Pengenalan Finger Vein Menggunakan Local Line Binary Pattern dan Learning Vector Quantization
Abstract
This research proposes finger vein recognition system using Local Line Binary Pattern (LLBP) method and Learning Vector Quantization (LVQ). LLBP is is the advanced feature extraction method of Local Binary Pattern (LBP) method that uses a combination of binary values from neighborhood pixels to form features of an image. The straight-line shape of LLBP can extract robust features from the images with unclear veins, it is more suitable to capture the pattern of vein in finger vein image. At the recognition stage, LVQ is used as a classification method to improve recognition accuracy, which has been shown in earlier studies to show better results than other classifier methods. The three main stages in this research are preprocessing, feature extraction using LLBP method and recognition using LVQ. The proposed methodology has been tested on the SDUMLA-HMT finger vein image database from Shandong University. The experiment shows that the proposed methodology can achieve accuracy up to 90%.
Index Terms—finger vein recognition, Learning Vector Quantization, LLBP, Local Line Binary Pattern, LVQ.
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMA Computing or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.