Emotion Recognition using Convolutional Neural Network in Virtual Meeting Environment
Abstract
This study is done in order to propose an Emotion Recognition System that uses Convolutional Neural Network in a Virtual Meeting Environment to detect non-verbal feedback that emerge when communicating. This study starts with the training process of the CNN model with version 2.3.0 of tensorflow-gpu library, along with FER-2013 dataset, where only 80% of the data is used as the training set, and the other 20% is used as the test set. The model is trained for 430 epochs that results in 73.86% rate of accuracy with a loss of 1.42. In the classification process, a Haar-Cascade Classifier algorithm is used to detect faces within an image that has been inputted using OpenCV. Next the already developed model is used to predict the image that has been pre-processed. Based on the results shown, it can be concluded that the study has provided satisfactory results and is expected to help in understanding non-verbal input given when communicating and among other various things.
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMA Computing or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.