Pengenalan Tulisan Tangan Offline Dengan Algoritma Generalized Hough Transform dan Backpropagation
Abstract
Offline handwriting recognition is a technique used to recognize handwriting in paper document which converting it to digital form. Each handwriting has a unique style and shape that can be used to identify the owner. This research aims to develop a method to recognize the digital data handwriting. The method combines two algorithms; the first is Generalized Hough Transform in feature extraction process to detect arbitrary objects on the image; the second algorithm is Backpropagation to train the neural network based on feature values from feature extraction process. Artificial Neural Network (ANN) is used to improve the accuracy of the recognition system. The experiments are performed by using 100 handwriting images of 10 different people. The number of hidden units is defined through experiment to obtain optimal neural network. The experiment result shows that the recognition accuracy is up to 80%.
Index Terms—Artificial Neural Network, Backrpopagation, Generalized Hough Transform, Offline handwiritng recognition
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMA Computing or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.