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Abstract— Tanks have an important role in protecting a 

region in the event of a battle. The tank's cannon is a very 

reliable weapon in warfare. However, the cannon's 

precision while aiming and firing targets is a concern. A 

control system must be created to increase the cannon's 

stability and precision. The state feedback control 

technique with a full-state observer is the control system 

that can manage cannon disturbances. The control 

system is built around three DC motors, each of which 

operates the cannon’s x, y, and z axes. Then performed 

tests for each axis at an angle of 90 degrees, The state 

feedback control with a full state observer can produce 

outstanding performance, with the time required for the 

cannon to reach the target angle was 0.51 seconds, and 

the cannon system had 0% overshoot. 

Index Terms—Cannon; Full-state Observer; State 

Feedback Control; Tank. 

I. INTRODUCTION 

A country needs military vehicles that are used as 

instruments to protect or destroy threats [1][2], The 

main weapon of the tank will be unstable as it tries to 

cross different heights. Stability is something that must 

be considered, the cannon must be stable so that the 

tank can shoot its target accurately [3]. 

PID control is a traditional control method, is one 

of many that can be used to stabilize a cannon tank. 

This traditional control mechanism works well to 

control oscillations in the system and can be utilized 

for stability [4]. 

This system also has many problems, such as being 

non-linear, poorly actuated, and complex. To improve 

system performance, researchers are interested in 

creating this system. State feedback controllers are one 

of the control strategies utilized to manage this tank 

cannon system [5]. To describe all states in the cannon 

tank system, a state feedback controller is not sufficient 

[6]. To know every state in this system, a state observer 

must be added [7]. In this study, state feedback control 

with a full-state observer is used to regulate the cannon 

tank system. By determining the desired pole, the full-

state observer parameter and gain observer are added 

using the pole placement method. The decision is taken 

in order to achieve the best reaction with the least 

amount of control signal.. 
 

II. SYSTEM MODELLING 

A. Transfer Function DC Servo Motor 

This research on the cannon tank aims to control 

the entire position of the cannon, the actuator uses DC 

servo motors for each x, y and z-axis [8]. The design 

of the cannon tank shown in Fig. 1. 

 

Figure 1. Design of Cannon Tank 

The equivalent DC servo motor circuit can be seen 

in Fig. 2. 

 

Figure 2. Equivalent Circuit of DC Servo Motor 

The transfer function of the servo system can be 

written as: 

  
𝜃(𝑠)

𝐸𝑎(𝑠)
=

𝐾𝑡𝑛

𝑠[𝐿𝑎𝐽𝑠2+(𝐿𝑎𝑓+𝑅𝑎𝐽)𝑠+𝑅𝑎𝑓+𝐾𝑡𝑛𝐾𝑏]
        (1) 

Where,  

Ra = Armature Resistor  (2.5 Ω) 

La = Armature Inductance  (0.062 H) 

Ia = Armature Current 

Va = Applied Armature Voltage 

τ = Motor Torque 

J = Motor Moment of Inertia (0.00004 𝐾𝑔/m2) 
Ktn = Motor torque constant 0.026 (𝑁𝑚/𝐴) 

Kb = Back EMF Constant 0.02 (𝑣.s /𝑟𝑎𝑑) 

Considering the value of the gear ratio and the 

torque of each servo [9], the torque equation for the 

servo is: 
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  𝑇𝑡𝑜𝑡𝑎𝑙 = (𝑇𝑚 × 𝑛) + 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒         (2) 

where n is the gear ratio. Then the block diagram 

changes to: 

 

Figure 3. Servo Block Diagram with Gear Ratio and Torque 

Disturbance 

Using the block diagram in Fig. 3, the transfer 

function for servo x, servo y, and servo z is found: 

𝑇𝐹servo x =
0.000003234𝑠2+0.00008085𝑠+0.117

0.000002545𝑠3+0.0001636𝑠2+0.00484𝑠
       (3) 

𝑇𝐹servo y =
0.0000008154𝑠2+0.00002038𝑠+0.117

0.000002486𝑠3+0.0001624𝑠2+0.00484𝑠
       (4) 

𝑇𝐹servo z =
0.000005272𝑠2+0.0001318𝑠+0.117

0.000002585𝑠3+0.0001646𝑠2+0.00484𝑠
       (5) 

B. State Space Representation 

The system is shown in a state space model in 

Figure 4. 

 

Figure 4. Open-Loop System Representation In State Space 

The representatives of the state space equation can 

be derived as [10]. 

  𝑥 = 𝐴𝑥 + 𝐵𝑢       (6) 

  y= 𝐶𝑥 + 𝐷𝑢       (7) 

Determine all coefficients in the numerator and 

denominator of a transfer function by expanding it 

[11]. This should result in the following form: 

  𝐺(𝑠) =
𝑛1𝑠3+𝑛2𝑠2+𝑛3𝑠+𝑛4

𝑠4+𝑑1𝑠3+𝑑2𝑠2+𝑑3𝑠+𝑑4
       (8) 

The following method can now be used to directly 

insert the coefficients into the state-space model [12]: 

𝑥̇(𝑡) = [

0 1 0 0
0 0 1 0
0 0 0 1

−𝑑4 −𝑑3 −𝑑2 −𝑑1

] 𝑥(𝑡) + [

0
0
0
1

] 𝑢(𝑡) 

𝑦(𝑡) = [𝑛4 𝑛3 𝑛2 𝑛1]𝑥(𝑡) 

 

. 

 

III. STATE FEEDBACK CONTROL DESIGN 

A. State Feedback Controller 

A state feedback control system can be seen in Fig. 

5 as a diagram. The closed-loop eigenvalues are placed 

at the desired location using the feedback gain K in 

state feedback control. To get the output of the system 

to track the target location despite disturbances is the 

goal of the feedback control [13]. 

 

Figure 5. Closed-loop in State Space 

The state feedback control system's dynamic 

equation is obtained. 

  𝑥̇ = (𝐴 − 𝐵𝐾)𝑥 + 𝐵𝑢       (9) 

  𝑦 = 𝐶𝑥       (10) 

  𝑢 = 𝑟 − 𝐾𝑥       (11) 

Before implementing the controller, the system 

model must be analyzed for controllability and 

observability. The system is controllable if and only if 

the controllability matrix in Equation (12) has rank=n, 

where n is the size of the system order [14]. 

  𝐶 = [𝐵|𝐴𝐵|𝐴2𝐵| … |𝐴𝑗−1𝐵]       (12) 

Equation (13) is the observability matrix, and the 

system is observable if and only if the matrix has 

rank=n. 

  𝑂 = [𝐶|𝐶𝐴|𝐶𝐴2| … |𝐶𝐴𝑗−1]       (13) 

The closed loop's transfer function H(s) has a gain 

N, 0<N<1, for a unit-step reference input. The closed 

loop system in Fig. 4 is shown with a transfer function 

and is given as: 

  𝐻(𝑠) = 𝐶(𝑠𝐼 − (𝐴 − 𝐵𝐾))
−1

𝐵       (14) 
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Figure 6. Closed-loop system with gain 

The equation of state space can be derived as 

follow: 

  𝑥̇ = (𝐴 − 𝐵𝐾)𝑥 + 𝐵𝑢       (15) 

  𝑦 = 𝐶𝑥       (16) 

  𝑢 = 𝑟𝑁 − 𝐾𝑥 
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  [
𝑁𝑥

𝑁𝑢
] = [

𝐴 𝐵
𝐶 𝐷

]
−1

[
0
1

]        

  𝑁 = 𝑁𝑢 − 𝐾𝑁𝑥       (17) 

B. Controller Design by Pole Placement 

A technique based on complete state feedback 

control is the pole placement, as shown in Fig. 5. The 

denominator of the closed-loop system in Fig. 4 can be 

determined using the Laplace transfer function [15]. 

The control gain K can be found by minimizing the 

performance function. 

  𝐷(𝑠) = 𝑠𝐼 − (𝐴 − 𝐵𝐾)       (18) 

I is the identity matrix in this case. As a result, all 

of the eigenvalues of (A-BK) can be used to assess the 

stability and transient response characteristics of the 

closed-loop system. The decision to use a feedback 

gain design is an attempt to K such that the eigenvalues 

of (A-BK) have negative real values [16]. 

C. Full State Observer 

The observer has a few ways to derive its equation 

of state from the actual equations of the system, which 

are in the form of Equations (6) and (7). The full-state 

observer is shown in Fig. 7. 

 

Figure 7. Closed-loop system with Full-State Observer 

The gain observer is represented by Equation (18), 

where L is a n x m matrix. With the original state x(t) 

substituted by the estimate x̂(t) and the difference 

between the actual measured output y(t) and the 

estimate ŷ(t), respectively, the state equations in 

Equations (18) and (19) model the true equations of the 

system [17]. 

  𝑥̇̂ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐿(𝑦 − 𝑦̂)       (19) 

  𝑦̂ = 𝐶𝑥̂       (20) 

Substituting the equation ŷ(t) into the state 

equation of the observer will result in an alternative 

form for the model observer as in Equation (20). 

 𝑥̂ = (𝐴𝑥 + 𝐵𝑢) − (𝐴𝑥̂ + 𝐵𝑢 + 𝐿(𝐶𝑥 − 𝐶𝑥̂))      (21) 

IV. RESULTS AND DISCUSSION 

A. Controller Specifications 

In this research, it is desired that the maximum 

overshoot be below 5% and the maximum rise time be 

1 second. From these parameters, the values of ωn and 

ζ are obtained as 1.8 and 0.7, respectively. Then, to 

determine the control pole, see Fig. 8. 

 

Figure 8. Root Locus Diagram of An Uncompensated System 

In Fig. 9, there are values of ζ and ωn in the 

uncontrolled system. To determine the pole placement 

based on the specifications, the poles need to be placed 

inside the angle formed from the imaginary axis 0.7 

(inside the sloping line of approximately 45 degrees) 

to realize the specification of overshoot below 5%. To 

realize a rise time of less than 1 second, the poles 

should be placed outside the half circle around 0.7 and 

1.8. 

 

Figure 9. Pole Placement Control In The Root Locus 

B. Observer Specifications 

The observer desired to estimate ten times faster. 

Therefore, the pole location of the observer has a value 

ten times that of the controller's poles. Using equation 

(20), the gain of the observer is obtained as follows: 

L1= 107.06 

L2= 3.25 

L3= 0.01 
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C. State-Feedback Control with A Full-State Observer 

State-Feedback Control with a Full-State Observer 

Design is used to control the y servo contributing to 

roll, the x servo for pitch, and the z servo for yaw. 

Before implementation on the cannon, simulation is 

required to ensure the control system design is good 

and correct. Based on Fig. 5, the closed loop system 

has a gain value K as follows: 

K1 = 0.0004 

K2 = -0.0305 

K3 = 5.98 

The value is obtained by det(sI-(A-BK)) = 0. Fig. 

10 shows the response of the cannon angular position 

with a reference of 90 degrees. 

 

Figure 10. Cannon Simulation Response 

The response of the cannon angular position shows 

that the cannon can reach the desired position of 90 

degrees within 1.5 seconds. The response of the 

simulation results shows good performance when 

implemented. Fig. 11 shows the response of the control 

signal given by the controller to the cannon system. 

 

Figure 11. Control Signal Response 

The control signal response shows that the voltage 

provided by the controller to the DC motor is a 

maximum of 11.7 volts. This voltage does not exceed 

the input voltage value given by the motor driver to the 

DC motor, which is 12 volts. 

Then, the system was tested to get the same 

response curve as in the simulation. The method to see 

the data from the gyroscope on the cannon is to start 

moving the actuator until the system has a steady state. 

 

Figure 12. Cannon Implementation Response 

The angular position response of the cannon's x-

axis, y-axis and z-axis shows that it can reach the 

desired position of 90 degrees in 0.51 seconds which is 

the rise time and settling time and 0% overshoot, which 

is better than the simulation results. In this section, 

state-feedback control with a full-state observer test 

has been implemented. 

V. CONCLUSIONS 

It has been successfully developed to use state-

feedback control with a full-state observer for cannon 

systems, and a pole placement was used to calculate 

the feedback gain K. The pole placement control 

approach has also been used to determine the gain of 

the full-state observer L. The cannon system has a 

settling time and rise time of 0.51 seconds, and the 

system is still stable. The system reaction has 0% 

overshoot, according to the implementation results. 

ACKNOWLEDGMENT 

The authors would like to thanks Universitas 

Multimedia Nusantara for supporting this research.  

REFERENCES 

[1] Putra, D. F. A., & Muharom, A. S. (2021). The stability of 

cannon position on tank prototype using PID controller. 

Indonesian Journal of Electrical Engineering and Computer 
Science, 23(3), 1565-1575. 

[2] Tvarozek, J., & Gullerova, M. (2012). Increasing firing 
accuracy of 2A46 tank cannon built-in T-72 MBT. American 

International Journal of Contemporary Research, 2(9), 140-
156.  

[3] Ma, Y., Yang, G., Sun, Q., Wang, X., & Sun, Q. (2021). 

Adaptive robust control for tank stability: a constraint-
following approach. Proceedings of the Institution of 

Mechanical Engineers, Part I: Journal of Systems and Control 
Engineering, 235(1), 3-14.  

[4] Dursun, T., Büyükcivelek, F., & Utlu, Ç. (2017). A review on 

the gun barrel vibrations and control for a main battle tank. 
Defence technology, 13(5), 353-359.  

[5] Siradjuddin, I., Amalia, Z., Rohadi, E., Setiawan, B., Setiawan, 

A., Putri, R. I., & Yudaningtyas, E. (2018). State-feedback 
control with a full-state estimator for a cart-inverted pendulum 



 

 

 

 

18 Ultima Computing : Jurnal Sistem Komputer, Vol. 15, No. 1 | June 2023 

 

ISSN 2355-3286 

system. International Journal of Engineering & Technology, 
7(4.44), 203-209. 

[6] Lunze, J., & Lehmann, D. (2010). A state-feedback approach 
to event-based control. Automatica, 46(1), 211-215. 

[7] Esmailzadeh, E., & Taghirad, H. D. (1998). Active vehicle 

suspensions with optimal state-feedback control. International 
Journal of Modelling and Simulation, 18(3), 228-238. 

[8] Somwanshi, D., Bundele, M., Kumar, G., & Parashar, G. 
(2019). Comparison of fuzzy-PID and PID controller for speed 

control of DC motor using LabVIEW. Procedia Computer 
Science, 152, 252-260. 

[9] Pinto, V. H., Gonçalves, J., & Costa, P. (2021). Model of a DC 

motor with worm gearbox. In CONTROLO 2020: Proceedings 
of the 14th APCA International Conference on Automatic 

Control and Soft Computing, July 1-3, 2020, Bragança, 
Portugal (pp. 638-647). Springer International Publishing. 

[10] Aoki, M. (2013). State space modeling of time series. Springer 
Science & Business Media. 

[11] Zadeh, L., & Desoer, C. (2008). Linear system theory: the state 
space approach. Courier Dover Publications. 

[12] Karcanias, N., & Vafiadis, D. (2002). Canonical forms for state 
space descriptions. Control Systems, Robotics and 
Automation, 5, 361-380. 

[13] Lunze, J., & Lehmann, D. (2010). A state-feedback approach 
to event-based control. Automatica, 46(1), 211-215. 

[14] Ram, Y. M., Singh, A., & Mottershead, J. E. (2009). State 
feedback control with time delay. Mechanical Systems and 
Signal Processing, 23(6), 1940-1945. 

[15] Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. 

(2002). The explicit linear quadratic regulator for constrained 
systems. Automatica, 38(1), 3-20. 

[16] Ruderman, M., Krettek, J., Hoffmann, F., & Bertram, T. 

(2008). Optimal state space control of DC motor. IFAC 
Proceedings Volumes, 41(2), 5796-5801. 

[17] Panomrattanarug, B., Higuchi, K., & Mora-Camino, F. (2013, 

September). Attitude control of a quadrotor aircraft using LQR 
state feedback controller with full order state observer. In The 
SICE Annual Conference 2013 (pp. 2041-2046). IEEE. 

 

 

 


