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Abstract— Accurate rainfall prediction is critical for 

effective water resource management, agriculture, and 

climate risk mitigation. However, the inherent non-

linearity and variability of rainfall patterns present 

significant modeling challenges. This study proposes an 

Adaptive Stacking Ensemble framework for monthly 

rainfall prediction, enhanced by a Hybrid Feature 

Selection strategy. The feature selection integrates three 

techniques—Correlation Analysis, Feature Importance 

(Random Forest), and Recursive Feature Elimination 

(RFE)—using a voting mechanism to ensure robust and 

consistent feature selection. The ensemble framework 

employs a diverse set of machine learning algorithms, 

including Random Forest, K-Nearest Neighbors, 

XGBoost, AdaBoost, Decision Tree, and Linear 

Regression, as base learners. Meta-learners are selected 

adaptively based on empirical performance, with the 

three top-performing models—Linear Regression, 

AdaBoost, and XGBoost—evaluated individually and 

collectively through a voting-based stacking approach. 

This flexible strategy ensures the model captures both 

linear and nonlinear dependencies in the data. 

Experimental results show that while standalone Linear 

Regression achieved the highest individual accuracy (R² 

= 0.931), the best ensemble performance was attained 

using the voting-based stacking model, which combined 

the top meta-learners and achieved an R² of 0.917, 

SMAPE of 13.33%, MAE of 0.287, and RMSE of 0.339. 

These findings confirm the effectiveness of adaptively 

integrating multiple strong learners in enhancing model 

generalization and prediction reliability for 

climatological applications. 

Index Terms—Elimination; Feature; Importance; 

Learning; Rainfall; Stacking. 

I. INTRODUCTION 

The Riau Islands Province is a maritime region with 

a coastline stretching 2,367.6 km and a total area of 

251,810 km², of which only 4% consists of land, while 

the remaining 96% is made up of water [1]. The climate 

type of Tanjungpinang City is classified as an equatorial 

tropical climate with relatively high rainfall throughout 

the year. During the period from 1991 to 2024, the 

maximum recorded rainfall occurred in January 2021, 

reaching 926.9 mm over an average of 22 rainy days in 

that month. Despite the significant rainfall, there is no 

distinct separation between the rainy and dry seasons. 

Tanjungpinang City is categorized as a Non-Seasonal 

Zone (Non-ZOM), meaning it does not have a clear 

seasonal boundary between wet and dry periods, and its 

climatic analysis does not follow the strict monsoon 

patterns typically observed in other regions of 

Indonesia. 

Changes in the global climate system have a 

significant influence on local weather patterns and 

climate variability. These impacts can be observed 

through shifts in rainfall distribution, temperature 

extremes, and the increasing frequency of extreme 

weather events in various regions [2]. 

Weather and climate have fundamental differences. 

Weather refers to various processes occurring in the 

atmosphere at a specific time and location, reflecting 

the immediate state of the atmosphere and its short-term 

changes within a particular area [3]. 

The characteristics of rainfall in a region are 

important to understand in order to determine water 

availability and to identify potential issues and disasters 

related to water resources. Information about rainfall 

characteristics, including the identification of wet 

months, moist months, and dry months, is highly 

valuable for regional management. Through this 

understanding, the utilization of rainfall can be 

optimized while minimizing any potential negative 

impacts that may arise [4]. 
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The unit used for measuring rainfall parameters is 

millimeters. According to the Meteorology, 

Climatology, and Geophysics Agency of Indonesia 

(Badan Meteorologi, Klimatologi, dan Geofisika — 

BMKG), rainfall can be understood as measuring the 

height of accumulated rainwater. If the rainfall is 

recorded as 1 millimeter, it means that on a surface area 

of one square meter, the water would reach a height 

roughly equivalent to the thickness of a fingernail, or 

about the same as a medium-sized bottled water 

(approximately one liter). In other words, if rainfall is 

measured at a location with a water depth of 1 

millimeter, and the water is evenly distributed over a 

flat surface without evaporation or runoff, it would 

represent that amount. Runoff itself refers to the water 

that flows over the ground surface as a result of rainfall 

or other water sources that do not infiltrate into the soil. 

Rainfall classification in this study refers to the 

standards set by the Meteorology, Climatology, and 

Geophysics Agency (BMKG), which categorizes 

rainfall intensity as follows: (1) cloudy if rainfall is 0 

mm/day; (2) light rain between 0.5–20 mm/day; (3) 

moderate rain between 20–50 mm/day; (4) heavy rain 

between 50–100 mm/day; (5) very heavy rain between 

100–150 mm/day; and (6) extreme rain if rainfall 

exceeds 150 mm/day. However, for the purposes of this 

study, the classification is simplified into two main 

categories: rain and no rain. The "rain" category 

includes any rainfall greater than 0 mm/day, while the 

"no rain" category applies when the rainfall is exactly 0 

mm/day [5]. 
This study aims to develop a rainfall prediction 

model for Tanjungpinang City using an adaptive 
stacking ensemble learning approach combined with 
feature selection through the Voting Feature Selector 
method, where features selected by at least 2 out of 3 
methods will be included in the base model. The model 
will then be evaluated using R², MAE, and RMSE. This 
model is expected to be a reliable solution for providing 
weather prediction information, particularly the rainy 
season forecast, and supporting better decision-making 
for various sectors dependent on weather conditions in 
the Tanjungpinang area. 

Typically, stacking ensemble learning uses a 

combination of static models. With the adaptive 

stacking ensemble learning approach, the meta-learner 

is automatically selected based on the best performance 

of the base learners or initial results. With the adaptive 

stacking ensemble learning approach, the model is 

expected to deliver the best results as it adjusts to the 

previous training data 

II. METHODOLOGY 

The dataset used in this study is secondary data 

obtained from the III Class Meteorological Station Raja 

Haji Fisabilillah Tanjungpinang with official 

permission from the relevant authorities. In addition, 

global climate index data such as the Southern 

Oscillation Index (SOI) and the Indian Ocean Dipole 

(IOD) were sourced from trusted institutions, namely 

the National Oceanic and Atmospheric Administration 

(NOAA). 

The dataset consists of 408 samples (34 years × 12 

months) containing various climatological variables 

relevant to the prediction of monthly rainy seasons. The 

variables in this dataset are categorized as follows: 

Target (Dependent Variable): Rainfall (CH, in mm) → 

Represents the amount of monthly rainfall (curah 

hujan) to be predicted. 

Predictor (Independent Variables): Air Pressure 

(hPa): Consists of two variations: P Mean Sea level 

pressure correction (MSL), P0 Land surface pressure 

correction (Stasiun). Air Temperature (°C): Consists of 

six variations: T07 (Temperature at 07:00), T13 

(Temperature at 13:00), T18 (Temperature at 18:00), T 

(Temperature average), Tx (Temperature maximum), 

Tn (Temperature minimum). Relative Humidity (%): 

Consists of four variations: RH07 (Humidity at 07:00), 

RH13 (Humidity at 13:00), RH18 (Humidity at 18:00), 

RH (Humidity average). SSS (Solar Radiation): 

Monthly solar radiation intensity influences weather 

patterns. Global Climate Indices: 

SOI (Southern Oscillation Index) → Measures the 

air pressure difference between Tahiti and Darwin, 

influencing the El Niño and La Niña phenomena. 

IOD (Indian Ocean Dipole) → An index describing 

the sea surface temperature difference between the 

western and eastern parts of the Indian Ocean, which 

can affect rainfall patterns in Indonesia. 

A. Exploratory Data Analysis 

This process helps us get a closer look at the 

dataset's contents, such as the characteristics of each 

variable, their distribution, and whether there are 

potential issues such as missing data, outliers, or other 

anomalies. During this exploration phase, several tasks 

are performed, including: 

1. Viewing the data structure 

2. Checking data types 

3. Reviewing value distribution 

4. Observing time trends 

5. Identifying missing or invalid values 

6. Analyzing relationships between variables 

 

TABLE I.  METADATA 

No Fitur (Unit) [Min, Max] [Mean, Stdev] 

Tekanan Udara (millibar) 

1 P (MSL) 1008.50, 1013.70 1010.93, 0.86 

2 P0 (Stasiun) 1006.21, 1011.40 1008.60, 0.85 

Temperature Udara (°C) 

3 T07 21.20, 30.80 24.59, 0.83 

4 T13 26.10, 38.80 29.55, 0,99 

5 T18 24.70, 29.40 27.73, 0.62 

6 T 25.00, 28.10 26.60, 0.62 

7 Tx 30.50, 34.80 32.79, 0.69 

8 Tn 18.20, 24.30 22.29, 0.93 

Relative Humidity (%) 

9 RH07  88.00, 98.00 94.81, 1.70 

10 RH13  57.00, 97.00 73.26 ,4.95 
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11 RH18 71.00, 96.00 81.66, 3.46 

12 RH 77.00, 96.00 86.15, 2.68 

Other 

13 SSS  2.30, 84.40 42.25, 18.11 

14 CH  0.00, 926.90 275.21, 151.95 

15 SOI -28.60, 27.10  -0.44, 10.62 

16 IOD  -1.18, 1.81  -0.01, 0.47 

Table I presents the metadata of all features used in 

this study, including measurement units, minimum and 

maximum values, as well as the mean and standard 

deviation (stdev). These features cover air pressure, air 

temperature at different observation times (07:00, 

13:00, and 18:00), relative humidity, and additional 

parameters such as Sea Surface Salinity (SSS), rainfall 

(CH), the Southern Oscillation Index (SOI), and the 

Indian Ocean Dipole (IOD). This statistical summary 

provides an initial overview of the distribution and 

variability of the input data used for monthly rainfall 

prediction modeling. 

B. Feature Selection 

In building an accurate and efficient prediction 

model, selecting the right features is a crucial step. Too 

many features can make the model complex and slow, 

while too few can reduce the quality of predictions. 

Therefore, in this study, the Hybrid Feature Selection 

Framework approach is used, which is a combined 

method of three feature selection techniques. 

With the combination of these three approaches, 

the selected features are believed to have a significant 

contribution to the accuracy of monthly rainfall 

predictions. The Voting Feature Selector means that 

features will be selected if they are included in at least 

two of the three methods mentioned above. This 

approach strikes a balance between the robustness of 

statistical analysis and the power of machine learning 

models, making the selected features more validated 

from various. 

C. Base Learner 

Three algorithms were selected as base learners in 

the stacking scheme due to their ability to handle 

various types of data and their complementary 

characteristics: 

Random Forest (RF) – An ensemble method based 

on trees that is resistant to overfitting and effective in 

identifying feature interactions. One effective way to 

enhance prediction accuracy is by using a random forest 

ensemble model, which combines the results of 

multiple decision trees. This approach allows the model 

to learn from different perspectives, leading to more 

stable and reliable predictions [6], [7]. 

K-Nearest Neighbors (KNN) – A non-parametric 

model that works based on the proximity of feature 

values, suitable for detecting recurring local patterns. 

The KNN algorithm is a reliable approach that makes 

predictions by averaging the values of nearby data 

points. It determines what counts as “nearby” based on 

the distance between each observation and the input 

being evaluated [8]. 

Decision trees (DT) – are commonly used in 

operations research, especially in decision analysis, to 

help find the best way to reach a goal. This model looks 

like a tree, where each branch represents a question that 

helps classify the data, and the leaves show the final 

result or category of the data [8]. 

 XGBoost (XGB)– A boosting algorithm that is 

very popular due to its high accuracy and computational 

efficiency, excelling in handling tabular data. The 

XGBoost algorithm is a highly effective machine 

learning method that's gained popularity for time series 

forecasting. It works by combining multiple regression 

trees to make predictions and is especially good at 

handling seasonal and nonlinear patterns in data [9]. 

Linear Regression (LR) – is one of the simplest 

types of algorithms. Its main goal is to reduce the gap 

between predicted values and actual data. This 

algorithm is designed to produce numerical 

(quantitative) results, and it's often used to make 

predictions about future outcomes based on existing 

data [10]. 

Adaptive Boosting (ADB) – also known as 

AdaBoost, is an iterative algorithm first introduced by 

Freund and Schapire in 1997. It is an ensemble learning 

method that aims to build a strong predictive model by 

combining several simple models, known as "weak 

classifiers." 

The core idea of AdaBoost is to run a simple 

learning algorithm repeatedly, while gradually shifting 

the focus toward training data that is harder to predict. 

This is done by adjusting the weights (or probabilities) 

of the data in each iteration [11]. 

D. Adaptive Stacking Ensemble Learner 

After all base learners are trained and evaluated 
using validation metrics, the next step involves 
constructing the final predictive model through a 
stacking ensemble framework. Stacking ensemble 
learning is a powerful technique that integrates multiple 
models in a layered architecture to enhance predictive 
performance. It leverages the strengths of diverse 
algorithms and mitigates individual weaknesses, 
thereby reducing error in both classification and 
regression tasks [12]. 

Unlike conventional stacking methods that 

predetermine the meta-learner, this study initially 

proposed an adaptive stacking strategy. The main idea 

was to promote the best-performing base learner—

based on key metrics such as R², RMSE, and MAE—as 

the meta-learner. However, during empirical 

evaluation, it was discovered that the model with the 

highest individual performance—Linear Regression 

(R² = 0.931)—did not necessarily yield the best results 

when applied as the final estimator in the ensemble 

framework. 

To refine the strategy, several high-performing base 

learners were evaluated as potential meta-learners. In 

this extended approach, the top three models based on 

individual performance—Linear Regression, 

AdaBoost, and XGBoost—were each tested as meta-
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learners. This allowed the stacking mechanism to be 

adaptive not only in selecting a single best learner but 

in exploring how different strong learners perform in 

combining outputs from the base layer (Random Forest, 

KNN, Decision Tree, and others). 

As an additional enhancement, a voting-based 

ensemble was constructed using the outputs from the 

three stacking models, each with one of the top-ranked 

meta-learners. By combining their predictions through 

a voting mechanism, the ensemble aimed to further 

reduce variance and capitalize on the strengths of each 

configuration. The results from this voting-based 

stacking demonstrated improved generalization and 

accuracy, outperforming individual stacking variants. 

This strategy reaffirms the foundational principle of 

adaptive stacking—not to select the meta-learner 

rigidly based on isolated validation scores, but to assess 

ensemble effectiveness empirically. By incorporating 

multiple high-performing candidates as meta-learners 

and integrating their outputs through voting, the 

proposed approach remains flexible, data-driven, and 

capable of capturing complex inter-model interactions. 

Ultimately, this leads to a more resilient and accurate 

predictive system, particularly valuable for tasks such 

as monthly rainfall prediction where data variability 

and non-linearity are prevalent. 
 

 
 

 

Fig. 1. Voting Feature Selector 
 

“Fig 1” illustrates the architecture of the proposed 

adaptive stacking model incorporating hybrid feature 

selection and ensemble learning. Initially, three feature 

selection techniques—Correlation, Feature 

Importance, and Recursive Feature Elimination 

(RFE)—are applied independently. A voting 

mechanism is then employed to determine the optimal 

feature subset. The selected features are used to train 

multiple base learners, including Random Forest (RF), 

K-Nearest Neighbors (KNN), and XGBoost (XGB). 

Subsequently, a meta-learner is constructed by 

aggregating the outputs of the best-performing base 

learners to improve predictive accuracy and 

generalization. 

Base models, or Level-0 models, are the first set of 

algorithms trained on the original data. They each 

make their own predictions, which are then used as 

input for the next step. The Level-1 model, known as 

the meta-model, learns how to blend those predictions 

from the base models in the most effective way to 

improve overall accuracy [13]. 

E. Tuning Hyperparameter 

To make the tuning process more efficient and 

comprehensive, this study uses the Grid Search 

technique combined with Cross-Validation. With this 

approach, the system will try various combinations of 

hyperparameter values and evaluate the performance of 

each combination using training data that is randomly 

split into several folds. The final result of this process 

is the best combination of settings for each model that 

provides the most accurate and stable predictions. 

Tuning is performed not only on the base models—

XGBoost, AdaBoost, Random Forest (RF), K-Nearest 

Neighbors (KNN), Decision Tree (DT), and Linear 

Regression (LR)—but also on the meta-learner used in 

the adaptive stacking scheme. In this way, every layer 

of the modeling process is thoroughly optimized to 

operate harmoniously and effectively.  

 Cross-Validation Strategy – Given the relatively 

small size of the dataset—consisting of 408 monthly 

samples over a 34-year period—model validation 

becomes a crucial step to ensure the results are unbiased 

and generalize well to unseen data. To address this, 

cross-validation techniques were employed. During the 

hyperparameter tuning phase for the base models 

(XGBoost, AdaBoost, RF, KNN, DT, and LR), a 3-fold 

cross-validation scheme was applied. For the final 

training of the stacking ensemble, a 5-fold cross-

validation was used to improve the model’s robustness 

and evaluation stability. Although the folds were 

generated randomly, attention was given to maintaining 

balanced data distribution due to the temporal and 

seasonal nature of climatological data. This validation 

strategy helps reduce the risk of overfitting and 

provides a more reliable estimate of model performance 

under real-world conditions.  
 

 

 

 

 

 

 

Fig. 2. Adaptive Stacking Ensemble 

 

“Fig 2” The figure illustrates a brief overview of the 

stacking ensemble learning process. After completing 

the feature selection phase, the next step involves 

constructing a prediction model using the Adaptive 

Stacking Ensemble approach. In this setup, multiple 

base models—namely XGBoost, AdaBoost, Random 

Forest, K-Nearest Neighbors, Decision Tree, and 
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Linear Regression—are simultaneously trained to 

generate initial predictions. 

Following the adaptive stacking principle, instead 

of selecting a single meta-learner, the final estimator is 

constructed using the top-performing base learners, as 

determined by their predictive performance across 

evaluation metrics. Specifically, the three best-

performing models are promoted to serve as meta-

learners, and their outputs are integrated in the final 

stage to improve robustness and accuracy. This strategy 

allows the ensemble to leverage both linear and 

nonlinear strengths across models, resulting in a more 

reliable and generalized prediction system. 

III. RESULTS AND DISCUSSION 

This section presents the outcomes of the proposed 

monthly rainfall prediction model along with a 

comprehensive analysis of its performance. The results 

are discussed in relation to the accuracy of predictions, 

the effectiveness of the hybrid feature selection 

framework, and the comparative performance of 

different machine learning algorithms used. 

Furthermore, the impact of each selected feature on the 

model's predictive capability is evaluated, followed by 

a discussion on how the adaptive stacking approach 

enhances generalization across seasonal data. The 

findings are interpreted based on statistical metrics and 

are compared against baseline and conventional 

ensemble models to highlight the advantages of the 

proposed method. 

TABLE II.  FEATURE SELECTION 

 

No. Feature Selection Selected Features 

1 Correlation 
RH13, RH, RH18, T13, 
RH07, T18, T, SSS, Tx 

2 Feature Importance RH13, T13, SSS, RH, Tx 

3 RFE P0, T07, T, Tn, RH13 

4 
Voting Feature 

Selector 

RH13, RH, T13, T, SSS, 

Tx 

 

Table II presents the results of feature selection 

obtained from three different methods: Correlation, 

Feature Importance, and Recursive Feature Elimination 

(RFE). Correlation Analysis selects features such as 

RH13, RH, RH18, T13, RH07, T18, T, SSS, and Tx, 

which show a strong relationship with the target. 

Meanwhile, the Feature Importance method (using 

decision tree models) identifies RH13, T13, SSS, RH, 

and Tx as important features. RFE, which gradually 

eliminates less important features, selects P0, T07, T, 

Tn, and RH13. 

To achieve more stable and objective results, we 

apply the Voting Feature Selector by combining the 

results of these three methods. Finally, the features 

selected through voting are RH13, RH, T13, T, SSS, 

and Tx. This process ensures that the features used in 

the model are the most consistent and relevant 

according to various feature selection approaches. 

After building the model with the Adaptive 

Stacking Ensemble approach, performance evaluations 

are conducted on each of the base learners, namely 

Random Forest (RF), K-Nearest Neighbors (KNN), and 

XGBoost (XGB), as well as on the stacking model 

itself. This evaluation aims to assess how well each 

model predicts the target. The three metrics used to 

evaluate model performance are the coefficient of 

determination (R²), Mean Absolute Error (MAE), and 

Root Mean Square Error (RMSE) [14], [15]. The 

evaluation results from each model are summarized in 

the following Table III. 

TABLE III.  EVALUATION OF BASE LEARNERS AND 

ADAPTIVE STACKING 
 

No 
Base 

Learner 

 Evaluation 

R² SMAPE MAE RMSE 

1 XGB 0.907 14.34 0.305 0.360 

2 ADB 0.909 13.68 0.293 0.356 

3 RF 0.899 14.56 0.314 0.375 

4 KNN 0.749 20.93 0.478 0.591 

5 DT 0.811 18.10 0.419 0.513 

6 LR 0.931 11.81 0.259 0.309 

 

Table III presents the performance comparison of 

six base learner models—XGBoost (XGB), AdaBoost 

(ADB), Random Forest (RF), K-Nearest Neighbors 

(KNN), Decision Tree (DT), and Linear Regression 

(LR) evaluated using four metrics: coefficient of 

determination (R²), symmetric mean absolute 

percentage error (SMAPE), mean absolute error 

(MAE), and root mean square error (RMSE). 

Among all models, Linear Regression (LR) 

demonstrates the most outstanding performance, 

achieving the highest R² value of 0.931, which reflects 

its strong ability to explain the variance in monthly 

rainfall. Furthermore, LR recorded the lowest error 

across all other metrics—SMAPE of 11.81, MAE of 

0.259, and RMSE of 0.309—highlighting not only its 

high predictive accuracy but also its effectiveness in 

modeling the predominantly linear relationships found 

in the dataset. 

Following LR, AdaBoost and XGBoost also 

achieved strong results with R² values of 0.909 and 

0.907, respectively. Both models outperformed RF in 

terms of generalization accuracy and yielded relatively 

low error rates. Their ensemble structure allows them to 

capture more complex patterns, particularly where non-

linearity is present. Random Forest, although slightly 

behind (R² = 0.899), still demonstrated stable and 

consistent performance, reinforcing its reliability as a 

base ensemble model. 

In contrast, K-Nearest Neighbors (KNN) and 

Decision Tree (DT) performed less favorably. KNN 

showed the weakest overall performance with an R² of 
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0.749 and the highest errors (SMAPE = 20.93, MAE = 

0.478, RMSE = 0.591), indicating a tendency toward 

overfitting and limited generalization. Similarly, DT 

reported suboptimal results (R² = 0.811, RMSE = 

0.513), suggesting difficulty in capturing the variability 

of the rainfall data when used independently. 

In summary, while ensemble methods such as 

AdaBoost, XGBoost, and RF offer robust performance 

and better flexibility in capturing nonlinear patterns, 

Linear Regression remains the best-performing base 

learner in this study. Its consistently high accuracy 

across all evaluation metrics reinforces the presence of 

strong linear components in the rainfall dataset. These 

results also underscore the importance of carefully 

selecting base learners in ensemble strategies, 

depending on the complexity and structure of the target 

variable. 

TABLE IV.  EVALUATION OF STACKING AND VOTING 

STACKING 

 

No 
Adaptive 

Stacking Model 

 Evaluation 

R² SMAPE MAE RMSE 

1 

XGB+ADB+RF+

KNN+DT (Meta 

Learner LR) 

0.916 13.53 0.288 0.341 

2 

XGB+RF+KNN+

DT +LR (Meta 

Learner ADB) 

0.914 13.24 0.288 0.345 

3 

ADB+RF+KNN+

DT +LR (Meta 

Learner XGB) 

0.913 13.43 0.293 0.347 

4 
Voting Stacking 
(Meta Learner 

LR+ADB+XGB) 

0.917 13.33 0.287 0.339 

 

Table IV presents a comparative analysis of four 

adaptive stacking ensemble configurations, each 

constructed from various combinations of base learners 

and meta-learners. The models are evaluated using four 

key performance metrics: the coefficient of 

determination (R²), symmetric mean absolute 

percentage error (SMAPE), mean absolute error 

(MAE), and root mean square error (RMSE). 

Among all configurations, Model 4, which employs 

a hybrid meta-learner composed of Linear Regression 

(LR), AdaBoost (ADB), and XGBoost (XGB) through 

a soft voting mechanism, delivers the best overall 

performance. It achieves the highest R² score (0.917), 

the lowest RMSE (0.339), and the lowest MAE (0.287), 

indicating strong predictive accuracy and 

generalization capability. The combination of diverse 

meta-learners enables this approach to effectively 

capture both linear and non-linear patterns in the 

predictions generated by the base learners. 

Model 1, which uses Linear Regression as a single 

meta-learner stacked over five base learners (XGB, 

ADB, RF, KNN, and DT), also demonstrates 

competitive performance with an R² of 0.916 and 

RMSE of 0.341. Although slightly less accurate than 

the voting-based ensemble, it outperforms both Model 

2 and Model 3, which utilize AdaBoost and XGBoost 

respectively as meta-learners. 

Interestingly, when Linear Regression is applied 

independently (i.e., as a standalone model without 

stacking), it achieves even better results—R² of 0.931, 

SMAPE of 11.81, MAE of 0.259, and RMSE of 

0.309—outperforming all stacking models. This 

finding suggests that Linear Regression is highly 

effective when applied directly to the original feature 

space of the dataset. 

However, when used as a meta-learner in the 

stacking ensemble, its performance slightly degrades. 

This discrepancy may be attributed to the nature of the 

input it receives at the meta-level: rather than raw 

features, it processes predictions from the base learners, 

which may contain correlated errors and non-linear 

interactions. As a purely linear model, Linear 

Regression may struggle to effectively integrate such 

complex prediction spaces. In contrast, when applied 

directly to the raw data, it can fully leverage linear 

dependencies and underlying statistical distributions. 

Therefore, the following conclusions can be drawn: 

• If the objective is to achieve the highest 

standalone accuracy, then Linear Regression as an 

individual model is the most effective choice. 

• If the goal is to obtain balanced and robust 

performance within an ensemble framework, the voting 

stacking approach (Model 4) is the most advantageous, 

due to its ability to combine the strengths of multiple 

meta-learners. 

• Stacking ensembles with a single meta-learner 

may offer good results but tend to be less flexible and 

adaptive compared to hybrid strategies that employ 

voting across multiple meta-models. 

These results reinforce the importance of adaptivity 

in ensemble learning strategies, particularly in data-

driven domains like rainfall prediction, where capturing 

diverse patterns is essential for generalization. 

 

 

 

 

 

 

 

 

Fig. 3. Learning Curve Stacking (Linear Regression - R²) 

The “Fig. 3,” illustrates the learning curve for the 
stacking ensemble model using Linear Regression as 
the meta-learner. The training and cross-validation R² 
scores demonstrate a stable and converging pattern as 
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the number of training examples increases. The training 
score remains consistently high (close to 0.97), 
indicating low bias, while the cross-validation score 
gradually improves and stabilizes around 0.91, 
suggesting good generalization. The narrow gap 
between both curves confirms that the model does not 
suffer from significant overfitting or underfitting, 
reflecting a well-balanced bias-variance tradeoff. 

.  

 

 

 

 

 

 

 

 

 

Fig. 4.  Learning Curve Stacking (AdaBoost - R²) 

The “Fig. 4,” shows the learning curve of the stacking 

ensemble model with AdaBoost as the meta-learner. 

The training R² score remains consistently high (above 

0.93), while the cross-validation score steadily 

improves and plateaus around 0.91 as the number of 

training examples increases. The narrow and stable gap 

between training and validation curves indicates low 

variance and good generalization ability. This pattern 

suggests that the model is well-fitted, with minimal 

risk of overfitting or underfitting, making AdaBoost an 

effective choice for meta-learning in this stacking 

configuration. 
 

Fig. 5. Learning Curve Stacking (XGBoost - R²) 

The “Fig. 5,” presents the learning curve of the 
stacking ensemble model utilizing XGBoost as the 
meta-learner. The training R² score remains 
consistently high (above 0.92), while the cross-
validation score steadily improves and converges 
toward 0.90 as more training examples are added. 
Although a slight gap persists between the training and 
validation curves, it narrows progressively, indicating 
improved generalization with increased data. This trend 
suggests a stable learning process with moderate 
variance and reflects XGBoost’s strong capability in 
capturing complex nonlinear relationships when used 
as a meta-learner within the stacking framework. 

Fig. 6. Learning Curve Stacking (Voting LR+ADB+XGB - R²) 

The “Fig 6” illustrates the learning curve for the 

voting-based stacking ensemble, which integrates three 

meta-learners—Linear Regression (LR), AdaBoost 

(ADB), and XGBoost (XGB)—through a soft voting 

strategy. The training R² score remains consistently 

high (≈0.94), indicating the model’s strong fit on the 

training data. Meanwhile, the cross-validation R² score 

steadily increases with more training examples, 

stabilizing around 0.917, which is the highest among all 

evaluated configurations. 

The narrow and stable gap between the training and 

validation curves suggests a well-balanced bias-

variance tradeoff, with no signs of overfitting or 

underfitting. This behavior highlights the robust 

generalization capability of the voting ensemble, 

benefiting from the complementary strengths of linear 

and nonlinear learners. The curve confirms that the 

model continues to learn effectively as more data is 

introduced and that it maintains high predictive stability 

across various training set sizes. 

Overall, the learning curve validates the 

effectiveness of combining multiple strong meta-

learners via soft voting, making this configuration the 

most reliable and accurate among the tested stacking 

strategies.  

Stacking ensemble learning works in two layers: a 

group of base models and a meta-learner. First, the base 

models are trained using the original training data. 

Then, their predictions are gathered and used to train 

the meta-learner, which learns how to best combine 

those outputs for more accurate final results [16]. 
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IV. CONCLUSION 

This study has successfully demonstrated that the 

integration of a Hybrid Feature Selection Framework 

with an Adaptive Stacking Ensemble significantly 

enhances the accuracy and robustness of monthly 

rainfall prediction models. By combining Correlation 

Analysis, Feature Importance, and Recursive Feature 

Elimination (RFE) through a voting mechanism, the 

proposed feature selection approach effectively 

identifies the most relevant meteorological predictors 

while excluding less informative variables—such as the 

global climate indices SOI and IOD—which were not 

selected by any method. This led to a more 

parsimonious and computationally efficient model 

without sacrificing predictive performance. 

Experimental results confirm that the proposed 

Adaptive Stacking approach outperforms individual 

learners and conventional ensemble methods. While 

standalone Linear Regression recorded the highest 

individual performance (R² = 0.931), it did not retain 

this advantage when used as a meta-learner in the 

stacking framework. Instead, the most effective 

configuration was achieved through voting-based meta-

learning, combining Linear Regression, AdaBoost, and 

XGBoost, which produced the best overall ensemble 

performance with an R² of 0.917, MAE of 0.287, and 

RMSE of 0.339. 

The learning curves of each stacking configuration 

further validated the model's generalization capability. 

The voting ensemble showed the most stable bias-

variance tradeoff, benefiting from the diversity of its 

meta-learners. These findings emphasize that in 

adaptive ensemble learning, meta-learner selection 

should not be rigidly based on individual model scores 

but evaluated empirically within the ensemble context. 

Overall, this research presents a robust, flexible, and 

data-driven predictive framework that can adapt to the 

nonlinear and dynamic nature of rainfall patterns. Its 

practical applicability holds strong potential for 

climate-sensitive sectors such as agriculture, 

hydrology, water resource management, and early 

warning systems for hydrometeorological hazards. 

V. SUGGESTIONS 

Based on the results and insights gained from this 

study, several directions are proposed for future 

research to further enhance the adaptability and 

predictive strength of the proposed framework. One 

potential improvement involves expanding the variety 

of meta-learners used in the stacking ensemble. While 

this study focused on top-performing learners such as 

Linear Regression, AdaBoost, and XGBoost, 

incorporating other advanced algorithms—such as 

support vector machines, deep learning models, or 

neural-based regressors—may improve performance 

under more complex or highly non-linear climate 

conditions. 

Additionally, considering the spatial and temporal 

variability of rainfall, future research could explore 

region-specific adaptations or spatio-temporal 

extensions of the model to improve its generalization 

across different climatic zones. This would be 

particularly relevant for scaling the model to a national 

or regional level, where rainfall dynamics may vary 

significantly. 

Enhancing the hyperparameter optimization 

process is also a promising avenue. The use of more 

sophisticated methods—such as Bayesian optimization 

or evolutionary algorithms—could yield better 

parameter configurations than traditional grid search, 

thus improving overall model efficiency and accuracy. 

Furthermore, integrating additional climate-related 

indicators, particularly those linked to ocean-

atmosphere interactions, may help refine the model’s 

ability to capture long-term and seasonal rainfall 

anomalies. Lastly, due to its robust and flexible nature, 

the proposed adaptive stacking framework holds 

significant promise for broader applications beyond 

rainfall prediction. It could be extended to areas such 

as drought monitoring, precision agriculture, flood risk 

management, and climate-related decision support 

systems, offering valuable tools for anticipating and 

mitigating the impacts of environmental variability. 
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