only uses

24 alphabets, because the J and Z alphabets use

movement so further implementation is needed to read

movement.

2. Machine learning model validation

The dataset used in this project is a dataset that has

just been previously created so that researchers do not

have a test dataset to validate or evaluate machine

learning models. Therefore, the researcher uses the

train/ test split method which is used to validate the

model with each data being processed and divided into

training and testing data. This split is done in a 67:33

ratio with the help of sklearn’s train_test_split library.

Fig. 3. Display of the train/test split process for model validation

3. Scaling the dataset

The divided dataset is scaled with the

StandardScaler method from the sklearn library. This

method works like z-score normalization. In

accordance with the previous chapter, this process

serves to improve the performance of the KNN

algorithm.

Fig. 4. Display of scaling data process

4. Generating classification model

In making the classification model, the researcher

uses the KNeighborsClassifier library belonging to

sklearn. This library makes it easy to create KNN

methods. In this model, the researcher uses 3 neighbors

with an automatic algorithm from the library, the

default weight function is uniform, the default metric

is minkowski.

Ultima Computing : Jurnal Sistem Komputer, Vol. 13, No. 2 | December 2021 60

ISSN 2355-3286

Fig. 5. Display of fitting model classifier process

IV. RESULT

A. Testing Scenario

Researchers conducted 2 types of testing, namely

testing with the help of a library and direct testing. For

testing with the help of the library, the researcher aims

to determine the accuracy value of the existing model.

Meanwhile, in direct testing, the researcher aims to try

this project in real-time.

Direct testing was carried out by 2 examiners with

2 significantly different conditions. The following is an

explanation of the test conditions :

1. Examiner A

Device : Laptop Lenovo G470 i5-2410M

(2011 released)

Brightness : dim

Amount of testing : 2 times for every

alphabets

2. Examiner B

Device : Laptop ASUS VivoBook A412 FL

i5-8265U (2019 released)

Brightness : bright

Amount of testing : 2 times for every

alphabets

B. Result with Library Assistance

After the fitting process with the KNN method was

successful, the researcher calculated the accuracy of

the existing model with the help of sklearn’s

classification_report and accuracy_score. From this

model, the researcher obtained an accuracy of 0.944

from a scale of 0-1, which means that it shows good

accuracy.

Fig. 6. Classification Report & Accuracy Score

In addition to the accuracy score, the researcher

also plots the Error Rate K Value with a K value range

from 1-40 which can be used to adjust what is the best

K value to use.

Fig. 7. Error Rate K Value Graph

C. Result of Direct Testing

In the final stage, the researcher conducted a trial

on the existing model directly by detecting the hand

and obtaining an alphabet that was in accordance with

the American Sign Language that had been included in

the dataset. Researchers use the help of the cv2 library

to do hand capture via webcam and the Mediapipe

framework to detect hands and obtain the coordinates

of hand landmarks captured by the webcam and then

predict what alphabet is being demonstrated based on

existing models.

The test results are as follows :

1. Examiner A :

The alphabet can be predicted when the

webcam with the help of the Mediapipe

framework detects the presence of a hand so

that in low light conditions, the distance

between the hand and the webcam must be

closer to be readable by the webcam. As long as

the webcam reads the presence of a hand, the

expected output of the alphabetical prediction

will appear. From 2 trials for all alphabets, all

alphabets can be predicted with some

adjustment of hand distance with the webcam.

So, it can be concluded that even in dim

conditions as long as the hand can still be read

by the webcam, the sign language will still be

predictable.

2. Examiner B :

With good lighting, the entire alphabet can be

predicted well because the webcam is able to

capture a clear hand image so that the

Mediapipe framework is able to recognize

every part of the hand that practices sign

language well.

61 Ultima Computing : Jurnal Sistem Komputer, Vol. 13, No. 2 | December 2021

ISSN 2355-3286

Fig. 8. Hand Gesture Alphabet A

Fig. 9. Hand Gesture Alphabet B

Fig. 11. Hand Gesture Alphabet C

Fig. 10. Hand Gesture Alphabet M

Fig. 11. Hand Gesture Alphabet N

Fig. 12. Hand Gesture Alphabet I

Above are some of the results of the American Sign

Language demonstration trials which were then

detected and translated into the alphabet. Almost all

alphabets can be read and translated well, except for

some alphabets that may be a bit difficult to detect such

as J and Z. However, apart from that, some alphabets

that have similarities to their coordinate points, such as

the M and N alphabets can still be distinguished and

legible even though almost similar.

V. CONCLUSION

In this research, we propose a system that can

detect sign language with the American Sign

Language standard that can achieve real-time

detection performance on desktop platforms, the

workings of the researcher's detection system is based

on the coordinates of 21 hand landmarks generated by

MediaPipe. From these coordinates there are x, y, and

z values for mapping hand gestures. The researcher

suggests using only x and y values to improve the

performance of the KNN model. This is due to the

weakness of KNN in dealing with large-dimensional

data. Then there are weaknesses in the system that the

researcher proposes, namely the lack of datasets. To

achieve an optimal system, a large number of datasets

are needed so that it can detect the alphabet from

various angles. Later, this system can be improved by

using the Modified KNN model to obtain better

results.

Ultima Computing : Jurnal Sistem Komputer, Vol. 13, No. 2 | December 2021 62

ISSN 2355-3286

REFERENCES

[1] Yoshua Constantin, Ucuk Darusalam, and Novi Dian
Nathasia. (2020). Aplikasi Personal Assistant Berbasis

Voice Command Pada Sistem Operasi Android Dengan

NLP.https://www.researchgate.net/publication/34179118
1_Aplikasi_Personal_Assistant_Berbasis_Voice_Comma

nd_Pada_Sistem_Operasi_Android_Dengan_NLP/fulltex

t/5ed51350299bf1c67d323d04/Aplikasi-Personal-
Assistant-Berbasis-Voice-Command-Pada-Sistem-
Operasi-Android-Dengan-NLP.pdf

[2] Niki’s Int’l Ltd. (2017). The Different Types of Sign
Language.https://nilservices.com/different-types-sign-
language/

[3] Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A.,

Sung, G., Chang, C.-L., & Grundmann, M. (n.d.).

MediaPipe Hands: On-device Real-time Hand Tracking.
2006.10214.pdf. https://arxiv.org/pdf/2006.10214.pdf.

[4] Valentin Bazarevsky, Yury Kartynnik, Andrey Vakunov,
Karthik Raveendran, and Matthias Grundmann. Blazeface:
Sub-millisecond neural face detection on mobile gpus.

[5] Tomas Simon, Hanbyul Joo, Iain A. Matthews, and Yaser
Sheikh. Hand keypoint detection in single images using
multiview bootstrapping. CoRR, abs/1704.07809, 2017.

[6] Padraig Cunningham, Sarah Jane Delany: “k-Nearest

Neighbour Classifiers: 2nd Edition (with Python
examples)”, 2020; arXiv:2004.04523.

[7] MediaPipe. (n.d.). MediaPipe Hands. mediapipe.

https://google.github.io/mediapipe/solutions/hands.html#
python-solution-api.

[8] Hassanat, Ahmad & Abbadi, Mohammad & Altarawneh,

Ghada & Alhasanat, Ahmad. (2014). Solving the Problem
of the K Parameter in the KNN Classifier Using an

Ensemble Learning Approach. International Journal of
Computer Science and Information Security. 12. 33-39.

[9] Muhammad Ali, Peshawa & Faraj, Rezhna. (2014). Data

Normalization and Standardization: A Technical Report.
10.13140/RG.2.2.28948.04489

[10] Utaminingrum, F., Somawirata, I. K., & Naviri, G. D.
(2019). Alphabet Sign Language Recognition Using K-

Nearest Neighbor Optimization. Journal of Computers.
https://doi.org/10.17706/jcp.14.1.

[11] Puspadini, Ratih. (2020). Seleksi Atribut Pada Algoritma

K-Nearest Neighbor Menggunakan Similarity Distance

Measures.http://repositori.usu.ac.id/bitstream/handle/123
456789/24587/157038008.pdf

[12] Mufarroha, Fifin & Utaminingrum, Fitri. (2017). Hand
Gesture Recognition using Adaptive Network Based

Fuzzy Inference System and K-Nearest Neighbor.

International Journal of Technology. 8. 559.
10.14716/ijtech.v8i3.3146.

[13] S K, Sriram & Sinha, Nishant. (2021). Gestop:
Customizable Gesture Control of Computer Systems.
https://arxiv.org/pdf/2010.13197.pdf

[14] MediaPipe. (n.d.). MediaPipe Hands. mediapipe.
https://google.github.io/mediapipe/solutions/hands.html#
output

[15] Taufik, Miskudin. (2020). Bahasa Isyarat Menyatukan

Dunia.https://itjen.kemdikbud.go.id/public/post/detail/bah
asa-isyarat-menyatukan-dunia

[16] United Nations. (2020). Sign Languages Are for Everyone.
https://www.un.org/en/observances/sign-languages-day

[17] Trigueiros, Paulo & Ribeiro, Fernando & Reis, Luís.

(2012). A comparison of machine learning algorithms

applied to hand gesture recognition. Iberian Conference on
Information Systems and Technologies, CISTI. 41-46.

[18] European Union of the Deaf. (2012). International Sign.

https://www.eud.eu/about-us/eud-position-
paper/international-sign-guidelines/

