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Abstract— Countries around the world have roads that 

go through mountains and hills. These roads can have 

features such as winding and change of elevation. When 

passing through such roads, the car’s dynamics are 

influenced by the unknown elevations and curvatures, 

which can threaten stability if not properly controlled. 

The purpose of this research is to control the cars 

longitudinal speed through acceleration, braking through 

regenerative braking and maintain lateral control 

through steering inputs. The proposed hierarchical 

control scheme consists of a high-level predictive 

controller which predicts the car’s dynamics under 

varying road condition and a low-level Fuzzy-PID 

controller for the actuators, which is motor driver and 

electric power steering (EPS). Additionally, the energy 

recovery from   the regenerative braking system is 

monitored to evaluate its impact on battery state of 

charge, especially when the car is slowing down or going 

through downhill roads. The control system proposed 

aims to maintain speed and steering stability under 

varying road conditions and improve energy efficiency. 

The simulation will be done using MATLAB and the car 

will go through a spiral down track and a U-turn ramp 

track. The proposed controller manages to track both the 

cars speed and acceleration under the present of roads 

curvature and downhill disturbance. The Fuzzy-PID also 

manage to track the reference generated by the NMPC 

with a slightly damped response. For the battery state of 

charge (SOC) there is a rise of 0.0025% or equivalent to 

40 Wh generated from regenerative braking. 

Index Terms—Autonomous Car; Fuzzy-PID;  

Predictive Control; Regenerative Braking 

I. INTRODUCTION 

     An autonomous car is a vehicle that can operate on 

its own without human intervention. The purpose of 

autonomous car control research is mainly based on 

speed, which focuses on longitudinal dynamics and 

steering control for lateral dynamics. With the growing 

shift to electric motors and battery-powered systems 

for cars, more methods are developed for utilizing the 

motor’s excessive mechanical energy by converting it 

back into electrical energy. This method is called 

regenerative braking and helps recharge the car’s 

battery during deceleration[1], [2], [3]. 

    The research on autonomous car control has been 

ongoing for quite a while now. In [4], an adaptive 

cruise control (ACC) combined with regenerative 

braking which uses two-layer control is developed. The 

first control layer consists of an adaptive fuzzy sliding 

mode control (AFSMC) and a low-level control brake 

system distribution control, mainly to manage force 

distribution between mechanical and regenerative 

brake. The proposed method is capable of accurately 

tracking the vehicle speed under various road 

conditions, including wet and dry surfaces. 

    In [5], the research aims to maintain stability with a 

combination of both mechanical and regenerative 

brakes. The proposed controller is a PI controller 

which output controls determine the ratio between 

mechanical and regenerative brake used when slowing 

down. Though this research only focuses on junction 

type roads. In [6], a sliding mode control (SMC) 

combined with performance guarantee (PG) was 

proposed to control the vehicles speed and steering. 

The PG method aims to keep the vehicle’s state errors 

to converge to zero while constraining it within the 

determined limit. However, these studies have yet 

integrated all three elements of speed, steering and 

braking. Therefore, this study aims to fill that gap by 

combining these three elements. 

    Model predictive control (MPC) and its nonlinear 

variants (NMPC) have been applied extensively to 

vehicle steering, longitudinal control and integrated 

braking problems; [7] developed a robust predictive 

control of an autonomous car steering system for path-

tracking using LMI optimization with independent 

constraints enforcement. Applications of NMPC for 

collision avoidance path planning and tracking control 

for autonomous vehicles have been demonstrated in 

[8]. Regenerative and mechanical brake integration 

have also been approached with predictive control for 

performance and energy recovery[9]. Fuzzy–PID and 

adaptive fuzzy controllers are widely used at actuator 

level to handle nonlinearities and reduce transient 

overshoot[10]. Finally, open-source toolchains 

(CasADi, IPOPT) and commercial environments 

(MATLAB/Simulink) are commonly used to 
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implement and test NMPC and the lower-level 

controllers used here[11], [12], [13]. 

    In this work, we propose a hierarchical control 

scheme that consist of a high-level predictive control 

focusing on steering and speed control combined with 

a low-level Fuzzy-PID for the actuators control. The 

predictive control aims to achieve stability especially 

when moving through uphill, downhill, and winding 

roads while the Fuzzy-PID ensures smooth and precise 

actuation. When the car is slowing down, energy 

recovery generated from the regenerative braking and 

its impact on battery state of charge will also be 

monitored. 

    This paper is organized as follows: Section I outlines 

the background and other research related to 

autonomous car control. Section II describes the car 

mathematical model and the proposed controller 

design. Section III discusses the simulation result, 

focusing on the car’s acceleration and steering control 

inputs, key state parameters and energy recovery via 

regenerative braking. Section IV contains the summary 

and conclusion of our research, while also providing 

direction for future work. 

II. METHODOLOGY 

A. Car Dynamic and Kinematic Model 

The model provided by [14] captures both the 

longitudinal and the lateral dynamics, in addition a 

lateral and yaw angle error will be added to the model. 

The states will be formulated as follows: 

 𝑥 = [𝑣̇𝑥, 𝑣𝑥 , 𝑣𝑦 , 𝜃̇, 𝑒1, 𝑒2, 𝑥𝑜𝑑]
𝑇

, 𝑢 = [𝑎, 𝛿]𝑇 (1) 

 𝑦 = [𝑣𝑥 , 𝑒1, 𝑒2 + 𝑥𝑜𝑑]𝑇 (2) 

where 𝑥1 = 𝑣̇𝑥 is the longitudinal acceleration; 𝑥2 =
𝑣𝑥 is the longitudinal speed; 𝑥3 = 𝑣𝑦  is the lateral 

speed; 𝑥4 = 𝜃̇ is the car yaw angle speed; 𝑥5 = 𝑒1 is 

the lateral deviation; 𝑥6 = 𝑒2 is the relative yaw angle; 

and 𝑥7 = 𝑥𝑜𝑑  is the longitudinal deviation. For the 

control input 𝑢1 = 𝑎 and 𝑢2 = 𝛿 are the car 

acceleration and steering respectively.  

The car’s longitudinal dynamic is simplified as a 

first order model, while the lateral dynamic model will 

contain some nonlinearities affected by the 

longitudinal speed. The model is described as follows: 

 𝑥̇1 =
1

𝜏
(−𝑥1 + 𝑢1 + 𝑑1)  (3) 

 𝑥̇2 = 𝑥1 + 𝑥3𝑥4  (4) 

 𝑥̇3 =
1

𝑚
(𝐹𝑦12 + 𝐹𝑦34) − 𝑥2𝑥4 (5) 

 𝑥̇4 =
1

𝐼𝑧
(𝑙𝑓𝐹𝑦12 − 𝑙𝑟𝐹𝑦34) (6) 

The cars mass and inertia are respectively 𝑚 and 𝐼𝑧. 

The cars time constant is denoted as 𝜏. The lateral tire 

forces are denoted as 𝐹𝑦, where subscripts 1,2 refer to 

the front tire and 3,4 the rear tire. The tire forces for the 

front side will be considered equal on both side, this 

also apply to the rear side. The car wheels distance 

from the center gravity are 𝑙𝑓 for the front wheels and 

𝑙𝑟  for the rear wheels. 

 𝐹𝑦12 = 𝑢2 − 𝐶𝑎𝑓
𝑥3+𝑙𝑓𝑥4

𝑥1
 (7) 

 𝐹𝑦34 = −𝐶𝑎𝑟
𝑥3−𝑙𝑟𝑥4

𝑥1
 (8) 

 The wheels cornering stiffness are denoted as 𝐶𝑎, 
where the subscripts 𝑓, 𝑟 refer to the front and rear tires. 
The error model for both lateral and yaw angle 
deviation are defined accordingly: 

 𝑥̇5 = 𝑥3 + 𝑥2𝑥6 (9) 

 𝑥̇6 = 𝑥4 − 𝑥2𝜌 (10) 

the disturbance term 𝑑1 represents the roads gradient 

on the longitudinal axis, while 𝜌 denotes the road’s 

curvature value. Finally, the car kinematics will be 

captured with the bicycle model as follows: 

 [

𝑥̇
𝑦̇

𝜃̇

] = [

𝑣 cos 𝜃
𝑣 sin 𝜃
𝑣

𝐿
tan 𝛿

]  (11) 

Where 𝜃 is the car yaw angle, 𝛿 is the steering angle, 𝑣 
is the car speed and 𝐿 is the distance between the front 
and back wheel. 

B. Nonlinear Model Predictive Control 

Model Predictive Control is a feedback digital 

feedback control method with the ability to predict the 

system’s output within the desired horizon. This 

prediction is calculated virtually inside the controller 

based on the system mathematical model and the 

control output then produced through cost function 

calculations[15]. Refer to [16], [17] for general MPC 

references for theory and design.  

 

Fig. 1 Nonlinear predictive control scheme 

For Nonlinear Model Predictive Control (NMPC), the 

system model is formulated as: 

 𝑥+ = 𝑓(𝑥, 𝑢) (12) 

where 𝑓 is the nonlinear function of the model with 

state 𝑥 and input 𝑢 while 𝑥+ indicates the future state 

value. The predicted state 𝑥𝑢 can be obtained by 

iterating equation (14) between the horizon N. 

 𝑥𝑢(0) = 𝑥(𝑛) (13) 

 𝑥𝑢(𝑘 + 1) = 𝑓(𝑥𝑢(𝑘), 𝑢(𝑘)), 𝑘 = 0, … , 𝑁 − 1 (14) 

The control value obtained from the state 𝑥𝑢 is then 
calculated through a cost function formulated as 
follows: 

 𝐽(𝑥(𝑛), 𝑢(𝑛)) = ∑ ‖𝑥𝑢(𝑘)‖2 + 𝜆‖𝑢(𝑘)‖2𝑁−1
𝑘=0 (15) 

where 𝜆 is a weighing value for smooth control 
command. Constraints can also be used to describe 
practical hardware limitations. This ensures the optimal 
control generated by the NMPC is feasible for physical 
realization. Lastly, the NMPC produce the control 
sequences necessary based on the prediction 𝑁 for 
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every time interval[18]. The NMPC will act as a high- 
level controller and generate a reference for the 
actuators to track on. 

C. Fuzzy-PID 

Nonlinearities on practical dynamic systems limit 

the peformance of a regular PID controllers. Therefore, 

a PID control can be combined with a fuzzy control 

scheme to overcome this nonliearities. The gains 

𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 combined with fuzzy logic can now vary 

depending on the error and error rate of the system[10].  

 

Fig. 2 Example of Fuzzy-PID control scheme 

The three main stages of Fuzzy-PID 

implemantation are; fuzzification, where the error data 

(typically error and error rate) are mapped into fuzzy 

sets through the use of membership functions; fuzzy 

inference, where  a rule base system combines the 

inputs to calculate the fuzzy control values; 

defuzzification, which converts the fuzzy control back 

to a crisp tuning of PID gains for final control 

calculation[19]. The Fuzzy-PID will be in charge of 

controlling the low-level actuators which are the motor 

drive for the car speed control and the electric power 

steering (EPS) for the car steering control. 

 

 

Fig. 3 Input Membership Function Structure Example 

 

Fig. 4 Output Membership Function Structure Example 

For this Fuzzy-PID controller, identical fuzzy 

membership functions is applied for all PID gain 

components. Specifically, the membership functions 

associated with the proportional, integral, and 

derivative gains are defined with the same number of 

linguistic terms, uniform widths, and symmetric 

distributions. This design choice is adopted to maintain 

consistency of the actuator control and reduce tuning 

complexity. An example of the input membership 

functions can be seen in Figure 3. which contains five 

overlapping fuzzy sets, namely Negative Big (NB), 

Negative small (NS), Zero (Z), Positive Small (PS), 

and Positive Big (PB). The same is also applied to the 

output membership functions shown in Figure 4. Even 

though the membership functions show similarity, 

there is a key difference which is the variable range. 

The input variables (actuators error and error rate) are 

normalized over the range of [−1,1], this allows the 

Fuzzy-PID to process both positive and negative error 

values. In contrast the fuzzy outputs represent scaling 

factors for the PID gains and constrained to the interval 

of [0,1], this allows a simpler tuning for each gain 

since the main proportional, integral and derivatives 

gain are outside the fuzzy membership functions. The 

rule sets for each gain are shown on Table 1-3. 

 

TABLE I.  PROPORTIONAL GAIN (KP) RULE SET 

de/e NB NS Z PS PB 

NB PB PS Z NS NB 

NS PS PS Z NS NS 

Z Z Z Z Z Z 

PS NS NS Z PS PS 

PB NB NS Z PS PB 

 

TABLE II.  INTEGRAL GAIN (KI) RULE SET 

de/e NB NS Z PS PB 

NB NB NB NB Z Z 

NS NB NS Z PS Z 

Z NS Z Z Z PS 

PS Z PS Z PS PB 

PB Z Z PS PB PB 

 

TABLE III.  DERIVATIVE GAIN (KD) RULE SET 

de/e NB NS Z PS PB 

NB NS Z PS PB PB 

NS Z PS PS PB PB 

Z PS PB Z PS PB 

PS PB PB NS Z PS 

PB PB PB NS Z NS 

TABLE IV.  ACTUATOR FUZZ-PID GAINS 

Gain Motor Drive EPS 

Kp 5 15 

Ki 1 5 

Kd 1 4 
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D. Energy Recovery 

Regenerative braking will be used as the main source 

of the battery energy recovery. During the regenerative 

braking the motor will act as a generator, excess kinetic 

energy will be converted back into electrical energy 

through electromagnetic torque. The motor in this 

research will be used for both propulsion and 

regenerative braking. Therefore, a condition is needed 

to distinguish propulsion mode and regenerative 

braking mode. For propulsion mode the conditions are: 

 𝑇𝑚 < 𝑇𝑒  𝑎𝑛𝑑 𝐼𝑚 > 0  (16) 

and for generator mode: 

 𝑇𝑚 > 𝑇𝑒  𝑎𝑛𝑑 𝐼𝑚 < 0 (17) 

The electrical and mechanical torque of the motor are 

denoted as 𝑇𝑚 and 𝑇𝑒, while 𝐼𝑚 is the motor current. 

When these conditions are met the battery will be 

allowed to charge. The battery will only be monitored 

on charging mode, so the system will be modelled as 

follows: 

 𝑃𝑏 = 𝜂𝑚𝜂𝑝𝑇𝑚𝜔𝑚 (18) 

and the state of charge (SOC) is modelled as follows: 

 
𝑑

𝑑𝑡
(𝑆𝑂𝐶) = −𝜂𝑏𝑐ℎ𝑔

𝐼

𝑄𝑏
 (19) 

 𝐼 =
𝑉𝑜𝑐−√𝑉𝑜𝑐

2 −4𝑅𝑖𝑛𝑡𝑃𝑏

2𝑅𝑖𝑛𝑡
 (20) 

Where 𝜂𝑚,𝜂𝑝,𝜂𝑏𝑐ℎ𝑔 are respectively the efficiency of 

the motor, electrical circuit and battery charging. The 

motor torque and speed are denoted as 𝑇𝑚 and 𝜔𝑚, the 

battery voltage is 𝑉𝑜𝑐 , the battery internal resistance is 

𝑅𝑖𝑛𝑡 and 𝑄𝑏  is the battery capacity[4, 20]. 

 

III. RESULTS AND DISCUSSION 

The simulations are carried out in MATLAB, where 

the main focus will be steering and speed control. 

Energy regeneration will also be monitored due to the 

car slowing down on the downhill road. The track used 

for simulation will be a downward circle track and U-

turn ramp, which will capture both the steering and the 

disturbance produced by the change of gradient and 

curving roads. The car system and hierarchical control 

scheme for the simulation will be constructed as in 

Figure 5, where the NMPC will act as high-level 

planner and the Fuzzy-PID will control both the motor 

and steering actuator. Afterward the output generated 

by both actuators will be fed into the car model. 

 

Fig. 5. System block diagram 

The sampling time for the NMPC will be 0.1 

seconds. The prediction horizon of the NMPC is set to 

10 steps ahead and the control horizon 2 steps ahead. 

There are also some constraints given for the speed 

(21) and steering control (22) reference that will be 

given to the actuators as follows: 

 −3 < 𝑎 < 3 (m/s) (21) 

 −0.5 < 𝛿 < 0.5 (rad) (22) 

The acceleration constraints represent typical 

passenger-vehicle acceleration and deacceleration 

capability without requiring extreme actuator effort. 

This range also allows normal and reasonably 

aggressive speed changes. The steering angle 

constraint refers to the front-wheel steering angle, 

which is a typical front wheel turning angle. The 

battery internal circuit will also be considered ideal so 

the heat generated from it won’t affect the battery 

charging. This assumption helps simplify modelling 

and reduce computational complexity. Conditions (17) 

will be used as a basic ON-OFF trigger for charging 

the battery. Some of the parameters used on the 

simulation are mentioned in Table 5 and Table 6. 

 

TABLE V.  CAR PARAMETERS 

Parameter Value 

Mass (𝑚) 1575 (𝑘𝑔) 

Moment of inertia (𝐼𝑧) 2875 (𝑘𝑔. 𝑚2) 

Front wheels distance (𝐿𝑓) 1.2 (𝑚) 

Rear wheels distance (𝐿𝑟) 1.6 (𝑚) 

Front wheels cornering 

stiffness (𝐶𝑎𝑓) 
19000 (𝑁/𝑟𝑎𝑑) 

Rear wheels cornering 

stiffness (𝐶𝑎𝑟) 
33000 (𝑁/𝑟𝑎𝑑) 

Time constant (𝜏) 0.2 (𝑠) 

 

TABLE VI.  BATTERY PARAMETERS 

Parameter Value 

Motor efficiency 0.85 

Circuit efficiency 0.96 

Battery efficiency 0.9 

Battery voltage 60% 

Battery Capacity 18 𝑘𝑊ℎ 

Internal resistance 0.025 (Ω) 
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A. Spiral Down Track 

 

Fig. 6. Spiral down track preview 

The track starts with a 250 m straight road as shown in 

Figure 6. then circling down on a track with 250 m 

radius. The starting height will be 150 m therefore the 

car will be going downhill with a slope of 2.7°. The car 

will try to maintain a constant speed of 8.33 m/s or 

equivalent to 30 km/h from start until going downhill 

while doing a turn. The simulation ends after going 

through a full circular track.   

 

Fig. 7. Spiral down track longitudinal speed 

 

Fig. 8. Spiral down track lateral deviations 

Figure 7. presents the car longitudinal speed, 

where the speed reach around 8.33 m/s on steady-state 

which is equivalent to 30 km/h. There are two 

overshoots observed from the simulation result. First is 

during the initial acceleration with a peak value of 

around 9% before settling. This can be caused by a 

small lag between the actuator’s responses and the 

NMPC reference. Integrating the actuator dynamic 

directly might solved this problem, but the low-level 

control contains a Fuzzy-PID. Therefore, a new 

problem arises to integrate the low-level control loop 

into the NMPC.  

The second overshoot occurs when the car 

starts to turn after going straight for 250 m with a peak 

value of around 5% before settling again. This 

overshoot might be caused by the combination of both 

the road turning and going downward happening at the 

same time. The lack of smoothness generated from the 

track waypoints also affects the transient response of 

the system, causing some minor overshoot along the 

way.  

Figure 8. presents both the lateral deviation 

throughout the motion. At the start of the turn, the 

lateral deviation shows a brief negative spike, which 

indicates that the vehicle initially drifts slightly toward 

the inside of the curve. This spike is short-lived and is 

corrected rapidly, the controller brings the deviation 

back toward zero within around 10 seconds. Such 

behaviour typically arises from curvature changes. The 

swift return to near-zero value suggest that the 

controller maintains stability even under the presents 

of disturbance. 

 

Fig. 9. Spiral down track yaw angle deviations 

The yaw angle deviation plot from Figure 9. 

shows a small but consistent offset between the 

vehicle’s heading and the tangent direction of the track. 

This indicates that the vehicle follows a slightly 

different curvature than the reference arc. Even so, the 

deviation remains very small around the order of 10−3 

rad, meaning the vehicle’s trajectory is effectively 

parallel to the desired path with only a negligible 

angular error.  

Together, the lateral and yaw angle responses 

demonstrate that while the vehicle temporarily 

experiences a small disturbance at the start of the turn, 

the controller quickly stabilizes the motion and 

preserves accurate path following. The magnitude of 

both deviations is extremely small, showing that the 

proposed controller is capable of maintaining smooth 
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and stable lateral behaviour even in the present of 

curvature changes and under the influence of other 

external factors such as roadway slope. 

 

Fig. 10. Spiral down track motor acceleration tracking control 

Figure 10. compares the acceleration 

reference generated from the NMPC (blue line) with 

the actual acceleration generated by the motor 

controlled with the Fuzzy-PID (orange-dashed line). 

The results show that the proposed inner-loop 

controller is able to track the NMPC reference 

acceleration with good fidelity, particularly once the 

acceleration reaches steady-state. During the transient 

phase, small differences between the reference signal 

and the actuator response are noticeable. These 

deviations occur primarily during two key periods: the 

initial acceleration to the desired speed and when the 

car start going through a downhill. 

At the beginning of the motion, the NMPC 

demands a relatively high positive acceleration to 

rapidly bring the vehicle up to the target reference 

speed. This aggressive command is expected, as the 

NMPC optimizes speed tracking while respecting the 

system’s constraints. In contrast, the Fuzzy-PID 

controller damps out excessive acceleration, which 

result in slightly slower rise in acceleration. Despite 

this small difference, the vehicle still reaches the 

desired velocity with minimal overshoot, as confirmed 

earlier in Figure 5. A similar behaviour occurs when 

the vehicle goes through a downhill. The NMPC 

lowers the reference by providing negative 

acceleration to maintain the desired speed under the 

effect of the road gradient. The Fuzzy-PID controller 

once again produce a slightly damped output. Even so, 

the difference remains small and the actuator 

consistently converges toward the NMPC output 

reference once it reaches steady-state. 

The close alignment between the two 

responses in the steady-state region demonstrates 

effective coordination between the high-level NMPC 

and the low-level Fuzzy-PID control. The small 

transient difference does not translate into notable 

speed tracking errors, indicating that the combined 

control structure is able to overcome minor delays. In 

practice, this behaviour is desirable because it prevents 

excessive torque application, reduces mechanical 

stress on drivetrain components, and enhances ride 

comfort. 

 

Fig. 11. Spiral down track electric power steering tracking control 

The comparison between the NMPC 

reference (blue line) and the Fuzzy-PID controlled EPS 

is shown in Figure 11. Both signals converge to a 

steady-state value of approximately 0.015 rad, which 

is consistent with the curvature required to follow the 

reference turn. Although the final values match 

closely, several important transient characteristics can 

be observed during the motion. As the vehicle 

approaches the start of the turn, the steering reference 

generated by the NMPC contains another brief 

overshoot, similar to the phenomenon can be seen in 

the motor acceleration response in Figure 10.  

On the actuator side, the Fuzzy-PID controller 

once again outputs a smoother and more damped 

steering response. While the NMPC produces another 

aggressive reference, the Fuzzy-PID for the EPS 

response slightly slower resulting less overshoot with 

similar output results. The smoothing effect is 

beneficial from a practical standpoint, as it reduces 

mechanical stress on the steering actuator. Once again, 

despite the small difference between the reference and 

the EPS steering angle, the EPS output still remains 

within the NMPC’s imposed steering constraint and 

doesn’t produce significant tracking errors. This is also 

confirmed by the previous lateral and yaw angle 

deviations shown in Figure 8. and Figure 9. 

Respectively. Overall, the steering results demonstrate 

another effective coordination between the NMPC and 

the Fuzzy-PID controller. The combination leads to 

stable and accurate path tracking, with the NMPC 

providing predictive steering command reference and 

the Fuzzy-PID controller ensures smooth, physically 

realizable actuation behaviour even when encountering 

non-smooth waypoints transitions. 
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Fig. 12. Spiral down track battery state of charge 

Figure 12. illustrates the battery SOC 

throughout the downhill track of the simulation. 

Although the absolute change in the battery’s SOC is 

relatively small, the curve indicates a gradual increase 

in stored energy due to the activation of regenerative 

braking during the descent. Over 220 seconds of 

downhill, the SOC rises by approximately 0.0025% 

relative to its initial state. Based on the battery’s 

nominal capacity and voltage parameters, this amount 

is equivalent to around 40 Wh of energy. While the 

value may appear small, it is physically consistent with 

the limited length of the simulation and the gradient of 

the slope used on the track in the scenario. 

It is important to note that in this research, the 

model only monitor the charging aspect of the battery 

and ignore any discharge activity. This assumption 

allows the SOC curve to represent only the recovered 

energy, without the cofounding effect of other devices 

energy draw. As such, the SOC profile shown on 

Figure 10. should be interpreted as the maximum 

possible recovery within the defined scenario. Another 

important note is the integration of mechanical brake 

has not yet been done in this research. Overall, the soc 

behaviour confirms that the system responds 

appropriately to downhill disturbance by converting 

excess mechanical energy from the motor into stored 

electrical energy. 

B. U-Turn Ramp Track 

 

Fig. 13. U-turn ramp track preview 

 

Fig. 14. U-turn ramp track longitudinal speed 

 For the second experiment, a U-turn 

combined with a ramp will be used. The track starts 

and ends with a 500 m straight road as shown in Figure 

10. while the turn is half a circle with a radius of 500 

m. Both of the ramps will have a length of 500 m and 

a slope of 2.86°. The car will try to maintain a constant 

speed of 13.88 m/s or equivalent to 50 km/h from start 

until finish. This will highlight both the dynamic of 

going uphill and downhill while also doing a turn. 

Figure 14. shows the longitudinal speed for the U-turn 

ramp track, where the speed reach around 13.88 m/s 

on steady-state which is equivalent to 50 km/h. There 

are one overshoot and 4 small bumps observed from 

the simulation result. First is the same during the initial 

acceleration with a peak value of around 9% before 

settling. The four overshoots occurs when the car starts 

and finish going through both downhill and uphill 

before settling again. This overshoot might be caused 

by the sudden change of road gradients. The negative 

small bumps indicate the car slows down, the first 

small bump is when the car is going uphill and the 

second one is when the car trying to slow down after 

going downhill. In the contrast, the positive bumps 

indicate the cars speeds up due to the change of road 

gradient, first is after finishing the uphill and later after 

entering downhill motion. This shows the controller 

able to counter the effect of road gradients with small 

errors. 

 

 

Fig. 15. U-turn ramp track lateral deviation 
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Fig. 16 U-turn ramp track yaw angle deviation  

 

Fig. 17. U-turn ramp track acceleration tracking control 

The deviations from Figure 15. and Figure 16. 

shows the car going through the U-turn segment. 

Similar spikes show at the start and the end of the turn 

which can be seen on Figure 8. And Figure 9. before. 

This is the effect of the non-smooth trajectory 

generated for the turning motion. Though the 

deviations are short lived and quickly corrected by the 

controller. The acceleration tracking for this track is 

shown in Figure 17. The cars acceleration shows the 

same profile as the longitudinal speed on Figure 14. 

There are four bumps each when starting and finishing 

both downhill and uphill motion. The control scheme 

still manages to track the acceleration even on the 

present of the uphill motion. Lastly, the controller also 

manages to track the cars steering before and after 

going through an uphill and downhill motion as shown 

in Figure 18.  

 

Fig. 18. U-turn ramp track steering tracking control 

IV. CONCLUSION 

The hierarchical control scheme—comprising an 
NMPC high-level planner and Fuzzy-PID low-level 
actuator controller—successfully maintained vehicle 
stability through both speed and steering control even 
under the presence of disturbance such as curving road, 
uphill road and downhill road. The Fuzzy-PID manages 
to damp the overshoot generated from NMPC setpoint 
reference which is likely caused by non-smooth 
waypoint generation and the absence of actuator 
dynamics on the NMPC model. The motor is also able 
to generate a small amount of charge which is 0.0025% 
or equivalent to 40 Wh. Overall, the results show 
effective coordination between the NMPC and the 
Fuzzy-PID. Future work should focus on optimizing 
waypoint generation for low-jerk trajectories and 
incorporating actuator dynamics into the NMPC model. 
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