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Abstract— A data center always require a proper cooling 

system. This research study a data center with water 

based cooling system that consists of two chillers and two 

in-rack coolers. To control the system, an Industrial 

Internet of Things (IIoT) infrastructures has been 

deployed. It able to monitors real-time data from various 

sensors such as temperature (T), pressure (P), water flow 

(Q). The data were supposed to be used for optimization. 

However, early assessment showed that there were 

discrepancies between the sensors. Therefore, the data 

reconciliation method is very important to get valid data 

from the sensor by utilizing the least square optimization 

problem method. obtained the results of error detection 

on the temperature sensor reading +/- 2.5 degrees with an 

accuracy of 3 numbers behind the comma, then analyzed 

the Mean Square Error and Mean Average Error at the 

time before reconciliation the results were 7.21 and 2.68, 

and after the reconciliation process and gross error 

obtained the results of Mean Square Error of 0.33 and 

Mean Average Error of 0.5 from these results it can be 

concluded that the reconciliation and gross error 

detection method used with the least square method is 

better than the gross error detection method. 

Index Terms— Colleration matrix; Gross error 

detection; Industrial Internet of things; Least-square 

optimization method. 

I. INTRODUCTION 

The advent of Industry 4.0 has ushered in a 

paradigm shift across diverse industrial sectors, 

necessitating the ubiquitous integration of data centers. 

Industry 4.0, a convergence of digital and physical 

technologies in industrial processes, has precipitated 

an escalating demand for High-Performance 

Computing (HPC). In this landscape, cloud technology 

services and the imperative for high computing loads 

constitute pivotal facets in industrial operations, 

facilitating real-time data processing, analysis, and 

responsiveness. Data centers, as linchpins in efficient 

data storage and management, furnish the 

computational prowess requisite for expanse data 

analytics [1]. 

Nevertheless, the challenges intrinsic to high 
computing loads in the industry 4.0 milieu exert 
formidable stress on data center performance. This 
necessitates the capacity to adeptly manage voluminous 

data and promptly respond to exigent demands [2]. 
Operational challenges further manifest in the 
inefficiencies of water-cooling systems, characterized 
by excessive energy consumption and necessitating 
disruptive downtimes for maintenance [3]. The 
utilization of data reconciliation methods becomes 
imperative to verify the accuracy of every sensor 
employed in process control [4] to archive goal creation 
an optimal control system and can reduce time of the 
cooling machine. other challenging in data center 
systems revolves around maintaining room 
temperatures below the dew point, crucial for optimal 
functionality of computer servers within the data center 
environment [5]. 

Therefore, we are developing an IIoT system for the 
water-based cooling machine in the data center, which 
will be constructed in Labtek 6, Building of 
Engineering Physics, Faculty of Industrial Technology, 
Institute Teknologi Bandung. One of the key aspects we 
need to focus on is ensuring that the measurement data 
are accurate to make the process effective and efficient 
[6]. Building an IIoT Integration system, measurement 
error can sometimes occur, and this error can be 
categorized into random errors and gross error [7]. 
These errors need to be minimized during the data 
acquisition process to make sure all those data for 
acquisition were accurate [8]. One or other method can 
be use is to minimize the objective function in linear 
state space equation over time and by detecting gross 
errors through a physical quantity approach in the 
control process has been used [9]. 

The approach involves employing the SciPy 
optimization method to minimize the objective function 
using a general equation for Least Square Optimization. 
The input for the SciPy function includes a correlation 
matrix, and the relationships between various processes 
in the data center cooling system are visualized using a 
heatmap method. Prior to analysis, the dataset 
undergoes preprocessing, which includes noise 
detection, training on 80% of the data, and validation 
using the remaining 20%. The primary goal of this 
process is to identify measurement errors in the sensors 
and subsequently adjust the measured values. 
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II. METHODS 

A. Research Objective 

The research focuses on a data center with water 

based cooling system located at Labtek 6, Engineering 

Physics, Faculty of Industrial Technology, Bandung 

Institute of Technology. An IIoT system for this system 

has been developed using the Node-RED platform. 

During the implementation of the IIoT integration 

system, it was observed that some sensors were less 

accurate, necessitating a gross error detection and 

correction method in the data acquisition process. This 

research involves several stages, as depicted in the 

overall research flow chart in Fig. 1. 

 

Fig. 1. Research Flow Diagram 

B. Water Based Cooling System & Instrumentation 

The schematic design of the Piping & Instrument 

Diagram in this study, as illustrated in Fig.2 reveals the 

representation of Chiller 1 and Chiller 2 as CH.1 and 

CH.2, both sharing the same water flow. A mixing pipe 

serves as a blending and redundancy system, enabling 

the alternating activation or deactivation of Chiller 1 

and Chiller 2 every 12 hours. The sequence begins with 

Chiller 1 powered by Motor 1 (CHWP 1) followed by 

Chiller 2 powered by Motor 2 (CHWP 2). The 

controller employed in this study is a PLC of CP2E 

type, specifically designed for reading and controlling 

the data center cooling system effectively. 

 

Fig. 2. Piping and Instrument Diagram 

In the section illustrating the water inlet 

represented by red arrows from Chiller 1 and 2 before 

entering the Mixing Pipe, Solenoid Valves (SV) are 

strategically placed in each chiller section. This is to 

ensure that the water flow is directed only to the active 

chiller while the inactive one remains unaffected. After 

entering the mixing pipe, water flow is propelled by a 

pump towards the In-rack Cooling section through a 

branching pipe system, ensuring even distribution. 

Temperature (TT) and pressure (PT) sensors are 

strategically placed at the entry and exit points of the 

In-rack Cooling system. Each pipe in this process is 

equipped with temperature and pressure sensors to 

analyze the temperature and pressure differences 

between the incoming and outgoing water from Chiller 

1 and Chiller 2. Additionally, a flow sensor (FT) is 

installed to detect any water leakage within the system.  

This P&ID system constructed fulfills the criteria for 

conducting data correction and detecting gross error 

values effectively. Multiple sensors installed in each 

relevant process enable the application of 

reconciliation principles for accurate data correction, 

ensuring high precision and suitability [18]. 

C. IIoT System 

The architectural system for IoT integration in Data 

Center cooling machines utilizes the Node-RED 

platform. It serves as a communication bridge between 

physical devices (OT) and the IT system, allowing 

every process on the machine to be automatically 

recorded in a MySQL database and displayed on the 

HMI panel, as shown in Fig 3. 
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Fig. 3. IT Diagram for IT Process 

Furthermore, Fig.4 illustrates the configuration of 

OT devices, which consist of sensors and actuators 

controlled by an Omron CP2E N-30DRA PLC. This 

PLC is connected via Analogue, Digital, or RS485 

communication pin and the developed system must 

ensure that the data acquisition process and the 

implemented control system operate smoothly and 

without interruptions. 

 

Fig. 4. OT Diagram for Field Device 

D. Gross Error Detection & Correction Model 

In state space analysis, a model is typically 

represented by first-order differential equations in a 

steady-state system [13]. The general state space 

equation is expressed as follows: 

𝑥̇(𝑡) =  𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (1) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (2) 

Equation (1) represents the state space equation, and 

equation (2) is the output equation of a linear system 

[14]. The author employs the Least Squares 

Optimization method to find the minimum value of the 

objective function in a linear system. This method is 

preferred over Weighted Least Squares because the 

dataset is predominantly linear, as described by the 

general function in Equation (3). 

𝑚𝑖𝑛 ∑ 𝜔𝑖

𝑛

𝑖=1

(𝑥𝑖 − 𝑥̂𝑖)2 (3) 

And referring to Equation (1), we get Equation (4) 

matrix notation. 

min(𝑥 − 𝑥̂)𝑇 𝑊(𝑥 − 𝑥̂) (4) 

To solve the optimization problem, the method of 

Lagrange multipliers, as shown in Equation (5), is used. 

This approach involves obtaining the value of the 

partial derivative of the Lagrangian function (ℒ) with 

respect to 𝑥 dan 𝜆 by setting the equation equal to zero 

[15]. The optimal result of data reconciliation (𝑋𝑟) and 

the offset/bias value, which are necessary for data 

correction, are then determined. These results represent 

the accuracy of a sensor under steady-state conditions. 

ℒ(𝑥,𝜆) = (𝑥 − 𝑥̂)𝑇𝑊(𝑥 − 𝑥̂) + 𝜆𝑇(𝐴𝑥 + 𝑏) (5) 

In a control process, an essential variable for data 

processing is converting time-based state space 

equations to discrete-based state space equations. This 

conversion requires selecting an appropriate sampling 

rate to accurately model a continuous system as a 

discrete one [16]. To minimize errors resulting from the 

discretization of the state space, suitable sampling 

intervals are necessary, these intervals are typically as 

small as possible relative to the system time constant, 

or the real-time sampling frequency of data obtained 

from the control process. The discrete state space 

equations are represented by Equation (6) and Equation 

(7) as follows: 

𝑋𝑘 = 𝐹𝑋𝑘−1 + 𝐺𝑈𝑘−1 + 𝑊𝑘 (6) 

𝑌𝑘 = 𝐻𝑋𝑘 + 𝑉𝑘 (7) 

Then, the data bias parameters represented by  
𝑊𝑘𝑉𝑘 and errors can be shown in Equation (8) as 

follows: 

 

𝐸[𝑊𝑘] = 𝐸[𝑉𝑘] = 0 

𝐶𝑜𝑣[𝑊𝑘] = 𝑄 

𝐶𝑜𝑣[𝑉𝑘] = 𝑅 

𝐶𝑜𝑣[𝑊𝑘, 𝑊𝑖] = 𝐶𝑜𝑣[𝑉𝑘, 𝑉𝑗] = 0 

𝐶𝑜𝑣[𝑊𝑘, 𝑉𝑗] = 0 

(8) 

The equation aims to ensure that the expected 

values of 𝑊𝑘 and 𝑉𝑘 are zero, with their covariances 

being 𝑄 and R respectively. 

E. Gross Error Detection & Correction Calculation 

The process of gross error detection and data 

correction in a system involves collecting real-time 

sensor data and comparing readings from potentially 

erroneous sensors with those from accurate sensors, 
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while adhering to relevant physical laws. Corrected 

sensors must maintain a constant physical mass and be 

within a relatively close range. 

 

Fig. 5. Gross Error detection and Correction process 

Figure 5 shows the data flow diagram of error 

detection and correction process. It begins by reading 

the data from the accurate sensors as well as the less 

accurate ones. To reduce the noise, the data then filtered 

with an IIR filter [10]. This is followed by sampling the 

steady state of the data center cooling process, indicated 

by water temperature measurements that match the 

setpoint. If the system is functioning normally but 

missing data is detected, the random forest method is 

used to predict and fill in the missing values [11]. Then, 

to analyze the processes and their correlations, resulting 

in a correlation matrix. Heatmap analysis is used to 

identify and visualize the relationships between each 

process within the system [12]. The resulting 

correlation matrix will be used as an input data for gross 

error detection. 

In employing the least square optimization method, 

the dataset used must be in a stable state. This 

requirement arises because the least square 

optimization method necessitates stable data to 

accurately minimize objective functions. One critical 

factor affecting the accuracy of the least square 

optimization model is ensuring that both the training 

and validation data are free from noise. Therefore, it is 

essential to preprocess the data to eliminate any noise 

and enhance the reliability of the optimization results 

digital filter need to be applying on training and 

validation data. On this research specifically use an IIR 

filter, to the obtained dataset to eliminate noise in the 

sensor reading system. This results in a noise-free set of 

sensor data, aiming to provide the most optimal 

correction results. Following this, a heatmap analysis is 

performed on the filtered dataset to determine the 

correlation between the various processes. 

The resulting matrix is then used as input data to 

minimize the objective function using the least square 

optimization method. Once the objective function is 

derived, it yields the bias value (𝑏), which is 

subsequently used to correct data from sensors 

exhibiting intolerable bias [17]. Then, to correct the 

sensor data using Equation (9) to achieve accurate data 

readings. 

Δ𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = (𝑋𝑟 − 𝑏) − 𝐸𝑑𝑎𝑡𝑎  (9) 

After obtaining the corrected data values from the 

validation process of the sensor readings, the Mean 

Square Error (MSE) and Mean Absolute Error (MAE) 

were evaluated. The errors were assessed for the 

corrected sensor data in comparison to the calibrated 

sensor data. If the MSE and MAE values for the 

corrected sensor data are within ±0.5% of the 

calibrated sensor data, it can be concluded that the 

applied method is successful. This indicates that the 

corrections have effectively improved the accuracy of 

the sensor readings. 

III. RESULTS AND DISCUSSION 

A. IIoT data logging 

The data logger used in this research samples data 

every 10 seconds for all processes occurring within the 

water-based data center cooling machine and some 

crucial sensors are read with a per-second sampling 

rate, including the temperature sensor in the pipe (TT), 

the pressure sensor in the pipe (PT), the water flow 

sensor at the chiller output (FT1), and the water flow 

sensor at the chiller return (FT2). Fig. 8 shows the 

temperature sensor data readings with a 10-second time 

sampling interval. The set point changes sequentially 

from 16 degrees to 18 degrees, and then to 20 degrees, 

resulting in the graph shown in Fig 6. 

 

Fig. 6. Data Logger within 10 second sampling time 

B. Error Detection & Correction Model 

Based on the development of the IIoT system for 

data center cooling machines, sensors were positioned 

according to the P&ID design drawing. The system 

schematic is depicted in Fig. 7. 

 

Fig. 7. Schematic of the IoT system of Water-based Data Center 

Cooling Machine 
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The sensor placement illustrated in Fig 7 adheres to 

the previously designed P&ID. Temperature (TT) and 

pressure (PT) sensors have been installed at the mixing 

pipe outlets (ToC) and returns (TrC) of the cooling 

machine. The water flow is monitored both before and 

after the in-rack cooling process to evaluate for 

potential leaks in the closed-loop system. This can be 

represented in the physical model as follows: 

𝑇𝑟𝐶1 − 𝑇𝑇1 = 0 and 𝑇𝑟𝐶2 − 𝑇𝑇2 = 0 

𝑇𝑜𝐶1 − 𝑇𝑇3 = 0 and 𝑇𝑜𝐶2 − 𝑇𝑇4 = 0 

𝑃𝑇1 + 𝑥̂ = 𝑃𝑇5 and 𝑃𝑇2 + 𝑥̂ = 𝑃𝑇6 

𝑃𝑇1 + 𝑥̂ = 𝑃𝑇3 and 𝑃𝑇2 + 𝑥̂ = 𝑃𝑇4 

𝑃𝑇5 + 𝑥̂ = 𝑃𝑇7 and 𝑃𝑇6 + 𝑥̂ = 𝑃𝑇8 

𝑇𝑖𝑛1 = 𝑇𝑇3 − 𝑥̂ and 𝑇𝑖𝑛2 = 𝑇𝑇4 − 𝑥̂ 

𝑇𝑜𝑢𝑡2 = 𝑇𝑖𝑛1 − 𝑥̂ and 𝑇𝑜𝑢𝑡1 = 𝑇𝑖𝑛1 − 𝑥 

𝐹𝑇1 = 𝐹𝑇2 = 𝐹𝑇3 = 𝐹𝑇4 

(10) 

In this model, it is assumed that the water flow rate 

remains constant and is independent of any processes 

occurring within the system. Therefore, it can be 

represented in matrix form as follows: 

1. Current model condition 𝑇𝑟𝐶1 − 𝑇𝑇1 = 0 and 

𝑇𝑟𝐶2 − 𝑇𝑇2 = 0. 

[

𝑇𝑇1

𝑇𝑇2

𝑇𝑟𝐶1

𝑇𝑟𝐶2

] = [

−1 0 1 0
0 −1 0 1
1 0 −1 0
0 −1     0 1

] [

𝑇𝑇1

𝑇𝑇2

𝑇𝑟𝐶1

𝑇𝑟𝐶2

] + 𝑏 (11) 

2. Current model condition 𝑇𝑜𝐶1 − 𝑇𝑇3 = 0 and 

𝑇𝑜𝐶2 − 𝑇𝑇4 = 0. 

[

𝑇𝑇3

𝑇𝑇4

𝑇𝑜𝐶1

𝑇𝑜𝐶2

] = [

−1 0 1 0
0 −1 0 1

−1 0 1 0
  0 −1 0 1

] [

𝑇𝑇3

𝑇𝑇4

𝑇𝑜𝐶1

𝑇𝑜𝐶2

] + 𝑏  (12) 

3. Current model condition 𝑃𝑇1 + 𝑥̂ = 𝑃𝑇5 and 

𝑃𝑇2 + 𝑥̂ = 𝑃𝑇6. 

[

𝑃𝑇1

𝑃𝑇2

𝑃𝑇5

𝑃𝑇6

] = [

1 0 −1 0
0 1  0 −1
1 0 −1 0
0 1 0 −1

] [

𝑃𝑇1

𝑃𝑇2

𝑃𝑇5

𝑃𝑇6

] + 𝑏 (13) 

4. Current model condition 𝑃𝑇1 + 𝑥̂ = 𝑃𝑇3 and 

𝑃𝑇2 + 𝑥̂ = 𝑃𝑇4. 

[

𝑃𝑇1

𝑃𝑇2

𝑃𝑇5

𝑃𝑇6

] = [

1 0 −1 0
0 1  0 −1
1 0 −1 0
0 1 0 −1

] [

𝑃𝑇1

𝑃𝑇2

𝑃𝑇5

𝑃𝑇6

] + 𝑏 (14) 

5. Current model condition 𝑃𝑇5 + 𝑥̂ = 𝑃𝑇7 and 

𝑃𝑇6 + 𝑥̂ = 𝑃𝑇8. 

[

𝑃𝑇5

𝑃𝑇6

𝑃𝑇7

𝑃𝑇8

] = [

1 0 −1 0
0 1  0 −1

−1 0 1 0
0 −1 0 1

] [

𝑃𝑇5

𝑃𝑇6

𝑃𝑇7

𝑃𝑇8

] + 𝑏 (15) 

6. Current model condition 𝑇𝑖𝑛1 = 𝑇𝑇3 − 𝑥̂ and 

𝑇𝑖𝑛2 = 𝑇𝑇4 − 𝑥̂. 

[

𝑇𝑇3

𝑇𝑇4

𝑇𝑖𝑛1

𝑇𝑖𝑛2

] = [

1 1 −1 0
1 1 −1 −1
1 1 −1 0
1 1 0 −1

] [

𝑇𝑇3

𝑇𝑇4

𝑇𝑖𝑛1

𝑇𝑖𝑛2

] + 𝑏 (16) 

7. Current model condition 𝑇𝑜𝑢𝑡2 = 𝑇𝑖𝑛1 − 𝑥̂ and 

𝑇𝑜𝑢𝑡1 = 𝑇𝑖𝑛1 − 𝑥. 

[

𝑇𝑖𝑛1

𝑇𝑖𝑛2

𝑇𝑜𝑢𝑡1

𝑇𝑜𝑢𝑡2

] = [

1 0 −1 0
0 1 0 −1
1 0 −1 0
0 1 0 −1

] [

𝑇𝑖𝑛1

𝑇𝑖𝑛2

𝑇𝑜𝑢𝑡1

𝑇𝑜𝑢𝑡2

] + 𝑏 (17) 

8. Current model condition 𝐹𝑇1 = 𝐹𝑇2 = 𝐹𝑇3 =
𝐹𝑇4. 

[

𝐹𝑇1

𝐹𝑇2

𝐹𝑇3

𝐹𝑇4

] = [

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

] [

𝐹𝑇1

𝐹𝑇2

𝐹𝑇3

𝐹𝑇4

] + 𝑏 (18) 

C. Data Processing 

The initial step involved analyzing the system by 

distinguishing between transient and steady-state 

conditions. After separating the transient and steady-

state data, noise was detected in the data. Therefore, a 

digital filter was required to remove the noise. An 

Infinite Impulse Response (IIR) filter was employed 

for this purpose. The IIR filter was chosen to mitigate 

overfitting and underfitting, ensuring clean data for 

machine learning applications, which results in high 

accuracy. Assuming a fourth-order IIR filter with a 

cutoff value of 10, the filtered data, as shown in Figure 

10 was the reduces noise in the dataset. 

 

Fig. 8. Plot data from original data comparing with filtered data 

The subsequent step involves constructing matrix 

A, which represents the correlation matrix derived 

from the least squares optimization problem to 

determine the objective function. This process utilizes 

a heat-map analysis approach based on the derived 

physical equations, as depicted in Fig. 11. Higher 

values in the heat-map, the 1 value in result that 
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indicate strong relationships between the conditions 

being analyzed. 

 

Fig. 9. Result of correlation matrix analysis using heat-map 

method 

Subsequently, from these results, the author 

derived a 24x24 correlation matrix equation. 

Substituting this matrix equation into the least squares 

optimization method yielded 𝑋𝑟 values, representing 

the accuracy of sensor readings, and optimal bias 

values (𝑏) for each sensor. The optimal values of 𝑋𝑟  

and b obtained sequentially for the temperature sensor 

in the pipe (TT) and the water flow rate sensor (FT) 

readings are as follows: 

1. Temperature sensor (TT) 

Optimal 𝑋𝑟= [12.69 12.36 11.52 12.48] 

Optimal 𝑏 = [-2.5 -2.57 1.42 1.43] 

This represents sensor condition TT1, TT2, TT3, TT4 

that located on pipping area in return and outlet Chiller. 

2. Water Flow Sensor (FT) 

Optimal 𝑋𝑟 = [23.42 12.40 17.21 9.84] 

Optimal 𝑏 = [-6.28 -6.28 -6.28 -6.28] 

This represents sensor condition FT1, FT2, FT3, FT4 

that located on return, outlet chiller, inside in rack-

cooling, and feedback from in rack-cooling. 

 

Fig. 10. Graphic plot result for temperature data correction 

Then, after getting the results of the optimal 𝑋𝑟and 

optimal 𝑏 values. Next, to make corrections, the sensor 

data is obtained using Equation (9). and the results 

obtained are as in Figure 10, namely a graphic plot of 

the results of the corrected temperature sensor data 

readings compared to the calibrated temperature 

sensor. The graph indicates a good adjustment with 

MAE results of 0.5045 and MSE 0.335. 

 

Fig. 11. Graph comparation on Water Flow sensor 

The next analysis is the water flow sensor, the 

results obtained as in Figure 10 show a graph of the 

relationship between the water flow sensor before and 

after data correction and compared with the sensor that 

is considered accurate. On Pressure sensor there is no 

problem with that condition sensor. everything was 

accurate and no need adjustment variable. 

IV. CONCLUSION 

In the conducted research, it was determined that the 

number of sensors utilized in the data center cooling 

machine meets the criteria for detecting gross errors and 

correcting sensor inaccuracies. This enables thorough 

analysis and correction of inaccurate sensor readings to 

achieve high accuracy.  

From the error correction process of sensor reading 

data compared to the original data, the results showed 

an MSE of 7.216 and an MAE of 2.6864. Furthermore, 

when comparing the error-corrected sensor reading data 

to the accurate sensor data from the water chiller 

machine, the results showed an MSE of 0.336 and an 

MAE of 0.5045. 

Depending on those results of MAE and MSE 

obtained, it can be stated that by using the Least Square 

Optimization method by minimizing the objective 

function to obtain the gross error value and correcting 

the data has good performance so that this method can 

be applied to other data error correction case studies 

with a correction analysis approach on the sample 

dataset of steady state conditions. 
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