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Abstract— This research paper reviews the use of 

Convolutional Neural Networks (CNNs) to categorize 

diverse sand type using microscopic images, with an 

objective of improving quality control in construction 

materials. The paper compares three CNN 

architectures—LeNet-5, Inception v3, and ResNet50—

for clasiffying between specific sand categories, such as 

two river sands (Cipongkor and Citarum) and three types 

of silica sand (brown, cream, and white). Each model was 

trained and tested on different dataset splits, with images 

pre-processed to highlight specific microscopic 

properties. To achieve a thorough comparison, each 

model's performance was measured using a variety of 

measures such as F1-score, accuracy, recall, and 

precision. These measurements enabled a comprehensive 

evaluation of how accurately and reliably each CNN 

model categorized the various sand types. ResNet50 

consistently delivered the highest accuracy, achieving 

outstanding classification in some instances, accuracy 

99%, showcasing its effectiveness in capturing fine details 

in sand textures. These results highlight the potential of 

CNN-based approaches for precise and automated sand 

classification, which supports increased quality 

assurance in construction and related areas. 

Index Terms— Convolutional Neural Network 

(CNN); Inception v3; LeNet-5; sand classification; 

ResNet50. 

I. INTRODUCTION 

In recent years, the classification of materials using 

image-based techniques has gained significant attention 

due to its potential to improve accuracy and efficiency 

across various industries, including construction [1]. As 

a fundamental component in construction, sand plays a 

critical role in determining the quality and longevity of 

concrete structures. Accurate classification of different 

sand types is essential, as variations in sand 

characteristics can directly impact structural integrity. 

Manual sand classification methods, which rely on 

visual inspection and experience, are often labor-

intensive, prone to human error, and lack precision [2]. 

Convolutional Neural Networks (CNNs) have emerged 

as a powerful framework for image classification due to 

their ability to automatically learn and extract complex 

visual features, enabled by advancements in machine 

learning and computer vision [3]. In this paper, CNNs 

are used to classify sand materials from microscopic 

images, focusing on key features such as grain texture, 

color variations, and morphological patterns [4]. The 

classification process involves two main stages: 

training and testing. During the training phase, the CNN 

model learns to identify distinctive microscopic 

characteristics of pre-labeled sand images, including 

river sand and silica sand, by progressively adjusting its 

weights and parameters to optimize performance. Once 

training is complete, the model undergoes testing using 

previously unseen sand images to evaluate its 

generalization capabilities. Metrics such as accuracy, 

confusion matrices, and loss values are used to assess 

the model's performance and reliability in practical 

applications. 

This paper presents an automated sand 

classification system that employs three architectures—

LeNet-5 [5], Inception v3 [6] and, ResNet50 [7] —to 

classify various sand types from microscopic images. 

The research compares the performance of these 

architectures in accurately distinguishing sand types, 

highlighting their effectiveness in enhancing material 

quality control in construction. 

II. RESEARCH METHOD 

A. State-of-The Art 

Convolutional Neural Networks (CNNs) in sand 

material classification systems has been explored to 

analyze the recommended method against current 

systems. CNN has been used to classify different types 

of soil [8]. The research implemented a CNN-based 

processing module, a camera for image detection, and a 

dataset that included Red Soil and Black Soil. Data 

processing techniques applied of the Keras and 

TensorFlow frameworks. The Results demonstrated the 

model's efficacy in soil classification with a 98% 

accuracy rate and minimal loss values. 

Deep learning and machine learning have been used 

to classify construction materials on unbalanced 

datasets [9]. In order to recognize different materials, 

this design applied a Vision Transformer-based 

processing module, a camera for image identification, 

and a dataset that included concrete, red bricks, and 
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OSB boards. In this research, the Vision Transformer's 

performance was compared to the results of various 

processing modules, including Multi-Layer 

Perceptrons (MLPs), Support Vector Machines 

(SVMs), and Convolutional Neural Networks (CNNs). 

The results showed that, when compared to SVM and 

MLP, the Vision Transformer model achieved over 

95% accuracy in detecting construction materials, 

greatly outperforming other approaches in 

classification accuracy. 

Deep Learning: The Porosity Parameter has been 

applied to clasiffy soil micromorphological images 

[10]. Convolutional Neural Networks (CNNs) were 

applied to process a dataset of micromorphological soil 

photographs for this research. In order to increase 

classification accuracy of soil components based on 

micromorphological images, the strategy used transfer 

learning. The CNN model's performance was also 

contrasted with that of other classification techniques, 

including Random Forest and Support Vector Machines 

(SVMs). Based on measures including accuracy, 

precision, recall, and F1-score for each material 

category across three datasets, the system was able to 

identify soil types with 100% accuracy. 

B. Block Diagram 

The classification of five types of sand consist 

of three types of silica sand and two types of river sand. 

Based on their microscopic images is the focus of this 

research. This research comprises microscopic images 

of sand, including two types of river sand (Cipongkor 

and Citarum) and three types of silica sand (brown, 

cream, and white). Moreover, three CNN architectures 

were evaluated: ResNet50, Inception v3, and LeNet-5. 

The block diagram of sand classification is shown in 

figure 1. The block includes input, process, and output. 

The input is a microscopic image of sand. The process 

begins with detecting microscopic features of the sand 

using Convolutional Neural Network (CNN). The 

output of the system is the accuracy value of its 

detection and classification results of sand types. The 

process was simulated by using Visual Studio Code for 

image processing and classification. 

Cipongkor and Citarum sands were specifically 

selected due to their prominent use in the region's 

construction projects. These sands are valued for their 

smooth texture, uniform grain size, and excellent 

durability, which contribute to superior performance in 

concrete and mortar applications. As they are 

frequently utilized in local construction practices, their 

inclusion in the dataset ensures the research relevance 

to real-world applications, particularly in addressing 

quality control challenges for commonly used materials 

in the area. 

LeNet-5, Inception v3, and ResNet50 were selected 

for their various design approaches and ability to handle 

varying levels of image complexity and details. LeNet-

5, a core CNN model, served as a baseline for 

evaluating the effectiveness of early CNN architectures 

in sand classification. Inception v3, known for its multi-

scale feature extraction enabled by modified 

convolutions, was chosen to investigate its efficacy on 

textures with considerable variability. ResNet50, which 

incorporates residual learning and a deep architecture, 

was chosen to investigate its capacity to recognize 

complicated picture features while addressing training 

issues such as vanishing gradients. The integration of 

these models results in a full evaluation of sand 

classification performance across various CNN 

configurations. 

 

Fig. 1. Block Diagram of Sand Material Classification System 

C. Digital Microscope Camera 

The digital microscope camera is a camera to 

capture high-resolution images of specimens under 

magnification and display them on a computer or 

monitor. It enables real-time and detailed observation 

of microscopic samples, enhancing both viewing and 

analysis processes [11]. In this paper, the digital 

microscope camera capture microscopic images of sand 

particles as the input data for the Convolutional Neural 

Network (CNN) model. These images provide detailed 

representations of the sand's texture and morphology, 

enabling the CNN to learn and classify various sand 

types based on their unique microstructural properties. 

The digital microscope camera is illustrated in Figure 2. 

 

Fig. 2. Digital Microscope Camera 

D. Sand Materials 

Sand is a common granular material in construction, 

composed of small rock and mineral particles with 

diameters ranging from 0.0625 mm to 2 mm [12]. In 

this paper, two types of river sand and three types of 

silica sand were used as the dataset. River sand, 

originating from riverbeds, consists of rounded 

particles shaped by natural erosion and transportation. 

Its smooth texture and high quality make it ideal for 

applications in concrete and mortar [13]. In contrast, 

silica sand, primarily composed of silicon dioxide 

(SiO₂), is valued for its chemical resistance and 

hardness. Due to its purity and durability, silica sand is 
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widely used in industries such as hydraulic fracturing, 

foundry casting, and glassmaking [14].  Images of the 

sand material used as a dataset can be seen at Figure 3. 

 

Fig. 3. Image Dataset: (a) Cipongkor River Sand, (b) Sand 
Citarum River, (c) Cream Silica Sand, (d) Brown Silica Sand, (e) 

White Silica Sand 

E. Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is a deep 

learning architecture designed to process and recognize 

patterns in image data through hierarchical layers. 

CNNs are particularly effective for image classification 

tasks because they can automatically extract and learn 

features from raw pixel data without requiring manual 

feature selection. The structure of CNNs is inspired by 

the visual processing mechanisms of biological 

systems, specifically the hierarchical pattern 

recognition of the human brain [15] . The example of 

CNN structure is shown in Figure 4. 

 

Fig. 4. Structure of a Convolutional Neural Network for Image 

Classification [15] 

CNNs consist of several types of layers, each 

playing a key role in the network’s ability to process 

image data: 

• Convolutional Layer: This is the first layer where 

filters (kernels) are applied to the input image. Each 

filter slides across the image to capture low-level 

features like edges, textures, and colors. The result 

is a set of feature maps that represent different 

aspects of the input data. These feature maps serve 

as the foundation for deeper layers to learn more 

complex patterns. 

• Activation Layer: Activation functions are applied 

following convolutional processes to introduce non-

linearity into the network. Functions like Rectified 

Linear Units (ReLU) help the network capture 

complex, non-linear relationships within the data. 

• Pooling Layer: The pooling layer reduces the 

dimensionality of feature maps while retaining key 

information. Max-pooling, a common technique, 

captures the peak value within a specific window, 

reducing feature map size and aiding in overfitting 

prevention. 

• Batch Normalization Layer: This layer normalizes 

the input to each layer, helping to stabilize the 

learning process and speed up training. Batch 

normalization ensures that the network remains 

robust by preventing large variations in the input 

data. 

• Dropout Layer: Dropout is a method for decreasing 

overfitting in which some neurons are randomly 

"ignored" during training. This forces the network 

to create more robust and redundant feature sets. 

• Fully Connected Layer: The feature maps are 

flattened into a single vector and routed through one 

or more completely connected layers. This layer 

outputs the classification probabilities or the 

predicted labels for the input image, depending on 

the problem [16]. 

These CNN models are optimized to detect the 

minor differences in texture, coloration, and shape of 

grains that characterize each sand type. A comparison 

of sand classification performance is conducted using 

three prominent CNN architectures, LeNet-5 [5], 

Inception v3 [6] and, ResNet50 [7]. 

1) LeNet-5 

LeNet-5, introduced by Yann LeCun in the late 

1990s, was initially designed for image recognition 

tasks, specifically for classifying handwritten digits [5]. 

LeNet-5 is a convolutional neural network (CNN) 

architecture based on gradient descent, originally 

developed for recognizing handwritten digits. An input 

layer that processes 32×32 pixel pictures of digits (0–9) 

and an output layer with 10 nodes, each of which 

corresponds to a digit from 0–9, make up the 

conventional LeNet-5 design shown in Figure 5. Three 

convolutional layers, two pooling layers, and one fully 

connected layer make up LeNet-5's six extra layers in 

addition to the input and output layers. A 2×2 kernel is 

used by the pooling layers, and 5×5 filters are applied 

by the convolutional layers. Additionally, the fully 

linked layer lowers the number of neurons from 120 to 

84, improving the model's parameter training efficiency 

[17]. However, its architecture is also effective at 

classifying patterns and textures in different images, 

making it useful for tasks like sand classification, where 

detecting microstructural details is important. 

 

Fig. 5. LeNet-5 Architecture [18] 

2) Inception v3 
Inception v3 is a convolutional neural network 

(CNN) architecture developed by Google for efficient 
image classification tasks. The primary novelty of 
Inception v3 is its capacity to extract both fine and 
larger details from an image by employing several filter 
sizes (1×1, 3×3, 5×5) to collect multi-scale 
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characteristics within the same layer [6]. This approach 
makes Inception v3 highly effective in handling 
complex images where the object size and features can 
vary significantly. 

One of the primary improvements in Inception v3 is 
the use of factorized convolutions, which break down 
larger convolutions into smaller ones (e.g., 3×3 into two 
1×3 and 3×1 convolutions). This increases 
computational performance and lowers the number of 
parameters without compromising accuracy. To 
stabilize the learning process and speed up and improve 
the reliability of training, the model also includes batch 
normalization [19]. The model's architecture is 
presented in Figure 6. 

 

Fig. 6. Inception v3 network structure [19] 

In this paper, Inception v3 is used to classify 
microscopic images of sand, classifying different types 
of sand grains based on their textures and 
microstructures. The architecture's ability to handle 
varying scales and extract detailed features makes it 
well-suited for this task, as the sand grains exhibit 
diverse shapes and patterns that require robust feature 
extraction for accurate classification. 

3)  ResNet50 (Residual Networks) 
ResNet50 is a deep convolutional neural network 

(CNN) architecture developed to address the vanishing 
gradient issue that often occurs in extremely deep 
networks. ResNet incorporates shortcut connections 
that bypass certain layers, facilitating residual learning. 
This approach allows layers to capture the difference, 
or residual, between the input and the target output [7]. 
These connections facilitate the retention of 
information within the network and simplify the 
training process. The 50 layers of the ResNet50 model 
are composed of convolutional layers followed by 
identity shortcuts in each residual block. This 
architecture ensures efficient learning by allowing 
layers to focus on the residuals, improving accuracy and 
enabling deeper networks to perform better without 
degradation in training [20]. The structure of ResNet50 
is illustrated in Figure 7. 

 

Fig. 7. Architecture of ResNet50 [20] 

In this system, ResNet50 is applied to classify sand 
images by detecting subtle microstructural patterns in 
sand grains. The residual connections allow the model 
to capture and generalize complex features across 
different types of sand, improving classification 
accuracy. 

F. Confusion Matrix 

A confusion matrix is an important tool for 
assessing the effectiveness of a classification model 
[19]. It presents a clear overview of the model's 
predictions in comparison to the actual ground truth, 
classifying the outcomes into four distinct situations: 

• True Positive (TP): Both the predicted and actual 

classes are implied to be positive since the model 

accurately predicts the positive class. 

• The True Negative (TN): Both the predicted and 

actual classes are negative, demonstrating that the 

model effectively recognizes the negative class. 

• False Positive (FP): The model makes a mistake 

when it predicts the positive class when the real 

class is negative. 

• False Negative (FN): When the model wrongly 

assigns a positive instance to the negative class. 

[21]. 

The confusion matrix is especially useful in multi-
class classification tasks, like the sand classification in 
this paper, as it highlights how well the model 
distinguishes between different classes. Key metrics 
including accuracy, precision, recall, and F1-score can 
be obtained by examining the confusion matrix; this 
gives information about the model's advantages and 
shortcomings. 

In this paper, confusion matrices are constructed for 
LeNet-5 [5], Inception v3 [6] and, ResNet50 [7]. 
models to evaluate their performance in classifying 
different sand types. The confusion matrix supports to 
classify patterns of misclassification, assess the model's 
reliability, and guide further optimization. 

Model accuracy, a standard metric obtained from 
the confusion matrix, is determined by calculating the 
proportion of correctly predicted cases (including both 
true positives and true negatives) relative to the total 
instances in the dataset. The formula to calculate 



 

 

 

 

83 Ultima Computing : Jurnal Sistem Komputer, Vol. 16, No. 2 | December 2024 

 

ISSN 2355-3286 

accuracy is as follows.The formula for accuracy is as 
follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

• TP = True Positives (correctly predicted positive 
cases) 

• TN = True Negatives (correctly predicted negative 
cases) 

• FP = False Positives (incorrectly predicted positive 
cases) 

• FN = False Negatives (incorrectly predicted 
negative cases) [22] 

III. RESULTS AND DISCUSSION 

A. Results 

The dataset used in this paper contains 150 images 

for each sand type, including two river sand types 

(Cipongkor and Citarum) and three silica sand types 

(brown, cream, and white). The total amount of data is 

750 images for 5 types of sand. The images were 

captured using a high-resolution digital microscope and 

were resized into 150×150 pixel as the input for CNN. 

The dataset was split into five different ratios: 

70:30, 75:25, 80:20, 85:15, and 90:10, with percentages 

allocated to training and testing sets, respectively. 

Exploring different training and testing data splits in 

this research was essential to obtain the optimum 

model's performance. This suggests an excellent 

convergence between generalization and learning, 

improving classification results.  For each ratio, the 

training set contained train data and validation data. The 

train data consist of the majority of the images to ensure 

the models had sufficient data to learn and validation 

data were used to fine-tune the models.  Test set was 

used to evaluate model performance. While the dataset 

provides a solid foundation for a preliminary research, 

its particular focus on specific sand samples may limit 

ability to generalize and cause overfitting issues. To 

address these issues, data augmentation methods such 

as random rotations, width and height shifts, zooming, 

brightness adjustments, and horizontal flipping were 

used to increase the dataset's diversity and reduce 

overfitting. 

We compare three CNN models—LeNet-5, 

Inception v3, and ResNet50—optimized to distinguish 

fine-grained properties of sand types, including as 

texture, coloring, and morphology. To ensure uniform 

evaluation, all models were trained with the Adam 

optimizer, learning rate 0.00001, a batch size of 32, and 

up to 100 epochs. The comparison of accuracy across 

different dataset splits for LeNet-5 [5], Inception V3 

[6], and ResNet50 [7] models is presented in Table I.  

TABLE I.  ACCURACY COMPARISON OF DIFFERENT MODELS 

ACROSS DATASET SPLITSABLE STYLES 

Dataset 

Split 

CNN Architectures Accuracy 

LeNet-5 [5] Inception v3 [6] ResNet50 [7] 

70 : 30 59% 93% 93% 

75 : 25 45% 96% 97% 

80 : 20 72% 92% 92% 

85 : 15 43% 92% 99% 

90 : 10 70% 95% 95% 

Table I presents a comparison of accuracy among 

three CNN architectures LeNet-5 [5], Inception v3 [6], 

and ResNet50 [7]  across different dataset splits. LeNet-

5 demonstrates the lowest performance among the 

models, with its highest accuracy recorded at 72% in 

the 80:20 split. Inception v3 performs considerably 

better, maintaining an accuracy of over 92% in the 

majority of splits. However, ResNet50 consistently 

outperforms both, achieving outstanding classification 

accuracy (upto 100%) at the 85:15 split. ResNet50 

showed the superior performance results based on its 

capacity to apply residual learning in maintaining 

accuracy over deeper layers, which allows it to capture 

subtle microstructural differences in the sand images. 

The results exceed those reported in previous research, 

offering a benchmark for novelty and validating the 

effectiveness of the proposed approach. 

Although the primary parameter to evaluate the 

model's classification performance was accuracy, other 

metrics such as F1-score, precision, recall, and 

confusion matrix were also employed to obtain a more 

comprehensive understanding of how well the model 

performed. Figure 8 shows the confusion matrix for the 

LeNet-5 model, Figure 9 illustrates the results for 

Inception v3, and Figure 10 displays the matrix for 

ResNet50. These matrices provide a detailed view of 

how each model classified the different sand types.To 

gain deeper insights into the classification performance, 

confusion matrices for each architecture are presented. 

Figure 8 shows the confusion matrix for the LeNet-5 

model, Figure 9 illustrates the results for Inception v3, 

and Figure 10 displays the matrix for ResNet50. These 

matrices provide a detailed view of how each model 

classified the different sand types. 

 

Fig. 8. Confusion Matrix for LeNet-5 Model in Sand Type 

Classification 
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From the confusion matrix, it is evident that the 

model achieves its best performance when classifying 

Cipongkor sand and Brown silica, as both sand types 

are correctly classified in most instances. The model 

shows strong accuracy in detecting these two 

categories, which have clear distinguishing features. 

 

Fig. 9. Matrix for Inception v3 Model in Sand Type Classification 

From the confusion matrix, the model achieves 

near-perfect classification for Brown silica, Cream 

silica, and White silica, as indicated by the diagonal 

dominance in the confusion matrix. The true positive 

rates for these sand types are impressive, showing the 

model's effectiveness in capturing the unique 

characteristics of these specific sand types. 

 

Fig. 10. Confusion Matrix for ResNet50 Model in Sand Type 

Classification 

From the confusion matrix, we can observe that the 

model classifies all sand types with 100% accuracy. 

The matrix shows no misclassifications, indicating that 

the model effectively classifies each of the five sand 

types with complete precision, ensuring flawless 

performance in recognizing microscopic features. 

Following the analysis of the confusion matrices, it 

is crucial to evaluate the models using more detailed 

performance metrics such as precision, recall, and F1-

scores. These metrics provide a deeper understanding 

of how effectively each CNN architecture classifies 

various sand types [23]. While accuracy offers a general 

overview, precision, recall, and F1-scores give more 

specific insights into the balance between true positives, 

false positives, and false negatives within the 

classification outcomes. 

Tables II, III, and IV present the precisions, recalls, 

and F1-scores for LeNet-5, Inception v3, and 

ResNet50, respectively, demonstrating each model's 

performance across different sand classification tasks. 

TABLE II.  LENET-5 RESULT 

Class Precision Recall F1-Score 

Brown silica  0.6 0.75 0.67 

Cream silica 0.83 0.62 0.71 

White silica 0.75 0.75 0.75 

Cipongkor sand 0.78 0.88 0.82 

Citarum sand 0.71 0.62 0.67 

Based on Table II, Cipongkor sand achieved the 

best performance with an F1-score of 0.82, while White 

silica also performed well with an F1-score of 0.75. 

Cream silica had the highest precision (0.83) but lower 

recall, resulting in an F1-score of 0.71. Brown silica and 

Citarum sand had lower F1-scores, both at 0.67, 

indicating areas where classification could be 

improved. 

TABLE III.  INCEPTION V3 RESULT 

Class Precision Recall F1-Score 

Brown silica  1.0 0.94 0.97 

Cream silica 0.94 1.0 0.97 

White silica 0.94 1.0 0.97 

Cipongkor sand 0.82 0.88 0.85 

Citarum sand 0.93 0.81 0.87 

Based on Table III, Inception v3 demonstrates high 

performance, with Brown silica, Cream silica, and 

White silica achieving F1-scores of 0.97. Cipongkor 

sand and Citarum sand, while slightly lower, still 

perform well with F1-scores of 0.85 and 0.87, 

respectively, indicating strong classification 

capabilities for all sand types. 

TABLE IV.  RESNET50 RESULT 

Class Precision Recall F1-Score 

Brown silica  1.0 1.0 1.0 

Cream silica 1.0 1.0 1.0 

White silica 1.0 1.0 1.0 

Cipongkor sand 1.0 1.0 1.0 

Citarum sand 1.0 1.0 1.0 

As shown in Table IV, ResNet50 achieves perfect 

results, with all sand types having precision, recall, and 

F1-scores of 1.0. This indicates that ResNet50 classifies 

all sand types flawlessly without any misclassifications. 

IV. CONCLUSION 

In this paper, sand type classification was performed 

using three Convolutional Neural Network (CNN) 

architectures—LeNet-5, Inception v3, and ResNet50—
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on microscopic images to determine accuracy in 

distinguishing between sand types. Based on the results, 

LeNet-5 and Inception v3 both demonstrated strong 

performance in classifying sand types, showing their 

effectiveness for image processing tasks. However, 

ResNet50 consistently achieved the highest accuracy 

across all dataset splits, making it the most effective 

model for this research. 

The results highlight the potential of CNN-based 

systems in real-world applications, such as material 

quality inspection in the construction industry. Using 

these models in automated systems alongside digital 

microscope cameras could offer a dependable solution 

for fast and accurate analyzing sand samples, obtaining 

the demands of industries such as concrete 

production.This approach minimizes human error, 

reduces inspection time, and improves the consistency 

of material quality, ultimately enhancing the durability 

and reliability of construction projects. 

Nevertheless, this paper has limitations, including 

the use of a relatively small dataset and specific sand 

types, which may impact the generalizability of the 

models. Further research should focus on expanding the 

dataset to include a wider range of sand types and 

conditions while exploring additional CNN 

architectures and techniques to further improve 

classification accuracy. These steps will ensure the 

robustness and applicability of the proposed models in 

broader industrial contexts. 
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