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Abstract— The most popular way of interfacing with 

most computer systems is a mouse and keyboard. Hand 

gestures are an intuitive and effective touchless way to 

interact with computer systems. However, hand gesture-

based systems have seen low adoption among end-users 

primarily due to numerous technical hurdles in detecting 

in-air gestures accurately. This paper presents Hand 

Gesture Detection for American Sign Language using K-

Nearest Neighbor with Mediapipe, a framework 

developed to bridge this gap. The framework learns to 

detect gestures from demonstrations, it is customizable 

by end-users, and enables users to interact in real-time 

with computers having only RGB cameras, using 

gestures. 

Index Terms— hand gesture, neural network, 

mediapipe, image processing, touchless. 

I. INTRODUCTION 

In this modern era, technology is growing rapidly. 

One of the goals of existing technologies is to facilitate 

human life. Every existing device always has an 

interface that allows the user to control the device. This 

interface is always evolving from physical buttons, 

touch screens, to no-touch at all like voice commands 

and hand gestures. 

Currently, there are many devices that use voice 

commands, especially on smartphones that we often 

use, voice commands themselves are based on speech 

recognition algorithms, ranging from being used to 

type text to performing commands to AI, such as 

Google Assistant, Siri, Google Home, and Alexa uses 

voice commands to control it. However, the voice 

command itself has several shortcomings in its 

implementation, namely the sound around the 

environment should not be too noisy so that the 

commands ordered can be delivered properly and the 

system is not slow when processing incoming voice [1] 

. Therefore, another alternative to interact with the 

computer is to use hand gestures. Hand gestures can 

facilitate user mobility and flexibility in using a device 

or program. Coupled with the presence of the Covid-

19 pandemic which requires maintaining a distance so 

that control with touch is enough to give its own sense 

of worry. 

In addition to being an option for the interface of a 

device, hand gesture detection itself can also be applied 

to the communication system for friends who have 

hearing problems or are deaf. [16] Based on the official 

website of the United Nations (UN), the World 

Federation of the Deaf (WFD) states that there are 

around 72 million people who have hearing problems 

worldwide as of 2020. One of the communication 

media for deaf friends is to use sign language. 

Therefore, we created a project about hand gesture 

detection that can detect the movement or pose of the 

hand to be implemented in sign language recognition. 

The method used to perform hand gesture detection, of 

course, is to use computer vision which goes through 

several adjustments and filters on the hand. Then, the 

data obtained will be processed to be able to provide 

the appropriate output. 

We use the framework from MediaPipe to detect the 

hand on the camera, and the K-Nearest Neighbor 

(KNN) algorithm to predict the gesture on the hand. 

MediaPipe is a cross-platform framework for building 

multimodal applied machine learning pipelines that can 

be used to detect hands. KNN is an algorithm used to 

predict the hand gesture displayed on the camera. The 

reason we chose MediaPipe to detect hands is that it is 

easy to use and can provide output in the form of hand 

landmark coordinates [14]. Furthermore, the KNN 

method was chosen because it only needed to classify 

an alphabet using hand coordinates from the MediaPipe 

output plus the use of KNN which was quite easy to 

implement and had a fairly high accuracy value. This 

can be proven by various kinds of research conducted 

[17]. We also use a sign language dataset with the 

American Sign Language standard, please note that not 

all sign languages are the same, for example people who 

already know American Sign Language will not 

understand when communicating with people who use 
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British Sign Language [2]. The reason for choosing 

American Sign Language as the dataset is that 

American Sign Language is the main sign language 

used in the United States and has been known and 

adopted by several countries around the world, one of 

which is Indonesia, namely SIBI (Indonesian Sign 

Language System) which developed from ASL 

absorption. SIBI itself has been inaugurated in Law No. 

2 of 1989 and is an introduction to communication in 

the Special School (SLB) curriculum [15]. However, 

almost every country has its own sign language. 

According to the European Union of the Deaf, on its 

website it is explained that there is no universal use of 

sign language in the world [18]. The method starts by 

creating a dataset containing the hand coordinates of the 

alphabet. The creation of this dataset uses the help of 

MediaPipe which will provide hand coordinates from 

hand drawings. After that the dataset will become data 

to train the KNN model in order to classify the alphabet. 

II. LITERATURE REVIEW 

A. Hand Tracking 

There are various kinds of literature that discuss 

how to do hand tracking via video or static images. To 

achieve this, a camera that can produce RGB images is 

needed [10]. The camera will provide output in the 

form of images or videos to the MediaPipe framework 

[3]. MediaPipe will first run the palm detector on the 

image. Palm detector on MediaPipe works using a 

model that works like BlazeFace [4]. To detect the 

hand, it is very difficult to detect the fingers at once, 

therefore, MediaPipe uses a model that will detect the 

palm first. This is because the palm is a fairly small 

object and can be modeled easily using the Bounding 

Box method which will not be affected by the aspect 

ratio [5]. The model will then be run by mapping 21 

coordinates on the detected palms. This model will 

provide output in the form of 21 coordinates of the 

fingers, a marker of the presence of a hand or not, and 

a marker of the left or right hand. 

 

Fig. 1. Hand Landmark 

B. K Nearest Neighbor Classifier 

K Nearest Neighbor or abbreviated KNN, is a 

supervised learning method that classifies classes 

based on the k closest neighbors. Where the purpose of 

this method is to classify new objects based on 

previous data. KNN classification is a well-known 

method used for image classification [12]. KNN itself 

first works by determining the value of k which 

determines the number of neighbors to be used. Then 

the distance from the k neighbors will be calculated 

using the Euclidean distance. 

 

 

(1) 

 

After calculating the distance, k neighbors will be 

taken according to the results of the distance 

calculation. Then from the k neighbors, the number of 

data points for each class that is included in the 

calculation distance will be calculated. After that, to 

determine the new data class, the largest number of 

neighbors from the class will be seen. In KNN itself, 

there are various ways to determine distance and 

similarity [6]. Although this KNN method is easy to 

implement, there are various weaknesses, namely poor 

performance in overcoming data that has very large 

dimensions and performance that is influenced by the 

magnitude of the value of k neighbors [8]. 

C. Data Scaling 

Data scaling is a process that is carried out before 

classifying data. This process will transform the 

existing value into the existing scale. To achieve this 

process can be done normalization or standardization 

of data [9]. This normalization process is carried out 

with the aim of distributing data evenly and increasing 

the value of system accuracy. There are several 

normalization techniques including min-max 

normalization, z-score normalization, decimal scaling 

and sigmoidal normalization. 

 

 

(2) 

III. METHODOLOGY AND IMPLEMENTATION 

A. Design Stage 

Hand Gesture Detection for Sign Language is 

intended to detect hands and provide output in the form 

of letters from the sign language demonstrated by the 

user's hand. To achieve this, the researcher uses the 

MediaPipe framework to detect hands and cv2 to do 

hand capture via a webcam as well as several libraries 

that support data processing, namely matplotlib, 

pandas, numpy, and sklearn. Matplotlib, pandas, and 

numpy are used for reading dataset files to plotting 

data, while sklearn is used for training data. The 

following is an architectural design for alphabet 

gesture recognition. 
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Fig. 2. Project Architecture 

B. Implementation Stage 

The programming language used in this project is 

Python. To facilitate the design, the researcher used the 

Jupyter Notebook coding environment which was run 

on the 2019 ASUS Vivobook A412FL laptop with the 

following specifications : 

 

CPU : Intel Core i5-8265U CPU @ 1.60GHz 

GPU : NVIDIA GeForce MX250 2GB 

RAM : 8GB 

 

To implement hand gesture detection for sign 

language, several stages are needed, namely: 

1. Creating a sign language dataset in the form of 

coordinates 

This is due to the unavailability of a sign language 

dataset that has the coordinates of 21 landmarks 

belonging to Mediapipe. The dataset used is an image 

dataset which contains a total of 87.000 images, with 

each image having a size of 200 x 200 pixels. There are 

29 classes in the dataset consisting of 26 alphabets and 

3 classes of space, delete, and nothing. After finding 

the dataset, each image in the dataset needs to be 

modified using the MediaPipe Hands API [7] which 

can output hand landmark coordinates from static 

images. Each landmark output from MediaPipe will be 

assigned a class according to the file name and inserted 

into the csv table. [13] Every 21 landmarks produced 

by MediaPipe will be entered in the form of values x[i] 

and y[i] where i denotes the landmark number in Fig. 

1. So that each alphabet will have 42 features 

consisting of x1 and y1 to x21 and y21. Referring to 

the weakness of KNN, namely KNN is prone to high 

dimensionality where this can make the space that can 

be occupied by each instance bigger so that there is a 

possibility that the nearest neighbor of an instance can 

no longer be said to be “near” because the dimensions 

of the instance space increase [11], the researchers 

choose to use only the landmark x[i] and y[i] even 

though there are up to z[i] where x[i] and y[i] represent 

the width and height, respectively. While z[i] 

represents the depth, whose value will decrease when 

the landmark is getting closer to the camera. When 

using the z value, each alphabet will produce 63 

features. This can cause a decrease in performance in 

the KNN model, because KNN cannot handle very 

large dimensional data. So the researchers decided that 

only using x[i] and y[i] would provide more optimal 

performance. 

TABLE 1. DISPLAY OF OUTPUT IN CSV 

 

In this implementation, the researcher created 1000 

training datasets with 24 alphabets. The making of 

1000 training datasets is because not all data in the 

image dataset is readable, then the researcher only uses 

24 alphabets, because the J and Z alphabets use 

movement so further implementation is needed to read 

movement. 

2. Machine learning model validation 

The dataset used in this project is a dataset that has 

just been previously created so that researchers do not 

have a test dataset to validate or evaluate machine 

learning models. Therefore, the researcher uses the 

train/ test split method which is used to validate the 

model with each data being processed and divided into 

training and testing data. This split is done in a 67:33 

ratio with the help of sklearn’s train_test_split library. 

 

Fig. 3. Display of the train/test split process for model validation 

3. Scaling the dataset 

The divided dataset is scaled with the 

StandardScaler method from the sklearn library. This 

method works like z-score normalization. In 

accordance with the previous chapter, this process 

serves to improve the performance of the KNN 

algorithm. 

 

Fig. 4. Display of scaling data process 

4. Generating classification model 

In making the classification model, the researcher 

uses the KNeighborsClassifier library belonging to 

sklearn. This library makes it easy to create KNN 

methods. In this model, the researcher uses 3 neighbors 

with an automatic algorithm from the library, the 

default weight function is uniform, the default metric 

is minkowski. 

 



 

 

 

 

Ultima Computing : Jurnal Sistem Komputer, Vol. 13, No. 2 | December 2021 60 

 

ISSN 2355-3286 

 

Fig. 5. Display of fitting model classifier process 

IV. RESULT 

A. Testing Scenario 

Researchers conducted 2 types of testing, namely 

testing with the help of a library and direct testing. For 

testing with the help of the library, the researcher aims 

to determine the accuracy value of the existing model. 

Meanwhile, in direct testing, the researcher aims to try 

this project in real-time. 

Direct testing was carried out by 2 examiners with 

2 significantly different conditions. The following is an 

explanation of the test conditions : 

1. Examiner A 

Device : Laptop Lenovo G470 i5-2410M 

(2011 released) 

Brightness : dim 

Amount of testing : 2 times for every 

alphabets 

2. Examiner B 

Device : Laptop ASUS VivoBook A412 FL 

i5-8265U (2019 released) 

Brightness : bright 

Amount of testing : 2 times for every 

alphabets 

B. Result with Library Assistance 

After the fitting process with the KNN method was 

successful, the researcher calculated the accuracy of 

the existing model with the help of sklearn’s 

classification_report and accuracy_score. From this 

model, the researcher obtained an accuracy of 0.944 

from a scale of 0-1, which means that it shows good 

accuracy. 

 

Fig. 6. Classification Report & Accuracy Score 

In addition to the accuracy score, the researcher 

also plots the Error Rate K Value with a K value range 

from 1-40 which can be used to adjust what is the best 

K value to use. 

Fig. 7. Error Rate K Value Graph 

C. Result of Direct Testing 

In the final stage, the researcher conducted a trial 

on the existing model directly by detecting the hand 

and obtaining an alphabet that was in accordance with 

the American Sign Language that had been included in 

the dataset. Researchers use the help of the cv2 library 

to do hand capture via webcam and the Mediapipe 

framework to detect hands and obtain the coordinates 

of hand landmarks captured by the webcam and then 

predict what alphabet is being demonstrated based on 

existing models. 

The test results are as follows : 

1. Examiner A : 

The alphabet can be predicted when the 

webcam with the help of the Mediapipe 

framework detects the presence of a hand so 

that in low light conditions, the distance 

between the hand and the webcam must be 

closer to be readable by the webcam. As long as 

the webcam reads the presence of a hand, the 

expected output of the alphabetical prediction 

will appear. From 2 trials for all alphabets, all 

alphabets can be predicted with some 

adjustment of hand distance with the webcam. 

So, it can be concluded that even in dim 

conditions as long as the hand can still be read 

by the webcam, the sign language will still be 

predictable. 

2. Examiner B : 

With good lighting, the entire alphabet can be 

predicted well because the webcam is able to 

capture a clear hand image so that the 

Mediapipe framework is able to recognize 

every part of the hand that practices sign 

language well. 
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Fig. 8. Hand Gesture Alphabet A 

 

 
Fig. 9. Hand Gesture Alphabet B 

 
Fig. 11. Hand Gesture Alphabet C 

 
Fig. 10. Hand Gesture Alphabet M 

 
Fig. 11. Hand Gesture Alphabet N 

 
Fig. 12. Hand Gesture Alphabet I 

Above are some of the results of the American Sign 

Language demonstration trials which were then 

detected and translated into the alphabet. Almost all 

alphabets can be read and translated well, except for 

some alphabets that may be a bit difficult to detect such 

as J and Z. However, apart from that, some alphabets 

that have similarities to their coordinate points, such as 

the M and N alphabets can still be distinguished and 

legible even though almost similar. 

V. CONCLUSION 

In this research, we propose a system that can 

detect sign language with the American Sign 

Language standard that can achieve real-time 

detection performance on desktop platforms, the 

workings of the researcher's detection system is based 

on the coordinates of 21 hand landmarks generated by 

MediaPipe. From these coordinates there are x, y, and 

z values for mapping hand gestures. The researcher 

suggests using only x and y values to improve the 

performance of the KNN model. This is due to the 

weakness of KNN in dealing with large-dimensional 

data. Then there are weaknesses in the system that the 

researcher proposes, namely the lack of datasets. To 

achieve an optimal system, a large number of datasets 

are needed so that it can detect the alphabet from 

various angles. Later, this system can be improved by 

using the Modified KNN model to obtain better 

results. 
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