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Abstract— Countries around the world have roads that
go through mountains and hills. These roads can have
features such as winding and change of elevation. When
passing through such roads, the car’s dynamics are
influenced by the unknown elevations and curvatures,
which can threaten stability if not properly controlled.
The purpose of this research is to control the cars
longitudinal speed through acceleration, braking through
regenerative braking and maintain lateral control
through steering inputs. The proposed hierarchical
control scheme consists of a high-level predictive
controller which predicts the car’s dynamics under
varying road condition and a low-level Fuzzy-PID
controller for the actuators, which is motor driver and
electric power steering (EPS). Additionally, the energy
recovery from the regenerative braking system is
monitored to evaluate its impact on battery state of
charge, especially when the car is slowing down or going
through downhill roads. The control system proposed
aims to maintain speed and steering stability under
varying road conditions and improve energy efficiency.
The simulation will be done using MATLAB and the car
will go through a spiral down track and a U-turn ramp
track. The proposed controller manages to track both the
cars speed and acceleration under the present of roads
curvature and downbhill disturbance. The Fuzzy-PID also
manage to track the reference generated by the NMPC
with a slightly damped response. For the battery state of
charge (SOC) there is a rise of 0.0025% or equivalent to
40 Wh generated from regenerative braking.

Index  Terms—Autonomous Car;
Predictive Control; Regenerative Braking

Fuzzy-PID;

1. INTRODUCTION

An autonomous car is a vehicle that can operate on
its own without human intervention. The purpose of
autonomous car control research is mainly based on
speed, which focuses on longitudinal dynamics and
steering control for lateral dynamics. With the growing
shift to electric motors and battery-powered systems
for cars, more methods are developed for utilizing the
motor’s excessive mechanical energy by converting it
back into electrical energy. This method is called
regenerative braking and helps recharge the car’s
battery during deceleration[1], [2], [3].

The research on autonomous car control has been
ongoing for quite a while now. In [4], an adaptive
cruise control (ACC) combined with regenerative
braking which uses two-layer control is developed. The
first control layer consists of an adaptive fuzzy sliding
mode control (AFSMC) and a low-level control brake
system distribution control, mainly to manage force
distribution between mechanical and regenerative
brake. The proposed method is capable of accurately
tracking the vehicle speed under various road
conditions, including wet and dry surfaces.

In [5], the research aims to maintain stability with a
combination of both mechanical and regenerative
brakes. The proposed controller is a PI controller
which output controls determine the ratio between
mechanical and regenerative brake used when slowing
down. Though this research only focuses on junction
type roads. In [6], a sliding mode control (SMC)
combined with performance guarantee (PG) was
proposed to control the vehicles speed and steering.
The PG method aims to keep the vehicle’s state errors
to converge to zero while constraining it within the
determined limit. However, these studies have yet
integrated all three elements of speed, steering and
braking. Therefore, this study aims to fill that gap by
combining these three elements.

Model predictive control (MPC) and its nonlinear
variants (NMPC) have been applied extensively to
vehicle steering, longitudinal control and integrated
braking problems; [7] developed a robust predictive
control of an autonomous car steering system for path-
tracking using LMI optimization with independent
constraints enforcement. Applications of NMPC for
collision avoidance path planning and tracking control
for autonomous vehicles have been demonstrated in
[8]. Regenerative and mechanical brake integration
have also been approached with predictive control for
performance and energy recovery[9]. Fuzzy—PID and
adaptive fuzzy controllers are widely used at actuator
level to handle nonlinearities and reduce transient
overshoot[10].  Finally, open-source toolchains
(CasADi, IPOPT) and commercial environments
(MATLAB/Simulink) are commonly used to
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implement and test NMPC and the lower-level
controllers used here[11], [12], [13].

In this work, we propose a hierarchical control
scheme that consist of a high-level predictive control
focusing on steering and speed control combined with
a low-level Fuzzy-PID for the actuators control. The
predictive control aims to achieve stability especially
when moving through uphill, downhill, and winding
roads while the Fuzzy-PID ensures smooth and precise
actuation. When the car is slowing down, energy
recovery generated from the regenerative braking and
its impact on battery state of charge will also be
monitored.

This paper is organized as follows: Section I outlines
the background and other research related to
autonomous car control. Section II describes the car
mathematical model and the proposed controller
design. Section III discusses the simulation result,
focusing on the car’s acceleration and steering control
inputs, key state parameters and energy recovery via
regenerative braking. Section IV contains the summary
and conclusion of our research, while also providing
direction for future work.

II. METHODOLOGY

A. Car Dynamic and Kinematic Model

The model provided by [14] captures both the
longitudinal and the lateral dynamics, in addition a
lateral and yaw angle error will be added to the model.
The states will be formulated as follows:

x = [1'7x, Uy, Uy, 6, el,ez,xod]T,u =[a, 617 (1)

y = [vy, e, 65 + x04]" (2

where x; = v, is the longitudinal acceleration; x, =

v, is the longitudinal speed; x; = v, is the lateral

speed; x, = 6 is the car yaw angle speed; x5 = e, is

the lateral deviation; x4 = e, is the relative yaw angle;

and x; = x,4 is the longitudinal deviation. For the

control input u; =a and u, =46 are the car
acceleration and steering respectively.

The car’s longitudinal dynamic is simplified as a
first order model, while the lateral dynamic model will

contain some nonlinearities affected by the
longitudinal speed. The model is described as follows:
X = %(_x1 +u +dy) 3)

Xy = X1+ X3X4 (4)

ity = = (Fyiz + Fyaq) = Xa%, ()

X4 = i(lnylz - lrFy34) (6)

The cars mass and inertia are respectively m and I,.
The cars time constant is denoted as t. The lateral tire
forces are denoted as F,,, where subscripts 1,2 refer to
the front tire and 3,4 the rear tire. The tire forces for the
front side will be considered equal on both side, this
also apply to the rear side. The car wheels distance
from the center gravity are I for the front wheels and

[, for the rear wheels.
x3+lex.
Fyiz =ty = Cop == ()

X1

_ X3—lrXy
Fy34 - _Car

®)
X1
The wheels cornering stiffness are denoted as C,,
where the subscripts f, r refer to the front and rear tires.
The error model for both lateral and yaw angle
deviation are defined accordingly:

.7’(5 = X3 + X2x6 (9)

X = Xy = Xz (10)
the disturbance term d; represents the roads gradient
on the longitudinal axis, while p denotes the road’s
curvature value. Finally, the car kinematics will be
captured with the bicycle model as follows:

% vcosf

[yl = Esme (11)

6 —tan é

Where 8 is the car yaw angle, 6 is the steering angle, v
is the car speed and L is the distance between the front
and back wheel.

B. Nonlinear Model Predictive Control

Model Predictive Control is a feedback digital
feedback control method with the ability to predict the
system’s output within the desired horizon. This
prediction is calculated virtually inside the controller
based on the system mathematical model and the
control output then produced through cost function
calculations[15]. Refer to [16], [17] for general MPC
references for theory and design.

past current time prediction horizon

current
state x(n)

past trajectory ~ N optimal predicted trajectory x- (k)
TR e
.

past feedback values : i im---d

SRR ! t----| timer

Fig. 1 Nonlinear predictive control scheme

For Nonlinear Model Predictive Control (NMPC), the
system model is formulated as:

x* = f(xu) (12)
where f is the nonlinear function of the model with
state x and input u while x* indicates the future state
value. The predicted state x, can be obtained by
iterating equation (14) between the horizon N.

x,(0) = x(n) (13)
x,(k+1) = f(x,(k),u(k)),k=0,..,N—1 (14)
The control value obtained from the state x,, is then
calculated through a cost function formulated as
follows:

J(x@m),u(m)) = TR lx, RO + Alluk)[12(15)
where A is a weighing value for smooth control
command. Constraints can also be used to describe
practical hardware limitations. This ensures the optimal
control generated by the NMPC is feasible for physical
realization. Lastly, the NMPC produce the control
sequences necessary based on the prediction N for
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every time interval[18]. The NMPC will act as a high-
level controller and generate a reference for the
actuators to track on.

C. Fuzzy-PID

Nonlinearities on practical dynamic systems limit
the peformance of a regular PID controllers. Therefore,
a PID control can be combined with a fuzzy control
scheme to overcome this nonliearities. The gains
K,,K;, K4 combined with fuzzy logic can now vary
depending on the error and error rate of the system[10].

Inference
mechanism

Engine throttle Output
1SG current >

Fig. 2 Example of Fuzzy-PID control scheme

Speed/Torque

The three main stages of Fuzzy-PID
implemantation are; fuzzification, where the error data
(typically error and error rate) are mapped into fuzzy
sets through the use of membership functions; fuzzy
inference, where a rule base system combines the
inputs to calculate the fuzzy control values;
defuzzification, which converts the fuzzy control back
to a crisp tuning of PID gains for final control
calculation[19]. The Fuzzy-PID will be in charge of
controlling the low-level actuators which are the motor
drive for the car speed control and the electric power
steering (EPS) for the car steering control.

NB NS Z PS PB

0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8

Fig. 3 Input Membership Function Structure Example

NB NS & PS PB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 4 Output Membership Function Structure Example

For this Fuzzy-PID controller, identical fuzzy
membership functions is applied for all PID gain
components. Specifically, the membership functions
associated with the proportional, integral, and
derivative gains are defined with the same number of
linguistic terms, uniform widths, and symmetric

distributions. This design choice is adopted to maintain
consistency of the actuator control and reduce tuning
complexity. An example of the input membership
functions can be seen in Figure 3. which contains five
overlapping fuzzy sets, namely Negative Big (NB),
Negative small (NS), Zero (Z), Positive Small (PS),
and Positive Big (PB). The same is also applied to the
output membership functions shown in Figure 4. Even
though the membership functions show similarity,
there is a key difference which is the variable range.
The input variables (actuators error and error rate) are
normalized over the range of [—1,1], this allows the
Fuzzy-PID to process both positive and negative error
values. In contrast the fuzzy outputs represent scaling
factors for the PID gains and constrained to the interval
of [0,1], this allows a simpler tuning for each gain
since the main proportional, integral and derivatives
gain are outside the fuzzy membership functions. The
rule sets for each gain are shown on Table 1-3.

TABLE L. PROPORTIONAL GAIN (KP) RULE SET
de/e NB NS Z PS PB
NB PB PS Z NS NB
NS PS PS Z NS NS
Z Z Z Z Z Z
PS NS NS Z PS PS
PB NB NS Z PS PB
TABLE II. INTEGRAL GAIN (K1) RULE SET
de/e NB NS Z PS PB
NB NB NB NB Z
NS NB NS Z PS
Z NS Z Z Z PS
PS Z PS Z PS PB
PB Z Z PS PB PB
TABLE III. DERIVATIVE GAIN (KD) RULE SET
de/e NB NS Z PS PB
NB NS Z PS PB PB
NS z PS PS PB PB
Z PS PB Z PS PB
PS PB PB NS Z PS
PB PB PB NS Z NS
TABLE IV. ACTUATOR Fuzz-PID GAINS
Gain Motor Drive EPS
Kp 5 15
Ki 1 5
Kd 1 4
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D. Energy Recovery

Regenerative braking will be used as the main source
of the battery energy recovery. During the regenerative
braking the motor will act as a generator, excess kinetic
energy will be converted back into electrical energy
through electromagnetic torque. The motor in this
research will be used for both propulsion and
regenerative braking. Therefore, a condition is needed
to distinguish propulsion mode and regenerative
braking mode. For propulsion mode the conditions are:

Tn<T,and I, >0 (16)
and for generator mode:
Tn>T,and I, <0 17)

The electrical and mechanical torque of the motor are
denoted as T;, and T,, while I, is the motor current.
When these conditions are met the battery will be
allowed to charge. The battery will only be monitored
on charging mode, so the system will be modelled as
follows:

P, = 7]mr]mewm (18)
and the state of charge (SOC) is modelled as follows:
d I
E(SOC) = —MNbchyg Q_b (19)
Voc—|Véc—4RintPp
I = o (20)

Where 1,,,0p,Mpcng are respectively the efficiency of
the motor, electrical circuit and battery charging. The
motor torque and speed are denoted as T, and w,y,, the
battery voltage is V,., the battery internal resistance is
R+ and Q,, is the battery capacity[4, 20].

III. RESULTS AND DISCUSSION

The simulations are carried out in MATLAB, where
the main focus will be steering and speed control.
Energy regeneration will also be monitored due to the
car slowing down on the downbhill road. The track used
for simulation will be a downward circle track and U-
turn ramp, which will capture both the steering and the
disturbance produced by the change of gradient and
curving roads. The car system and hierarchical control
scheme for the simulation will be constructed as in
Figure 5, where the NMPC will act as high-level
planner and the Fuzzy-PID will control both the motor
and steering actuator. Afterward the output generated
by both actuators will be fed into the car model.

Batiary State

Fig. 5. System block diagram

The sampling time for the NMPC will be 0.1
seconds. The prediction horizon of the NMPC is set to
10 steps ahead and the control horizon 2 steps ahead.

There are also some constraints given for the speed
(21) and steering control (22) reference that will be
given to the actuators as follows:

-3 <a<3(mfps) 2n
—0.5 <8 < 0.5 (rad) (22)
The acceleration constraints represent typical

passenger-vehicle acceleration and deacceleration
capability without requiring extreme actuator effort.
This range also allows normal and reasonably
aggressive speed changes. The steering angle
constraint refers to the front-wheel steering angle,
which is a typical front wheel turning angle. The
battery internal circuit will also be considered ideal so
the heat generated from it won’t affect the battery
charging. This assumption helps simplify modelling
and reduce computational complexity. Conditions (17)
will be used as a basic ON-OFF trigger for charging
the battery. Some of the parameters used on the
simulation are mentioned in Table 5 and Table 6.

TABLE V. CAR PARAMETERS
Parameter Value
Mass (m) 1575 (kg)

Moment of inertia (I,) 2875 (kg.m?)

Front wheels distance (Ly) 1.2 (m)

Rear wheels distance (L,) 1.6 (m)

Front wheels cornering

stiffness (Cyy) 19000 (N/rad)

Rear wheels cornering

stiffness (Cyp) 33000 (N/rad)

Time constant (T) 0.2 (s)
TABLE VL BATTERY PARAMETERS
Parameter Value

Motor efficiency 0.85

Circuit efficiency 0.96

Battery efficiency 0.9

Battery voltage 60%

Battery Capacity 18 kWh

Internal resistance 0.025 (Q)
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A. Spiral Down Track

Z axis

Yadis 200 T

-300

X axis

Fig. 6. Spiral down track preview

The track starts with a 250 m straight road as shown in
Figure 6. then circling down on a track with 250 m
radius. The starting height will be 150 m therefore the
car will be going downhill with a slope of 2.7°. The car
will try to maintain a constant speed of 8.33 m/s or
equivalent to 30 km/h from start until going downbhill
while doing a turn. The simulation ends after going
through a full circular track.
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Fig. 7. Spiral down track longitudinal speed
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Fig. 8. Spiral down track lateral deviations

Figure 7. presents the car longitudinal speed,
where the speed reach around 8.33 m/s on steady-state
which is equivalent to 30 km/h. There are two
overshoots observed from the simulation result. First is
during the initial acceleration with a peak value of

around 9% before settling. This can be caused by a
small lag between the actuator’s responses and the
NMPC reference. Integrating the actuator dynamic
directly might solved this problem, but the low-level
control contains a Fuzzy-PID. Therefore, a new
problem arises to integrate the low-level control loop
into the NMPC.

The second overshoot occurs when the car
starts to turn after going straight for 250 m with a peak
value of around 5% before settling again. This
overshoot might be caused by the combination of both
the road turning and going downward happening at the
same time. The lack of smoothness generated from the
track waypoints also affects the transient response of
the system, causing some minor overshoot along the
way.

Figure 8. presents both the lateral deviation
throughout the motion. At the start of the turn, the
lateral deviation shows a brief negative spike, which
indicates that the vehicle initially drifts slightly toward
the inside of the curve. This spike is short-lived and is
corrected rapidly, the controller brings the deviation
back toward zero within around 10 seconds. Such
behaviour typically arises from curvature changes. The
swift return to near-zero value suggest that the
controller maintains stability even under the presents
of disturbance.
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Fig. 9. Spiral down track yaw angle deviations

The yaw angle deviation plot from Figure 9.
shows a small but consistent offset between the
vehicle’s heading and the tangent direction of the track.
This indicates that the vehicle follows a slightly
different curvature than the reference arc. Even so, the
deviation remains very small around the order of 1073
rad, meaning the vehicle’s trajectory is effectively
parallel to the desired path with only a negligible
angular error.

Together, the lateral and yaw angle responses
demonstrate that while the vehicle temporarily
experiences a small disturbance at the start of the turn,
the controller quickly stabilizes the motion and
preserves accurate path following. The magnitude of
both deviations is extremely small, showing that the
proposed controller is capable of maintaining smooth
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and stable lateral behaviour even in the present of
curvature changes and under the influence of other
external factors such as roadway slope.

Acceleration
T T

NMPC
e -~~~ Fuzzy Motor| |
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Fig. 10. Spiral down track motor acceleration tracking control

Figure 10. compares the acceleration
reference generated from the NMPC (blue line) with
the actual acceleration generated by the motor
controlled with the Fuzzy-PID (orange-dashed line).
The results show that the proposed inner-loop
controller is able to track the NMPC reference
acceleration with good fidelity, particularly once the
acceleration reaches steady-state. During the transient
phase, small differences between the reference signal
and the actuator response are noticeable. These
deviations occur primarily during two key periods: the
initial acceleration to the desired speed and when the
car start going through a downhill.

At the beginning of the motion, the NMPC
demands a relatively high positive acceleration to
rapidly bring the vehicle up to the target reference
speed. This aggressive command is expected, as the
NMPC optimizes speed tracking while respecting the
system’s constraints. In contrast, the Fuzzy-PID
controller damps out excessive acceleration, which
result in slightly slower rise in acceleration. Despite
this small difference, the vehicle still reaches the
desired velocity with minimal overshoot, as confirmed
earlier in Figure 5. A similar behaviour occurs when
the vehicle goes through a downhill. The NMPC
lowers the reference by providing negative
acceleration to maintain the desired speed under the
effect of the road gradient. The Fuzzy-PID controller
once again produce a slightly damped output. Even so,
the difference remains small and the actuator
consistently converges toward the NMPC output
reference once it reaches steady-state.

The close alignment between the two
responses in the steady-state region demonstrates
effective coordination between the high-level NMPC
and the low-level Fuzzy-PID control. The small
transient difference does not translate into notable
speed tracking errors, indicating that the combined
control structure is able to overcome minor delays. In
practice, this behaviour is desirable because it prevents
excessive torque application, reduces mechanical

stress on drivetrain components, and enhances ride
comfort.

<108 Steering
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Fig. 11. Spiral down track electric power steering tracking control

The comparison between the NMPC
reference (blue line) and the Fuzzy-PID controlled EPS
is shown in Figure 11. Both signals converge to a
steady-state value of approximately 0.015 rad, which
is consistent with the curvature required to follow the
reference turn. Although the final values match
closely, several important transient characteristics can
be observed during the motion. As the vehicle
approaches the start of the turn, the steering reference
generated by the NMPC contains another brief
overshoot, similar to the phenomenon can be seen in
the motor acceleration response in Figure 10.

On the actuator side, the Fuzzy-PID controller
once again outputs a smoother and more damped
steering response. While the NMPC produces another
aggressive reference, the Fuzzy-PID for the EPS
response slightly slower resulting less overshoot with
similar output results. The smoothing effect is
beneficial from a practical standpoint, as it reduces
mechanical stress on the steering actuator. Once again,
despite the small difference between the reference and
the EPS steering angle, the EPS output still remains
within the NMPC’s imposed steering constraint and
doesn’t produce significant tracking errors. This is also
confirmed by the previous lateral and yaw angle
deviations shown in Figure 8. and Figure 9.
Respectively. Overall, the steering results demonstrate
another effective coordination between the NMPC and
the Fuzzy-PID controller. The combination leads to
stable and accurate path tracking, with the NMPC
providing predictive steering command reference and
the Fuzzy-PID controller ensures smooth, physically
realizable actuation behaviour even when encountering
non-smooth waypoints transitions.
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Fig. 12. Spiral down track battery state of charge

Figure 12. illustrates the battery SOC
throughout the downhill track of the simulation.
Although the absolute change in the battery’s SOC is
relatively small, the curve indicates a gradual increase
in stored energy due to the activation of regenerative
braking during the descent. Over 220 seconds of
downhill, the SOC rises by approximately 0.0025%
relative to its initial state. Based on the battery’s
nominal capacity and voltage parameters, this amount
is equivalent to around 40 Wh of energy. While the
value may appear small, it is physically consistent with
the limited length of the simulation and the gradient of
the slope used on the track in the scenario.

It is important to note that in this research, the
model only monitor the charging aspect of the battery
and ignore any discharge activity. This assumption
allows the SOC curve to represent only the recovered
energy, without the cofounding effect of other devices
energy draw. As such, the SOC profile shown on
Figure 10. should be interpreted as the maximum
possible recovery within the defined scenario. Another
important note is the integration of mechanical brake
has not yet been done in this research. Overall, the soc
behaviour confirms that the system responds
appropriately to downhill disturbance by converting
excess mechanical energy from the motor into stored
electrical energy.

B. U-Turn Ramp Track
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Fig. 13. U-turn ramp track preview
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Fig. 14. U-turn ramp track longitudinal speed

For the second experiment, a U-turn
combined with a ramp will be used. The track starts
and ends with a 500 m straight road as shown in Figure
10. while the turn is half a circle with a radius of 500
m. Both of the ramps will have a length of 500 m and
a slope of 2.86°. The car will try to maintain a constant
speed of 13.88 m/s or equivalent to 50 km/h from start
until finish. This will highlight both the dynamic of
going uphill and downhill while also doing a turn.
Figure 14. shows the longitudinal speed for the U-turn
ramp track, where the speed reach around 13.88 m/s
on steady-state which is equivalent to 50 km/h. There
are one overshoot and 4 small bumps observed from
the simulation result. First is the same during the initial
acceleration with a peak value of around 9% before
settling. The four overshoots occurs when the car starts
and finish going through both downhill and uphill
before settling again. This overshoot might be caused
by the sudden change of road gradients. The negative
small bumps indicate the car slows down, the first
small bump is when the car is going uphill and the
second one is when the car trying to slow down after
going downhill. In the contrast, the positive bumps
indicate the cars speeds up due to the change of road
gradient, first is after finishing the uphill and later after
entering downhill motion. This shows the controller
able to counter the effect of road gradients with small
errors.

Lateral Deviation
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Fig. 15. U-turn ramp track lateral deviation
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Fig. 16 U-turn ramp track yaw angle deviation
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Fig. 17. U-turn ramp track acceleration tracking control

The deviations from Figure 15. and Figure 16.
shows the car going through the U-turn segment.
Similar spikes show at the start and the end of the turn
which can be seen on Figure 8. And Figure 9. before.
This is the effect of the non-smooth trajectory
generated for the turning motion. Though the
deviations are short lived and quickly corrected by the
controller. The acceleration tracking for this track is
shown in Figure 17. The cars acceleration shows the
same profile as the longitudinal speed on Figure 14.
There are four bumps each when starting and finishing
both downhill and uphill motion. The control scheme
still manages to track the acceleration even on the
present of the uphill motion. Lastly, the controller also
manages to track the cars steering before and after

going through an uphill and downhill motion as shown
in Figure 18.
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Fig. 18. U-turn ramp track steering tracking control

IV. CONCLUSION

The hierarchical control scheme—comprising an
NMPC high-level planner and Fuzzy-PID low-level
actuator controller—successfully maintained vehicle
stability through both speed and steering control even
under the presence of disturbance such as curving road,
uphill road and downhill road. The Fuzzy-PID manages
to damp the overshoot generated from NMPC setpoint
reference which is likely caused by non-smooth
waypoint generation and the absence of actuator
dynamics on the NMPC model. The motor is also able
to generate a small amount of charge which is 0.0025%
or equivalent to 40 Wh. Overall, the results show
effective coordination between the NMPC and the
Fuzzy-PID. Future work should focus on optimizing
waypoint generation for low-jerk trajectories and
incorporating actuator dynamics into the NMPC model.
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