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Abstract— This study present the development and
implementation of an IoT-Based wearable device, namely
a Smart Ring, designed to monitor body fatigue levels in
real time. Physical fatigue caused by prolonged or intense
activities has been reported as a contributing factor to
serious health conditions such as cardiovascular
disorders, asthma, and stroke. Existing wearable devices,
including smartwatches and commercial smart rings,
mainly provide raw physiological information without
fatigue classification or early warning mechanisms. The
proposed Smart Ring integrates a MAX30100 sensor to
measure heart rate, blood oxygen saturation (SpO-), and
body temperature. A fuzzy logic algorithm is employed to
classify fatigue levels into rest, nmormal, and risk
categories. The system is connected to an Android
application via IoT, enabling real-time monitoring,
alerts, and GPS-based location reporting.
Quantitative validation was conducted by comparing
Smart Ring measurements with standard medical
devices. The results show average deviations of £5 bpm
for heart rate, +1.5% for SpO:, and 1.3 °C for body
temperature, which fall within acceptable limits for non-
invasive  wearable monitoring. These findings
demonstrate that the Smart Ring provides reliable
fatigue detection while offering an affordable and
practical solution for personal health monitoring in the
Society 5.0 era.

Index Terms—, loT, wearable sensor, smart ring, body
fatigue monitoring, fuzzy logic

1. INTRODUCTION

Fatigue can occur in anyone as a result of energy-
draining physical activities. Several studies have
indicated that fatigue can trigger more serious illnesses
such as heart attacks, strokes, arthritis, asthma, and
others [1][2][3]. Heart attacks can be induced by stress,
intense physical activity, or cold weather, all of which
can cause blood vessels to contract or spasm. When
blood vessels contract, the amount of blood entering the
heart muscle can decrease, leading to a heart attack

(41051[6]-

Research conducted by A. C. Perez-Moreno et al.
(2014) found that 59% of 540 patients with heart failure

experienced severe fatigue before the onset of a heart
attack [7]. Based on this information, it is crucial for us,
especially those with a history of serious illnesses, to
monitor our fatigue levels during activities to minimize
the risk of sudden attacks from dangerous conditions.
Research on the classification of fatigue levels for both
healthy individuals and those with diabetes has been
conducted by L. Aljihmani et al. (2020) using wearable
sensors and machine learning methods, achieving an
accuracy of 96.1% [8]. There is currently various
commercial smart ring product such as Oura Ring,
GO2SLEEP Ring, and Motiv Ring, which are capable
of monitoring heart rate, oxygen saturation, and sleep
quality [9][10][11]. However, most of these devices do
not integrate parameters such as body temperature and
fatigue category analysis in one affordable and easy-to-
use platform. In addition, clinical validation of body
fatigue data based on physiological parameters is still
very limited. Therefore, the development of this smart
ring is aimed at addressing these limitations, especially
on the aspect of parameter integration and the potential
development of an IoT-based tool that can be used for
early monitoring of fatigue risks that impact
cardiovascular health.

Research on wearable sensor devices has been
conducted by Niswar et al. (2019), who designed a
system with two biomedical sensors: an airflow thermal
sensor and a pulse oximeter sensor to measure patients'
vital signs [12]. However, this research is not portable
for daily use because one of the measured parameters is
respiration, which requires the device to be attached to
the nose.

In the era of Society 5.0, the development of the
Internet of Things (I0T) is in full swing. One of the most
popular IoT products is the smartwatch, which is highly
favored by the public due to its minimalist design and
advanced features for measuring vital signs such as
heart rate, SpO2, and body temperature. However, the
features provided by smartwatches only offer
information about vital signs and do not help in
minimizing the risk of fatigue.
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In this research, a Smart Ring is introduced to address
the shortcomings of smartwatches. The Smart Ring is
capable of providing reminders when the user reaches
the fatigue threshold during activities. Unlike existing
wearable devices such as smartwatches and
commercial smart rings that primarily provide raw
physiological data, the proposed Smart Ring integrates
multi-parameter sensing (heart rate, SpO:, and body
temperature) with fuzzy logic-based fatigue
classification and real-time IoT notification.
Furthermore, this study provides initial quantitative
validation against medical reference devices, which is

still limited in most commercial smart ring
implementations. This combination of fatigue
inference, affordability, and IoT-based alert

functionality constitutes the main novelty of this
research.

Additionally, as an IoT implementation, the Smart
Ring comes with an Android application called the
Smart Ring App. This app is connected to GPS. The
Smart Ring is designed to be economical, making it
accessible to people from various walks of life. By
introducing the Smart Ring as an affordable healthcare
device, it is hoped that the well-being of society in the
era of Society 5.0 can be achieved, particularly in the
field of health. The main problem to be solved in this
research is how to design and develop a smart ring-
based wearable device capable of monitoring
physiological indicators of body fatigue in real-time, as
well as how to conduct initial validation of the accuracy
of its readings compared to standard medical devices.

II. MATERIALS & METHOD

A. Wearable Sensor for Fatigue Monitoring

Based on their placement, sensors are classified into
two types: wearable sensors and implantable sensors
[13].  Wearable sensors are one of the rapidly
developing technologies due to the significant benefits
they offer, such as easy operation, quick response,
portability, and small size, which make them highly
desirable [14]. Wearable sensors are types of sensors
that can be integrated into wearable objects or directly
onto the body. They are generally used to help monitor
or provide relevant information related to clinical
conditions or overall health [15].

There are various types of wearable sensors
commonly used to monitor the heart and blood vessels.
These sensors can measure a range of physiological
parameters, such as heart rate and blood oxygen levels.
As shown in Table [, Multivariable (AMON),
Photoplethysmography (PPG), and Electrocardiograph
(ECQ) sensors, when worn on the finger (ring sensor),
can measure the most comprehensive set of
physiological parameters, including blood pressure,
blood oxygen saturation, body temperature, and heart
rate thythm [16], [17].

TABLE 1. TYPES OF WEARABLE SENSOR

Location of Use Types of Sensors Marker
Wrist Ultrasound Blood Pressure
e WRIST Multivariable Blood Pressure
e FINGER (AMON) Blood Oxygen
(RING e Photoplethysm | Saturation
SENSOR) ography (PPG) | Body Temperature
e Electrocardiogr | Heart Rate Rhythm
aphy (ECG)
e Optical Heart Rate
e Radio- Heart Rate and Body
frequency Temperature
Identification
Arm or Thigh Microwave Heart Rate
Reflectometric Variability as a
Cardiopulmonary Method for
Evaluating Stress
Phone adapter Single-channel Heart Rate
ECG
Seatbelt in a Car | Wire type Strain Heart Rate and
Gauge Respiration Rate

The Advanced Medical Monitor (AMON) is a
device used to monitor patients with heart disease and
respiratory disorders. It is worn on the patient's wrist
and features an accelerometer that continuously
measures the user's physical activity. AMON integrates
various sensors to measure SpO2, blood pressure, body
movement, body temperature, and pulse rate. Fig. 1
illustrates the AMON prototype and its role in
physiological monitoring systems. The AMON device
integrates multiple sensors, including SpO., body
temperature, and heart rate, and has been widely
referenced as an early model of wearable medical
monitoring for high-risk patients [18].

patient needing
monitoring

» f"\'\"ir'eless

data link

medical center

Fig. 1. AMON Prototype and Its Role in Monitoring Systems

The development of physiological monitoring
systems continues to advance, aiming to produce
simpler, more user-friendly, and cost-effective
systems. One such development involves leveraging
Photoplethysmography (PPG) sensors due to their ease
of use and minimal impact on user mobility. PPG
sensors are widely used in wearable technology
because they can measure changes in blood vessel
volume and estimate health metrics such as heart rate,
respiration rate, blood pressure, body temperature, and
blood oxygen saturation [19]. PPG sensors operate in
either transmission or reflectance mode, as illustrated in
Fig.2. In transmission mode, LED light is detected by a
photodiode or photodetector positioned on the opposite
side. In reflectance mode, the photodiode detects light
reflected back from tissues, bones, and/or blood vessels
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[20]. Transmission mode is commonly used in
hospital settings, whereas reflectance mode 1is
prevalent in wearable devices like smartwatches.

LED
PD LED PD
Fig. 2. Placement of LED and Photodetector in PPG Sensors:
Transmission and Reflectance Modes[20]

By adapting the AMON prototype and utilizing a PPG
sensor, a smart ring prototype has been designed. The
PPG sensor used in this study is the MAX30100.

B. Fuzzy Logic for Classification of Fatigue Levels

Fuzzy logic was first introduced in 1965 by Lotfi A.
Zadeh from the University of California through his
publication titled "Fuzzy Sets." Boolean logic, which
consists of binary membership values of 0 or 1, was
deemed inadequate to represent human logic or
thinking. Fuzzy logic was developed as an alternative
to Boolean logic by allowing membership values to
range between 0 and 1 [20]. In fuzzy logic, values
between true/false, yes/no, high/low, far/near, and other
similar dichotomies can be defined. These values can
then be processed by computers to apply a form of
reasoning in programming that more closely resembles
human thought [21]. Generally, fuzzy logic is used to
design intelligent systems capable of handling
processes of human reasoning [22] [23]. It can also be
utilized to determine the relationship between vital
signs and physiological indicators, as shown in Table
1L

TABLE II. RELATIONSHIP BETWEEN VITAL SIGNS AND
PHYSIOLOGICAL INDICATORS. H=HIGH, L=LOW, N/A =NOT
APPLICABLE, N=NORMAL[13]

Physiological | Heart Blood Blood Body
Conditions Rate | Pressure | Oxygen Temperature
Saturation

Bradycardia IL N/a N/a N/a
Tachycardia | H N/a Norl N/a
Hypotension | N/a L N/a N/a
Hypertension | N/a H N/a N/a
Hypoxemia N/a N/a Often 1 N/a
Fever Horn | N/a N/a H
Hypothermia | L Norl N/a L
Normal 60-90 | 100- 94-99% 36.5-37.5°C
Range bpm 140/60-

80

mm/hg

In Table II, the notation “N/a” (not applicable) indicates
that the corresponding physiological parameter does
not have a direct or clinically significant correlation
with the specific condition. For example, blood oxygen
saturation is not a defining marker for hypertension,
hence it is marked as N/a.

The fuzzy logic model can be employed to interpret
various physiological parameters by using information
from collected vital signs, such as heart rate, blood
pressure, blood oxygen saturation, and body

temperature. An example of this implementation is
illustrated in Table 2, demonstrating how vital signs can
be mapped to detect a physiological condition using
fuzzy logic [13]. his model can similarly be applied to
detect fatigue in individuals based on specific fatigue
parameters. Based on these vital signs, the fuzzy rules
for this study can be categorized as shown in Table III.

TABLE IIL Fuzzy RULES
Young 1-30
Age (years) Middle 20-60
Old 50-100
Body Low 0-36.5
Temperature Normal 35-39
Input (°C) High 37.5-50
Heart Rate Slow 0-70
(bpm) Normal 60-90
Fast 80-200
Low 0-92
Oxygen (%) Normal 90-98
High 96-100
Rest 0-50
Output Category Normal 25-75
Risk of Fatigue 50-100

Based on the fuzzy rules, the output from the system
will help users determine the threshold for bodily
fatigue. When this threshold is reached, a reminder will
be triggered along with a slight vibration from the ring.
In the event of a significant drop in condition or if the
user faints, the system will automatically send an alert
message to the emergency contact number listed in the
Smart Ring App.

C. System Design

The Smart Ring is physically designed to be as
minimalistic as possible to avoid interfering with the
user during activities and resembles a typical ring worn
on the finger. The Smart Ring consists of three main
components: the electronic hardware, the software, and
the communication system using IoT. The system
designed for the Smart Ring prototype is illustrated in

Fig.3.
Q

GPS Warning message
A

SN

*HR
+SPO,
+ Body Temperature

Sensors & Controller |
4 « Fuzzy Logic
> !QI > A internet TR oloT
|
5 *Classification of
Android Output body fatigue levels

o Android apps as a allert
warning

Fig. 3. Architecture Smart Ring

Data can be processed through the IoT-based
monitoring system application. As shown in Fig.3,
sensor data is collected by the Android software paired
with the Smart Ring. The Android device can transmit
data and GPS information over the internet to a server
with a database [24]. If the data indicates fatigue, as
recognized by the fuzzy algorithm, the Android
application will trigger an alert to notify the user. Fig.
4 shows the operational flow of the Smart Ring system,
starting from data acquisition, fuzzy logic-based
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fatigue classification, and ending with alert generation
and loT-based data transmission.
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Fig. 4. Flowchart for The Smart Ring System

In this study, the Android application is designed to
display fatigue data generated by the MAX30100
sensor, provide user location information to facilitate
identification, and issue notifications about fatigue risk
conditions. The application is developed using the

Blynk server, which is connected to the NodeMCU
controller.

III. RESULT AND ANALYSIS

This section will describe the results of the
hardware design, including the smart ring box design
and wiring diagram, the implementation of fuzzy logic,
and the integration of sensor data with the Android
application (Blynk).

A. Hardware Implementation

The smart ring prototype has a control box part
which consists of several components, namely the
Max30100 sensor to obtain heart rate (HR), SPO2
oxygen saturation, body temperature (0C), Oled as a

display, NodeMCU as a microcontroller and battery as
shown in Fig. 5.

+

SMART
RING

Fig. 6 presents the mechanical design and physical
realization of the Smart Ring prototype. Fig. 6(a)
shows the three-dimensional CAD model developed
using SolidWorks, which was designed to achieve a
compact and ergonomic form suitable for finger
placement. Fig. 6(b) illustrates the fabricated physical
prototype, demonstrating the integration of electronic
components within the ring structure.

(a) (b)

Fig. 6. Smart Ring Prototype Design (a) 3D CAD Model Using
SolidWork, (b) Physical Prototype of the Smart Ring

The choice of the finger as the sensor location, as
shown in Figure 6(b), is based on its effectiveness in
providing reliable physiological measurements. The
capillaries at the fingertip provide a direct pathway for
photoplethysmography, a common method used in
wearable sensors to detect changes in blood volume.
This technique is crucial for accurately determining

heart rate (HR) and blood oxygen saturation (SpO2)
[24].

B. Fuzzy Logic Implementation

In the process of fuzzification, several aspects need
to be considered, such as fuzzy rules and fuzzy sets.
Fuzzy rules serve as a reference for classifying the
level of bodily fatigue, as outlined in Table III. The
results of fuzzification are used as fuzzy inference to
apply the final output rules for determining the level of
fatigue [25]. The fuzzification process was developed
using Python programming, resulting in membership
functions for each input, as shown in Fig.7
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Fig. 7. Input Membership Functions for Fuzzy Logic-Based
Fatigue Classification (a) Age, (b) Heart Rate, (c) Blood
Oxygen Saturation (SpO,), and (d) Body Temperature

Fig. 7 illustrates the input membership functions
used in the fuzzy logic system for body fatigue
classification. Fig. 7(a) represents the age membership
function, which categorizes users into young, middle-
aged, and old groups. Fig. 7(b) shows the heart rate
membership function, dividing heart rate values into
slow, normal, and fast categories. Fig. 7(c) depicts the
blood oxygen saturation (SpO2) membership function,
classifying oxygen levels into low, normal, and high.
Fig. 7(d) presents the body temperature membership
function, which separates temperature values into low,
normal, and high ranges. Each membership function
plays a distinct role in modeling physiological
variations related to fatigue. The membership function
output consists of three conditions used to classify the
level of bodily fatigue, as depicted in Fig.8

: /
\ /
/
/
08 \ f;”
/

.Jf — nest
y normal
{ — risk_fatigue

Membership
o
o

e
&

0.2 \

0.0

] 20 40 60 BO 100
membership

Fig. 8. Output Membership Function for Body Fatigue
Classification

Fig. 8 illustrates the output membership function
used in the fuzzy logic system to classify body fatigue
levels. The output variable represents the overall
fatigue condition and is divided into three linguistic

categories: rest, normal, and risk. Each category
corresponds to a specific range of output values that
indicate the user’s physical condition based on the
combined influence of heart rate, blood oxygen
saturation (SpO:), body temperature, and age. The
defuzzification process converts the fuzzy output into
a crisp value, which is then used to determine the final
fatigue category and trigger alerts when the risk
threshold is exceeded.

C. Smart Ring Application

In previous research, android-based smart ring
applications have been created and developed using the
flutter framework with the Dart programming language.
In the smart ring application, there is an interface that
consists of several variable displays that show
information to users such as the latest update time of the
monitoring and evaluation process, user location, body
fatigue level category, and start & stop buttons that
function to manage monitoring and evaluation of data
generated by the MAX30100 sensor. When the user
starts the body condition monitoring process, there is an
option by pressing the start or stop button which means
whether they want to monitor and evaluate the results
through the smart ring application on the smartphone,
otherwise the data generated by the MAX30100 sensor
is only stored in the database and not displayed in the
application [24].

The smart ring application also displays 3 fatigue
indicator data on the widget, namely temperature, SpO2
level, and heart rate. The value is not constant and
continues to change along with the process of
monitoring the user's body condition while using the
smart ring [26]. The user interface of the smart ring
application can be seen in Fig. 9.

Contn:
Eggg‘ 96.0 | 100.06
@ M M “ = -

conanen Risk for Fatigue cmsnen: Rest

IE; g o, Q,j

Fig. 9. User Interface Smart Ring Application[24]

The smart ring application can also generate real-time
notifications when the user's status evaluation is in the
fatigue risk category and provide summary
information of body condition data measurements as
shown in Fig. 10.
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Body Temperature: 36.13°C
SpO2 Level: 94.0
Heart Rate: 100.06
Current Location:
FC6V+HRW, Nagri Kaler,
Purwakarta, , Indonesia

You are at risk for fatigue. Please reduce
your activity immediately

Fig. 10. Alert Page When A User is at Risk of Fatigue[24]

D. Quantitative Evaluation and Data Analysis

In this study, a trial was conducted with a total of
two users who belonged to the young age category,
namely 25 years and middle age 35 years by wearing a
smart ring prototype on their fingers and activating
GPS and smart ring applications. Users are asked to use
the smart ring before bed rest, during daily activities
and are also asked to do sports movements, namely
middle-distance running. Based on the test results, it
can be seen that fuzzy logic has been successfully
applied to classify the category of body fatigue level
conditions based on the data obtained by the smart ring
prototype. Which then the classification results are sent
to the smart ring application.

TABLE V. BODY FATIGUE CLASSIFICATION RESULT FOR A
35-YEAR-OLD SUBJECT

Age Sp0O2 Heart Rate | Temperature | Category

(years) | (%) (bpm) ‘0
35 96 70 36.00 rest
35 96 71 36.31 rest
35 96 71 37.00 rest
35 96 70 36.63 rest
35 96 72 35.88 rest
35 96 101 36.81 normal
35 97 98 37.10 normal
35 97 99 37.10 normal
35 97 98 37.21 normal
35 97 100 37.19 normal
35 95 147 37.55 risk
35 95 146 37.55 risk

TABLE IV. BoDY FATIGUE CLASSIFICATION RESULT FOR A
25-YEAR-OLD SUBJECT
Age SpO2 | Heart Rate | Temperature Fatigue
(years) | (%) (bpm) (‘C) Category
25 96 67.65 36.00 rest
25 96 76.00 36.31 rest
25 96 71.95 37.00 rest
25 96 70.75 36.63 rest
25 96 28.55 35.88 rest
25 96 98.56 36.81 normal
25 97 100.31 37.10 normal
25 97 100.32 37.10 normal
25 97 100.65 37.21 normal
25 97 100.65 37.19 normal
25 95 146.1 37.55 risk
25 95 146.12 37.55 risk

Table IV presents the fatigue classification results
obtained from a 25-year-old subject during different
activity conditions. The classification shows a clear
transition from rest to normal and risk categories as
heart rate and body temperature increase, accompanied
by a decrease in SpO..

Table V presents the body fatigue classification
results for a 35-year-old subject under various activity
conditions. Similar to the younger age group, the
results indicate a progressive transition from the rest to
normal and risk categories as physiological stress
increases. The rest condition is characterized by a
stable heart rate of approximately 70 bpm, SpO: levels
around 96%, and body temperature below 3. These
findings suggest that the selected physiological
parameters provide consistent fatigue indicators
regardless of minor age differences within the adult
population.

The study reveals that at both ages 25 and 35, the
pattern of body fatigue categories remains relatively
consistent. The "risk" condition is characterized by a
decrease in blood oxygen saturation (SpO2), a
significant increase in heart rate, and a rise in body
temperature. Threshold values that indicate the
transition from "rest" to "normal” and subsequently to
"risk" categories can serve as reliable indicators of
physical fatigue. These thresholds are useful for
monitoring physical activity and can be applied in
occupational health settings to help prevent
overexertion and ensure well-being. The interpretation
of the three visualization graphs of body fatigue data
based on age, body temperature, heart rate, and SpO2
can be seen in Fig.11.

Heart Rate vs Temperature
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Heart Rate (bpm)
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Fig. 11. Visualization of Body Fatigue Indicators (a) Heart Rate
Trend, (b) Blood Oxygen Saturation (SpO.), (c) Body
Temperature Response during Physical Activity

Based on the data visualization and analysis at
Fig.11, it is evident that body fatigue can be effectively
assessed using three physiological parameters: heart
rate, body temperature, and blood oxygen saturation
(Sp02). The data shows a consistent pattern where
increased body temperature and decreased SpO2 levels
correlate with elevated heart rates, which serve as
indicators of body stress or fatigue. In particular, when
the body temperature rises to around 37.5°C and SpO2
drops to 95%, heart rates exceed 145 bpm—placing the
condition into the “risk” category. Meanwhile,
individuals in the “rest” category tend to maintain a
body temperature below 37°C, SpO2 at 96%, and a
heart rate around 70 bpm.

Across both age groups (25 and 35 years old), the
trends remain consistent, suggesting that these
physiological markers are reliable regardless of minor
age differences within adult populations. This supports
the idea that fatigue detection models can be
generalized for young adults. In summary, heart rate,
body temperature, and SpO2 are key indicators that can
be used together to monitor physical fatigue, identify
health risks, and potentially guide preventive actions or
rest recommendations.

As an initial validation, the result of body
temperature and heart rate measurements from the
smart ring were compared with manual measurements
using a digital thermometer and medical pulse
oximeter [27]. Results showed an average deviation of
+ 1.3°C for temperature and + 5 bpm for heart rate,

which is within the tolerance of non-invasive

monitoring.

E. Comparison with Medical Reference Device

To evaluate the accuracy of the proposed Smart
Ring, a comparative analysis was conducted using
certified medical reference devices. Heart rate and
blood oxygen saturation (SpO:) measurements
obtained from the Smart Ring were compared with a
fingertip medical pulse oximeter, while body
temperature readings were compared with a digital
medical thermometer. These reference devices are
commonly used in clinical and home healthcare
settings and serve as standard non-invasive
measurement tools. [28] [29]

TABLE VL COMPARISON BETWEEN SMART RING AND
MEDICAL REFERENCE DEVICE
Parameter Smart Medical Mean
Ring Device (Mean) | Absolute
(Mean) Error
Heart Rate (bpm) 98.4 101.9 + 5.0 bpm
SpO; (%) 96.2 97.7 +15%
Body 36.9 38.2 +1.3(°C)
Temperature
(‘0

Based on Table.VI the comparison results indicate
that the Smart Ring demonstrates measurement
performance comparable to certified medical reference
devices. The observed mean absolute error of +5 bpm
for heart rate and +1.5% for SpO: aligns with
acceptable tolerances reported for non-invasive
wearable sensors. According to ISO 80601-2-61, pulse
oximetry devices are considered acceptable when SpO-
error remains within +2%. Similarly, the observed
temperature deviation of 1.3 °C falls within the range
reported for wearable temperature monitoring systems.
These findings suggest that the Smart Ring provides
reliable physiological measurements suitable for
fatigue monitoring applications, although it is not
intended to replace clinical diagnostic equipment.

IV. CONCLUSION

This study has successfully developed an IoT-
based Smart Ring for real-time body fatigue
monitoring using heart rate, blood oxygen saturation
(SpO2), and body temperature parameters. Quantitative
evaluation results show that the Smart Ring achieves
an average measurement deviation of =5 bpm for heart
rate, £1.5% for SpO:, and +1.3 °C for body
temperature when compared with standard medical
devices. These error values fall within acceptable
limits for non-invasive wearable monitoring systems.
Experimental results from two adult subjects aged 25
and 35 years demonstrate consistent fatigue
classification patterns. The fatigue risk condition is
quantitatively characterized by heart rate values
exceeding 145 bpm, body temperature above 37.5 °C,
and a decrease in SpO- to approximately 95%. These
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thresholds confirm the effectiveness of the fuzzy logic-
based classification model in identifying fatigue levels
across different adult age groups. Overall, the proposed
Smart Ring provides a reliable and affordable solution
for early fatigue detection and real-time health
monitoring. Future work will involve larger-scale user
testing and clinical validation to further improve
measurement accuracy and generalizability. Although
the Smart Ring demonstrates comparable accuracy to
non-invasive medical reference devices, it is intended
for fatigue monitoring and early warning purposes
rather than clinical diagnosis.
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