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Abstract— Weather information plays a crucial role in 

various sectors due to Indonesia's wide range of weather 

and extreme climate phenomena. Automatic Weather 

Stations (AWS) are automated equipment designed to 

measure and collect meteorological parameters such as 

atmospheric pressure, rainfall, relative humidity, 

atmospheric temperature, wind speed, and wind 

direction. Occasionally, AWS sensors may produce 

erroneous values without the technicians' awareness. 

This study aims to develop sensors error detection system 

for predictive maintenance on AWS using the Long 

Short-Term Memory (LSTM) model. The AWS dataset 

from Jatiwangi, West Java, covering the period from 

2017 to 2021, will be utilized in the study. The study 

revolves around developing and testing four distinct 

LSTM models dedicated to each sensor: RR, TT, RH, and 

PP. The research methodology involves a phased 

approach, encompassing model training on 70% of the 

available dataset, subsequent validation using 25% of the 

data, and finally, testing on 5% of the dataset alongside 

the calibration dataset. Research outcomes demonstrate 

notably high accuracy, exceeding 90% for the RR, TT, 

and PP models, while the RH model achieves above 85%. 

Moreover, the research highlights that Probability of 

Detection (POD) values generally trend high, surpassing 

0.8, with a low False Alarm Rate (FAR), typically below 

0.1, except for the RH model. Sensor condition 

requirements will adhere to the rules set by World 

Meteorological Organization (WMO) and adhere to the 

permitted tolerance limits for each weather parameter. 

Index Terms— automatic weather station; long short-

term memory; predictive maintenance; sensor error 

detection 

I. INTRODUCTION 

Indonesia exhibits a wide array of weather and 

extreme climate phenomena [1]. Weather information 

plays a pivotal role across various sectors, serving as 

the cornerstone for policymaking by the central 

government, local authorities, and other stakeholders 

in infrastructure development, transportation, 

agriculture, tourism, energy, industry, and more. In the 

year 2021, the National Disaster Management Agency 

(BNPB) recorded that a striking 99.5% of the disasters 

occurring in Indonesia were of hydrometeorological 

nature. The top three prevailing events were floods, 

extreme weather, and landslides [2].  

Automatic Weather Stations (AWS) are automated 

equipment utilized for observing meteorological 

parameters, including atmospheric pressure, rainfall, 

relative humidity, atmospheric temperature, wind 

speed, and wind direction. The Meteorology, 

Climatology, and Geophysics Agency (BMKG) 

currently operates 368 AWS units distributed across 

Indonesia, both within and outside the vicinity of 

Meteorological Station Management Units (UPT) 

(BMKG, 2023). BMKG currently conducts 

maintenance activities, which encompass both 

corrective and predictive maintenance [4]. Corrective 

maintenance involves actions taken when AWS 

sensors are damaged, necessitating replacement or 

repair. Preventive maintenance, on the other hand, is a 

routine maintenance activity performed at scheduled 

intervals. But maintenance is not limited to corrective 

and preventive maintenance alone but also includes 

predictive maintenance [5]. 

Predictive maintenance can be classified into three 

primary approaches: knowledge-based, physics-based, 

and data-based methods [6]. The knowledge-based 

method leverages the expertise and experience of 

specialists to diagnose equipment failures. The 

physics-based method employs mathematical or 

physical comprehension of the system to assess the 
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remaining useful life of the machinery. The data-based 

method makes use of historical data collected by 

sensors on the equipment to make failure predictions. 

Of the three approaches mentioned, the most suitable 

predictive maintenance model for AWS sensors is the 

data-based approach. This is because AWS generates 

data for each interconnected meteorological parameter, 

and this data is critical for detecting the sensor's 

condition. 

The study aims to develop a system that can 

monitor sensor output values and detect AWS sensor 

errors based on historical sensor data as a pivotal step 

in predictive maintenance. The sensor parameters used 

in this study include pressure atmospheric pressure, 

rainfall, relative humidity, and atmospheric 

temperature. The machine learning algorithm chosen 

for this study is Long Short-Term Memory (LSTM). 

Sensor condition requirements will align with the 

World Meteorological Organization (WMO) standards 

concerning measurement tolerance for meteorological 

parameters, which specify maximum allowable 

deviations as follows: 5% for rainfall, 0.2°C for 

atmospheric temperature, 3% for relative humidity, 

0.15 hPa for atmospheric pressure [7].  

Within the realm of predictive maintenance, the 

LSTM (Long Short-Term Memory) algorithm 

outperforms other machine learning algorithms. The 

LSTM algorithm, classified within the neural network 

model category, possesses exceptional capabilities in 

understanding long-term relationships within 

sequential data. Additionally, it adeptly captures 

temporal relationships within data, exhibiting a high 

level of accuracy and facilitating the generation of 

exceptionally precise predictions regarding the future 

state of equipment. Oh and Kim obtained results 

indicating that predictions developed the LSTM model 

mirror the trends present in actual values. This model 

is applied to predictive maintenance for real-time 

equipment status diagnosis. Nevertheless, the LSTM 

model's accuracy is significantly compromised owing 

to an insufficiency of training data [8]. 

Jiang, et.al conclude that the proposed A2-LSTM 

method outperforms other existing techniques in the 

prediction of remaining useful life (RUL). The 

comparative results illustrate that the A2-LSTM 

method can proficiently identify critical attributes and 

create temporal dependencies within the 

manufacturing system, offering valuable assistance to 

maintenance personnel in their duties [9]. Dey and Jana 

have obtained results indicating that the proposed 

LSTM model surpasses the KernelRidge regression 

model in RMSE values, making it a viable choice for 

effectively conducting predictive maintenance on 

rotating machinery [10]. Ruhiyat, et.al conclude that 

the LSTM algorithm can be utilized for predictive 

maintenance of a ventilator system. The most 

significant result indicates a 98.4% probability of 

failure within 50 cycles with an 82% accuracy [11]. 

II. BASIC CONCEPTS 

A. Predictive Maintenance 

Predictive maintenance involves the utilization of 

condition monitoring technology to observe the 

deterioration of components, predict their future status, 

and consistently revise maintenance plans in 

accordance with the predictive outcomes [5]. The 

primary objectives of predictive maintenance are to 

diagnose the current condition (diagnostic) and 

forecast future conditions (prognostic). Predictive 

maintenance can be classified into three approaches: 

knowledge-based, physics-based, and data-based 

methods [6], as illustrated in Figure 1. 

The knowledge-based method is employed for 

diagnosing and prognosticating failures, primarily 

relying on expert knowledge and experience. This 

approach utilizes historical failure data as a primary 

tool for prediction. Within the knowledge-based 

method, three model categories can be identified: rule-

based models, case-based models, and fuzzy logic-

based models. The physics-based approach leverages 

the physical understanding of the system to assess the 

remaining useful life of machinery. This method is 

divided into several models, including mathematical 

models, Hidden Markov models, and filtering models 

such as the Kalman Filter, Extended Kalman Filter, and 

others. 

The data-based approach utilizes data collected 

from sensors on equipment, components, and 

machinery to predict failures. This data is extracted to 

process, analyze, and derive degradation information 

from it. Choosing the suitable machine learning or 

deep learning algorithms should align with the 

pertinent parameters of the equipment. This method 

provides the benefit of not depending on the precision 

of mathematical and physical models or intricate 

expert rule formulation. 

 

Fig. 1. Algorithm of predictive maintenance 
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The data-based approach utilizes data collected 

from sensors on equipment, components, and 

machinery to predict failures. This data is extracted to 

process, analyze, and derive degradation information 

from it. Choosing the suitable machine learning or 

deep learning algorithms should align with the 

pertinent parameters of the equipment. This method 

provides the benefit of not depending on the precision 

of mathematical and physical models or intricate 

expert rule formulation. 

B. Automatic Weather Station 

Automatic Weather Station (AWS) is a 

meteorological station responsible for conducting 

observations and transmitting data automatically [12]. 

The primary measurements performed by an AWS 

include essential weather parameters, such as pressure 

atmospheric pressure, rainfall, relative humidity, 

atmospheric temperature, wind speed, and wind 

direction. In maritime environments, additional 

parameters such as evaporation, water temperature, 

and water level are incorporated. Automatic 

Agroclimate Weather System (AAWS) is implemented 

in agroclimatology, which encompasses sensors for 

solar radiation, soil temperature, and soil moisture 

[13]. 

 

Fig. 2. Components of AWS 

AWS is categorized into two groups based on data 

presentation: AWS real-time and offline. AWS real-

time refers to meteorological stations that offer real-

time data to users, featuring communication systems 

and alert mechanisms for extreme weather conditions 

like storms, heavy rain, high temperatures, and more. 

On the other hand, AWS offline refers to weather 

stations that focus on data recording, storing it in 

storage media, and displaying the current data. The 

stored data can be downloaded as required at any time. 

Sensor condition requirements will adhere to the rules 

set by World Meteorological Organization (WMO). 

Measurement tolerances that meet the requirements are 

presented in Table I. 

TABLE I.  WMO REGULATION 

Parameter Range 

Achievable 

measurement 

tolerance 

Rainfall 0 ~ 500 mm 
higher 5% or 0.1 

mm 

Atmospheric 

temperature 
-80 ~ 60 oC 0.2 °C 

Relative humidity 0 ~ 100% 3% 

Atmospheric 

pressure 
500 ~ 1080 hPa 0.15 hPa 

C. Long Short-Term Memory 

Long Short-Term Memory (LSTM) is an 

improvement on the Recurrent Neural Network 

(RNN). Its main objective is to create models with the 

ability to retain long-term memory, while also having 

the capacity to filter out irrelevant information in the 

training data.  

LSTM utilizes a combination of two activation 

functions: the hyperbolic tangent (tanh) and the 

sigmoid functions [14]. In the tanh function, the output 

values are bounded within the (-1,1) range, facilitating 

the regulation of data flow through the network and 

preventing the vanishing gradient issue. Additionally, 

the sigmoid activation function is also incorporated 

into LSTM. It confines the output values to the (0,1) 

range, enabling the neural network to filter out 

unrelated data. When the output value approaches zero, 

it essentially becomes zero. The tanh and sigmoid 

activation function are defined as follows: 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (1) 

𝜎(𝑥) =
1

1 + 𝑒−𝑥 (2) 

 

Fig. 3. LSTM architecture 
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LSTM introduces a cell state, which is a crucial 

component of the algorithm. The hidden state functions 

as short-term working memory, while the cell state is 

employed as long-term memory to retain important 

information from previous data. LSTM possesses the 

ability to modify cell state values using a mechanism 

called Gates. LSTM incorporates four gates, as 

illustrated in Figure 3: 

• The Forget Gate decides which values from the 

preceding cell state to discard and which ones to 

preserve. 

• The Input Gate picks values from the prior hidden 

state and the present input for updating by 

subjecting them to a sigmoid function. The output 

of this function is subsequently multiplied by the 

previous cell state. 

• The Cell State Candidate Gate initially governs the 

flow of information within the network by using a 

tanh function on the prior hidden state and the 

present input. The resultant of the tanh function is 

then multiplied by the output of the Input gate to 

compute the candidate for the current cell state. 

This candidate is then added to the previous cell 

state. 

• The Output Gate calculates the current hidden 

state by employing a sigmoid function to decide 

which new information is crucial to consider. This 

is accomplished by applying the sigmoid function 

to the previous hidden state and the current input. 

The current cell state value is then processed by a 

tanh function. Finally, the results of these two 

functions are multiplied together. 

III. METHODS 

The study relies on recorded sensor data for 

rainfall, relative humidity, atmospheric temperature, 

and atmospheric pressure. This data was obtained from 

the AWS Jatiwangi site, which is situated at the Class 

III Meteorological Station in Kertajati, Majalengka 

Regency, West Java Province. Data records were 

obtained from the BMKG Central Office in Jakarta, 

accessible through the website 

https://awscenter.bmkg.go.id/. 

 

Fig. 4. AWS Jatiwangi site 

The study covers a time frame starting on January 

1, 2017 and concluding on December 31, 2021 with 

data recorded at 10-minute intervals. The entire study 

flowchart is depicted in Figure 5. 

 

Fig. 5. Study flowchart 

A. Outlier Values Handling 

Handling outlier values aims to ensure that they do 

not exert an excessive influence on the outcomes and 

interpretations of the forthcoming LSTM model. The 

BMKG Central Database sets forth criteria concerning 

the quality of AWS data. These guidelines, presented 

in Table II, represent general requirements applied by 

BMKG to enforce quality control for AWS data 

throughout Indonesia. 

TABLE II.  QUALITY CONTROL AWS DATA 

Sensor 
Minimum 

Threshold 

Maximum 

Threshold 

Stepcheck 

Threshold 

Rainfall 

(mm) 
0 300 30 

Atmospheric 

temperature 
(oC) 

5 45 3 

Relative 

humidity (%) 
5 100 15 

Atmospheric 
pressure 

(hPa) 

800 1050 2 

B. Feature Selection 

Feature selection is conducted to recognize the 

most significant and informative parameters among the 

features available in the dataset. This process involves 

the elimination of features that do not make a 

substantial contribution to the model under 

development. Feature selection encompasses several 

methods, including filtering methods, wrapper 

methods, and embedded methods [15]. In this study, 

feature selection is conducted using the embedded 

https://awscenter.bmkg.go.id/
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method, specifically the Random Forest Importance 

Feature technique. 

 

Fig. 6. Random forest architecture 

Random Forest is a machine learning algorithm 

that amalgamates numerous decision trees to generate 

more precise and robust predictions [16]. Features with 

a greater impact on the model's predictions will exhibit 

higher degrees of importance in the feature importance 

metric. This technique includes permuting feature 

values to evaluate their influence on the model's 

performance. Features that have a significant impact on 

the model will result in a notable decrease in accuracy 

when their values are shuffled. According to [17], their 

study results showed that the Random Forest algorithm 

attained an accuracy exceeding 90% for feature 

selection within a dataset. 

C. Data Segmentation 

The data segmentation scenario is split into two 

conditions: the normal dataset and the synthetic dataset 

[18]. The normal dataset contains the original 

parameter values, signifying sensors operating under 

standard conditions. Meanwhile, the synthetic dataset is 

created by adjusting parameter values beyond the 

normal sensor tolerance limits in compliance with the 

2021 WMO No. 8 standard, indicating sensors in an 

erroneous state.  

The AWS dataset is segmented into three 

components: dataset fo the training process, validation 

process, and testing process. The training dataset is 

utilized to train the LSTM algorithm and generate 

training models for each sensor parameter. The 

validation dataset is employed to assess the 

performance of the model on data that it has not 

encountered during the training process. Finally, the 

testing dataset is prepared to assess the LSTM models 

that have been built, comparing their results with the 

calibration dataset from AWS Jatiwangi.  

The AWS dataset will be distributed as follows: 

70% will be used for the LSTM training process, 25% 

will be reserved for validation the LSTM model, and 

5% will be allocated for testing against the AWS 

Jatiwangi calibration dataset. Within each process, 50% 

will be derived from the normal dataset, while 50% will 

be synthesized. Synthetic data generated from data 

transformation scenarios will be randomly inserted into 

the dataset. This random scenario is intended to make 

the error patterns of sensor readings resemble real-

world occurrences during operations.  

 

Fig. 7. Segmentation dataset process 

D. LSTM Model 

The dataset processed in the LSTM algorithm 

consists of AWS Jatiwangi data from January 2017 to 

December 2021. The LSTM model is implemented in 

Python using the PyTorch library. The LSTM design 

used in this study is presented in Table III.  

TABLE III.  DESIGN OF LSTM MODEL 

Parameterization RR TT RH PP 

Unit mm oC % hPa 

Input Layer (I) 3 3 3 3 

Hidden Layer (H) 2 2 2 2 

Output Layer (O) RR TT RH PP 

Epoch 100 

Hidden Size 64 

Optimizer Adam 
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Fig. 8. Architecture LSTM sensor model 

The LSTM model design for rain gauge sensors 

uses three input parameters: rainfall, atmospheric 

temperature, and relative humidity. The structure 

comprises a single input layer, two hidden layers, and 

single output layer. For synthetic data, the scenario 

includes randomly introducing damage values ranging 

from +5% to +400% and 0.1 to 100 for 0 mm from the 

normal values. 

The LSTM model design for atmospheric 

temperature sensors uses three input parameters: 

atmospheric temperature, relative humidity, and 

rainfall. The structure comprises a single input layer, 

two hidden layers, and single output layer. For synthetic 

data, the scenario involves randomly introducing 

damage values ranging from ±2% to ±50% from the 

normal values. 

The LSTM model design for relative humidity 

sensors uses three input parameters: relative humidity 

value, atmospheric temperature, and rainfall. The 

structure comprises a single input layer, two hidden 

layers, and single output layer. For synthetic data, the 

scenario involves randomly introducing damage values 

ranging from -9% to -60% and +9% to +70% from the 

normal values. 

The LSTM model design for atmospheric pressure 

sensors uses two input parameters: atmospheric 

pressure value and atmospheric temperature. The 

structure comprises a single input layer, two hidden 

layers, and single output layer. For synthetic data, the 

scenario includes randomly introducing damage values 

ranging from ±0.04% to 10% from the normal values. 

LSTM sensor model architecture is depicted in Figure 

8. 

E. Performance Evaluation 

The Confusion Matrix is employed as an evaluation 

tool for assessing the classification model's 

performance in the LSTM algorithm [19]. This 

evaluation method measures how accurately the 

classification model predicts the class or label of the 

data. The confusion matrix comprises four main cells: 

True Positives (TP) are the data points correctly 

identified as positive by the model, while True 

Negatives (TN) are the data points correctly identified 

as negative. False Positives (FP), or Type I Errors, are 

the data points inaccurately identified as positive, and 

False Negatives (FN), or Type II Errors, are the data 

points inaccurately identified as negative. 

 

Fig. 9. Confusion matrix 

The confusion matrix additionally enables the 

computation of various performance evaluation 

metrics, detailed as follows: 

• Accuracy: Measures how well correct 

classifications are made compared to the total 

predictions. In pattern recognition, accuracy 

assesses how well a system can correctly identify 

patterns. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

• Probability of Detection (POD): Measures how 

well the model can detect actual positive data. 

POD is a vital component of the confusion matrix 

as it specifically highlights the system's success in 

detecting actual occurrences. 

𝑃𝑂𝐷 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

• False Alarm Rate (FAR): Measures how often the 

model generates false positive signals, indicating 

instances where the system incorrectly identifies 

negatives as positives. FAR provides insights into 

the system's reliability in identifying negative 

events, serving as a crucial measure of its 

trustworthiness. 
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𝐹𝐴𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (5) 

  

IV. RESULT AND DISCUSSION 

The dataset comprises 5 columns: the "tanggal" 

column indicates the date and time, the "rr" column 

represents the rainfall sensor values in mm, the 

"tt_air_avg" column denotes the atmospheric 

temperature sensor values in oC, the "rh_avg" column 

signifies the relative humidity sensor values in %, and 

the "pp_air" column displays the atmospheric pressure 

sensor values in hPa. 

 

Fig. 10. AWS dataset 

A. Handling outlier values 

According to the BMKG Central Database 

requirements, outliers are removed by excluding them 

from the dataset. TABLE IV displays the dataset 

attributes after going through data preprocessing. Each 

column shows a reduction in data count due to the 

removal of outliers. The minimum and maximum 

values for each sensor attribute have been adjusted to 

align with BMKG's AWS data quality control 

standards. 

TABLE IV.  AFTER HANDLING OUTLIER VALUES 

Attribute RR TT RH PP 

Total data 175,787 175,787 175,787 175,787 

Minimum 0.0 17.5 15.9 994.5 

Maximum 276.0 38.6 100.0 1011.1 

Mean 4.2 27.5 75.7 1004.6 

Std 15.2 3.4 18.2 1.9 

Figure 11 displays a sample dataset from December 

29th to December 31st, 2021, where all parameters 

have values of 0. A sensor recording a value of 0 is 

interpreted as an indication of a malfunction in other 

components of the AWS, such as power supply issues 

or data transmission failures to the Central Database. 

This inference is drawn from the consistent occurrence 

of 0 values for each parameter within the same minute. 

It is also predicated on the absence of direct checks on 

the datalogger at the AWS Jatiwangi site, as the dataset 

was solely obtained from the AWS Center BMKG 

website. Consequently, the 0 values can be 

disregarded, as the failures are attributed to other 

components, rendering the sensors inactive or switched 

off. 

  

  

  

 

(a) 

 

(b) 

Fig. 11. Imputation testing plot with 60 minutes of missing data 

B. Feature Selection 

The feature importance for the relative humidity 

sensor is 0.43, for the atmospheric pressure sensor is 

0.29, and for the atmospheric temperature sensor is 

0.27 in relation to the rainfall sensor. Regarding the 

atmospheric temperature sensor, the relative humidity 

sensor holds a feature importance of 0.86, while the 

atmospheric pressure sensor has 0.12, and the rainfall 
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sensor has 0.02. As for the relative humidity sensor, the 

atmospheric temperature sensor holds a feature 

importance of 0.82, the rainfall sensor has 0.12, and the 

atmospheric pressure sensor has 0.05. In the context of 

the atmospheric pressure sensor, the relative humidity 

sensor has a feature importance of 0.48, the 

atmospheric temperature sensor has 0.39, and the 

rainfall sensor has 0.12. 

The LSTM model employs the two most prominent 

feature importance values as inputs from the other 

sensors. Therefore, it was found that the RR model 

utilizes inputs from RR, RH, and PP, the TT model 

uses inputs from TT, RH, and PP, the RH model 

employs inputs from RH, TT, and RR, and the PP 

model takes inputs from PP, RH, and TT. 

  

  

Fig. 12. Sensor feature selection 

C. Data Segmentation 

The dataset composition used for the LSTM model 

training process is 70% of the data, which amounts to 

123,051 data points. The dataset used for the LSTM 

model validation process is 25%, which equals 43,947 

data points. Additionally, the dataset used for the 

testing process with the AWS Jatiwangi calibration 

dataset is 5%, totaling 8,789 data points. Visualization 

of randomize synthetic data shown in Figure 13. Label 

1 indicates synthetic values within the dataset, while 

label 0 represents normal values within the dataset. 

  

  

  

  

Fig. 13. Imputation testing plot with 60 minutes of missing data 

In handling time series data, converting the data 

into matrices for Python processing using vectorization 

can greatly improve the speed and efficiency of the 

process compared to employing for or while loops that 

operate on individual elements separately. 

Vectorization, utilizing NumPy's broadcasting 

operations, enables mass array operations, allowing for 

parallel processing and optimization by the library. 

This leads to a significant performance enhancement, 

especially when dealing with extensive datasets. 

D. Evaluation of LSTM Model 

Training is conducted to enable the model to 

discern patterns within both the input and output data 

from the training dataset. In this process, four LSTM 

architecture models are constructed, namely the RR 

model, TT model, RH model, and PP model. Each of 

these models is designed to handle specific aspects or 

parameters of the data. The information provided 
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describes the architecture and training progress for four 

different LSTM models, each with 2 hidden layers 

consisting of 64 neurons: 

• Model RR for estimating the condition of rainfall 

sensors: Loss at epoch 1: 0.2384 and Loss at epoch 

100: 0.0269. 

• Model TT for estimating the condition of 

atmospheric temperature sensors: Loss at epoch 1: 

0.2904 and Loss at epoch 100: 0.0322. 

• Model RH for estimating the condition of relative 

humidity sensors: Loss at epoch 1: 0.3636 and 

Loss at epoch 100: 0.0981. 

• Model PP for estimating the condition of 

atmospheric pressure sensors: Loss at epoch 1: 

0.1766 and Loss at epoch 100: 0.0098. 

These models are used to estimate the condition of 

sensors for different environmental parameters based 

on the given training data. The loss values at different 

epochs indicate how well the models are performing 

during the training process, with lower loss values 

typically indicating better model performance. Among 

these four LSTM models, the PP model has the lowest 

loss, suggesting that it is the most predictable pattern 

when there are reading errors by the PP sensor. In other 

words, the PP model exhibits a higher degree of 

accuracy in estimating the condition of the atmospheric 

pressure sensor when compared to the other sensor 

models. 

 

Fig. 14. Sensor loss 

During the validation of the sensor dataset, the 

LSTM model demonstrates an accuracy above 85%, 

with POD exceeding 0.85 and FAR below 0.15. These 

metrics signify the model's proficiency in accurately 

recognizing the status of AWS sensors. Enclosed is the 

distribution table illustrating evaluation metrics during 

the 4-hour time-series validation in Table V.

TABLE V.  PERFORMANCE EVALUATION OF SENSORS IN VALIDATION PROCESS 

Time-

Series 

Accuracy 

(%) 
POD FAR 

RR TT RH PP RR TT RH PP RR TT RH PP 

t+0 85.1 86.4 77.1 97.3 0.812 0.963 0.811 0.996 0.099 0.200 0.260 0.047 

t+1 91.2 89.4 82.3 97.9 0.906 0.927 0.835 0.992 0.082 0.133 0.189 0.033 

t+2 93.3 91.0 86.3 98.2 0.942 0.927 0.878 0.990 0.076 0.106 0.151 0.025 

t+3 94.0 92.0 87.5 98.3 0.944 0.930 0.887 0.988 0.064 0.090 0.136 0.021 

t+4 94.5 92.6 88.1 98.5 0.948 0.932 0.887 0.989 0.058 0.080 0.126 0.019 

t+5 94.8 92.9 88.6 98.6 0.950 0.934 0.890 0.991 0.054 0.077 0.119 0.019 

t+6 95.0 93.3 88.7 98.8 0.951 0.939 0.890 0.993 0.050 0.073 0.117 0.018 

t+7 95.2 93.5 88.8 98.8 0.954 0.942 0.891 0.993 0.049 0.071 0.114 0.017 

t+8 95.3 93.7 89.1 98.8 0.954 0.943 0.893 0.994 0.048 0.069 0.111 0.017 

t+9 95.4 93.8 89.2 98.9 0.956 0.944 0.894 0.995 0.047 0.069 0.110 0.017 

t+10 95.5 93.8 89.3 98.9 0.957 0.945 0.895 0.995 0.046 0.068 0.110 0.017 

t+11 95.6 93.9 89.2 98.9 0.959 0.946 0.895 0.995 0.047 0.068 0.111 0.017 

t+12 95.7 93.9 89.3 98.9 0.960 0.946 0.896 0.995 0.046 0.068 0.109 0.017 

t+13 95.7 93.9 89.4 98.9 0.960 0.946 0.896 0.994 0.046 0.068 0.109 0.017 

t+14 95.7 93.9 89.5 98.9 0.960 0.947 0.897 0.995 0.046 0.068 0.108 0.017 

t+15 95.7 93.9 89.4 98.9 0.960 0.946 0.896 0.995 0.046 0.069 0.108 0.017 

t+16 95.7 93.9 89.5 98.9 0.960 0.947 0.897 0.995 0.046 0.068 0.107 0.017 

t+17 95.8 93.9 89.4 98.9 0.961 0.946 0.897 0.995 0.045 0.068 0.108 0.017 

t+18 95.8 93.9 89.4 98.9 0.961 0.946 0.896 0.995 0.045 0.067 0.108 0.017 

t+19 95.8 94.0 89.4 98.9 0.962 0.947 0.897 0.995 0.045 0.067 0.109 0.017 

t+20 95.8 94.0 89.5 98.9 0.962 0.947 0.898 0.995 0.045 0.067 0.108 0.017 

t+21 95.8 94.0 89.5 98.9 0.962 0.947 0.898 0.995 0.045 0.067 0.109 0.017 

t+22 95.8 94.0 89.4 98.9 0.962 0.948 0.898 0.995 0.045 0.067 0.109 0.017 

t+23 95.8 94.0 89.5 98.9 0.962 0.947 0.897 0.995 0.045 0.068 0.108 0.017 
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TABLE VI.  CALIBRATION DATASET TESTING 

Data 

point- 

TT RH PP Status 

STD UUT STD UUT STD UUT STD UUT 

1 28,41 28,19 80,94 79,00 1007,68 1007,92 normal normal 

2 28,46 28,09 80,33 81,00 1007,67 1007,92 normal normal 

3 28,48 28,04 80,86 80,30 1007,65 1007,92 normal normal 

4 28,50 28,04 78,42 80,80 1007,63 1007,89 normal normal 

5 28,55 28,07 79,87 78,84 1007,62 1007,88 normal TT Error 

6 28,56 28,16 79,05 79,91 1007,60 1007,86 normal normal 

7 28,61 28,17 80,81 80,10 1007,58 1007,83 normal normal 

8 28,66 28,15 80,29 81,60 1007,54 1007,81 normal normal 

9 28,64 28,11 78,17 80,10 1007,53 1007,79 normal normal 

10 28,67 28,04 78,85 79,36 1007,50 1007,77 normal normal 

11 28,72 28,06 76,82 79,77 1007,48 1007,74 normal normal 

12 28,79 28,09 77,30 78,75 1007,47 1007,73 normal normal 

13 28,91 28,14 77,19 78,26 1007,45 1007,72 normal normal 

14 29,05 28,26 79,75 79,39 1007,44 1007,70 normal normal 

15 29,12 28,42 76,16 79,98 1007,42 1007,69 normal normal 

16 29,23 28,53 76,14 77,90 1007,39 1007,66 normal normal 

17 29,34 28,68 76,54 77,07 1007,38 1007,64 normal normal 

18 29,48 28,79 76,49 77,58 1007,38 1007,64 normal normal 

19 29,58 28,93 75,64 77,22 1007,38 1007,64 normal normal 

20 29,55 29,01 74,01 75,73 1007,39 1007,64 normal normal 

21 29,46 28,99 73,74 73,01 1007,38 1007,64 normal normal 

22 29,47 29,01 72,13 74,49 1007,39 1007,65 normal normal 

23 29,46 29,00 71,68 72,94 1007,39 1007,65 normal normal 

24 29,45 29,03 72,40 71,80 1007,41 1007,67 normal normal 

25 29,47 29,08 73,24 74,14 1007,42 1007,68 normal normal 

26 29,53 29,10 74,55 73,34 1007,44 1007,70 normal normal 

 

The increase in accuracy, such as the lower 

accuracy at t+0 compared to t+1, stems from several 

factors: 

• Short-term detections (t+1) are simpler due to the 

availability of information from t+0, which can be 

used for t+1 detections. This added information 

can enhance accuracy by providing the model 

access to more current data. 

• The known data at t+0 enables clearer pattern 

recognition, aiding the model in identifying 

patterns for t+1 detections. 

• The potential lack of relevant features or necessary 

data for t+0 detections might lead to reduced 

accuracy in precisely detection at t+0. 

Testing was conducted on the calibration dataset 

from AWS Jatiwangi. This dataset was acquired from 

the calibration activities performed by BBMKG 

Wilayah II Tangerang Selatan on August 22, 2022. The 

calibration dataset comprises parameters TT, RH, and 

PP with normal values labeled as 0. During the testing 

using the calibration dataset, the models tested were 

restricted to TT and PP sensors as input data for sensor 

RR was not available. Hence, the RH and RR models 

could not be tested due to the absence of RR sensor 

data as input for the model. This limitation in testing 

the calibration dataset stems from the lack of RR 

sensor input, as the calibration method for RR sensors 

by BBMKG Wilayah 2 Tangerang Selatan differs from 

the calibration method used for TT, RH, and PP 

sensors. Result of testing is shown in Table VI. 

The STD column contains values from the standard 

calibration sensor for each parameter, while the UUT 

column displays values from the AWS Jatiwangi 

sensor. The testing results reveal the model's 

proficiency in identifying patterns within the standard 

calibration sensor values, confirming the normal state 

of this sensor. However, within the AWS Jatiwangi 

sensor, the model detected an abnormal pattern in a 

single data point, particularly in the 5th entry, where 

the temperature (TT) measured 28.05°C. 

Although an anomaly was detected in one data 

point, overall assessments still categorize the TT and 

PP sensors from AWS Jatiwangi as within the normal 

range. The model's analysis indicates that this anomaly 

was only observed in one data point, resulting in the 

general conclusion that both sensors remain considered 

stable and normal. 

V. CONCLUSION 

The paper presents a technique for detecting sensor 

errors in AWS using LSTM algorithms. The method 

produces four sensor models: RR, TT, RH, and PP 

models. These models predict by identifying patterns of 

reading errors within synthetic data scenarios in the 

training dataset. There's a notable decrease in loss 

values as the number of epochs increases. Individual 

sensor performance evaluations show that the models 
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can detect sensor reading errors with high average 

accuracy (>90%, except for RH), high POD, and low 

FAR. The proposed sensor error detection can serve as 

a prospective method for predictive maintenance, 

offering potential implementation for future AWS 

maintenance procedures. The predictive maintenance 

framework comprises critical stages related to sensor 

anomalies in both primary and secondary processes. In 

this study, the commencement of future work on 

developing algorithms for estimating remaining useful 

life should be grounded in the detection of errors. 
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