Solar Radiation Intensity Imputation in Pyranometer of Automatic Weather Station Based on Long Short Term Memory
Abstract
Automatic Weather Station (AWS) experienced problems in the form of component damage and communication system failure, resulting in incomplete parameter data. Component damage also occurs in pyranometers. Decreased pyranometer performance results in deviations, uncertainty in measuring solar radiation intensity, and data gaps. Data imputation is one solution to minimize measurement deviations and the occurrence of missing AWS pyranometer data. This research aims to design and analyze the accuracy performance of the multisite AWS pyranometer solar radiation intensity data imputation model when a data gap occurs. This research attempts to utilize the spatio-temporal relationship of multisite AWS solar radiation intensity in the imputation model. Long-Short Term Memory (LSTM) algorithm is used as an estimator in the multisite AWS pyranometer network. Data imputation modeling stage includes data collection, data pre-processing, creating missing data scenarios, LSTM design and model testing. Overall, LSTM-based imputation model has ability of filling gap data on AWS Cikancung pyranometer with maximum missing sequence of 12 hours. Imputation model has MAPE 1.76% - 5.26% for missing duration 30 minutes-12 hours. It still it meet WMO requirement for solar radiation intensity measurement with MAPE<8%.
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMA Computing or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.