
 

 

 

 

101 Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021 

 

ISSN 2085-4552 

FastText Word Embedding and Random Forest 

Classifier for User Feedback Sentiment 

Classification in Bahasa Indonesia 

Yehezkiel Gunawan1, Julio Christian Young2, Andre Rusli3 

Department of Informatics, Multimedia Nusantara University, Tangerang, Indonesia 

1yehezkiel.gunawan@student.umn.ac.id, 2julio.christian@umn.ac.id, 3andre.rusli@lecturer.umn.ac.id 

 

Accepted 14 June 2021 

Approved 18 June 2021 

 
Abstract— User feedback nowadays become a platform 

for software developer to identify and understand user 

requirements, preferences, and user’s complaints. It is 

important for the developer to identify the problem that 

exist in user feedback. According to software growth, 

user amount also growth. Read and classify one by one 

manually are wasting time and energy. As the solution 

for the problem, sentiment analysis system using 

Random Forest Classifier which use word embedding as 

the feature extraction is made to help to classify which 

feedback is positive, neutral, or negative. Random 

Forest Algorithm is chosen because it gives the best 

performance, even its need the larger resources. 

Furthermore, with word embedding, the words which 

has semantic or syntactic similarities will be detected. 

Word embedding does not need stemming and stop 

word removal, so the context of the sentences keep 

remains. This research is made to implement word 

embedding to classify sentiment of user feedbacks using 

Random Forest Classifier. 70.27% accuracy, 80% 

precision, 54 recall and 54% F1 score is reached when 

BYU dataset (200 dimension) as embedding dataset with 

the train and test ratio 80:20. 

Index Terms— Bahasa Indonesia, Random Forest, Word 

Embedding, NLP, user feedback 

I. INTRODUCTION 

In software engineering, there is a term called 

‘requirements engineering’. It means a process which 

the requirements for a software are assembled, 

documented, and managed as long as the software 

engineering process [1]. Interpreting and 

understanding the purpose, stakeholder’s requirements 

and trust are the main focus of requirement 

engineering [1].  

It was shown in [2] that nowadays users or clients 

are involved in the software engineering process, so 

the developers will know the needs, preferences, and 

problems which users experienced. Software 

developers must understand the issues or problem that 

appear from the app which they developed, like bugs, 

unwanted feature, and adding the new feature which 

accurate and on time in the future [3]. Users who 

experience some issues when they use an app can send 

some feedbacks that can reflect their experience when 

they use it, then the feedbacks can be considered by 

the developers to improve the app quality [3]. 

When the scope of the application are become 

greater, it is much challenging to identify user 

feedbacks issues [4]. Modern problems require 

modern solutions, so a recommendation system or 

sentiment classification needs to be made regarding to 

the growth of user feedbacks [4]. There are more than 

a hundred or even thousand user feedbacks have been 

sent in one day. Checking users’ comment one by one 

can be exhausting and wasting time. That is the reason 

why automated sentiment analysis is needed to 

analyze and generalize the user’s feedback with the 

sentiment analysis technique. 

A method called CRISTAL is introduced by 

Palomba et al [4] which can detect the impact caused 

by the informative user comment on the changes or 

updates of the app's source code. The research is done 

to determine how impactful the app review on the 

software development process [4]. Its result stated that 

49% of developers will consider the informative user 

comments or feedback for their next updates. It also 

considered very impactfully on the app success 

because the increase of the rating and positive 

feedback from the users directly compared with the 

fulfillment of the requirements based on the user 

review. This result can strengthen the reason why we 

need a system to recommend or classify the user 

feedbacks to help the developer on developing their 

app [4]. 

Sentiment analysis is the process that learn 

people’s opinion, sentiment, emotion, rating, and 

gesture on an entity [5]. There are a lot of activities 

that are related to the sentiment analysis process and 

even harder to separate it because there are a lot of 

aspects, and one of them is sentiment classification. 

Sentiment classification is based on the idea that text 

can be the expression of a person’s opinion on an 

entity and trying to predict what kind of sentiment that 
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can be resulted [6]. Machine learning in general can be 

used to classify the sentiment and give the good 

accuracy. 

As in [7], sentiment analysis is an automated 

process to mine and classify opinion, view, emotion, 

and sentiment from the text dataset which are not 

structured for machine language and computer 

programming. In sentiment classification, text can be 

classified to several labels, for example positive or 

negative. 

Nowadays, people express their opinion with their 

language which tends to be ambiguous and 

complicated words [8]. Commonly, there are related 

words one each other and it often seems similar. To 

help to solve the problem, there is a method called 

word embedding. It is a kind of word representation 

that make the words which have similarity can be 

understood by the machine learning algorithm [9]. 

Technically, the input words will be mapped into 

number vector using neural network, probability 

model, or the dimension reduction on the word co-

occurrence matrix. 

It is stated in [10] that word embedding is 

considered can learn the word vector with high quality 

from a big dataset. Instead of that, the existing 

vocabulary that has been made from the pre-trained 

model of the word embedding also considered 

detecting the word similarity both semantically or 

syntactically. It can help the machine to recognize the 

similarity which exists in the dataset. 

Currently, two big platforms that provide the apps 

choice and review, are Google Playstore and Apple 

Appstore. The user feedback dataset from these 

platforms is considered because when a user wants to 

give some feedback to an app, he or she must have an 

account so it will allow the user to give some review. 

For example, when a person wants to give some 

feedback to an app in Google Playstore or an Apple 

Appstore, so that person must have a Google or Apple 

account to allow him or her to write the feedback on 

their smartphone. Besides that, some developers can 

set the app which they made to allow the user to give 

some review within a certain period, so that can be 

confirmed if the user who gives the feedback is the 

user of the app. 

This research will use word embedding as the 

feature extraction and Random Forest Classifier to 

classify the user feedback’s sentiment. This research 

aims to study, analyze, and implement the Random 

Forest Classifier to analyzing the sentiment of 

application user feedbacks in Bahasa Indonesia. The 

paper is organized as follows. In the following section, 

we review some related works of ours. Then we 

present a brief overview of some research in sentiment 

analysis. 

II. RELATED WORK 

A comparative study has been done by [8] on few 

machine learning algorithms used for classification. 

Those are Naïve Bayes, Max Extropy, Boosted Trees, 

and Random Forest. The result of the research is 

Random Forest has the best performance with the high 

simplicity even it requires more resources. 

Following similar trends, several works of 

literature can also be found working on sentiment 

analysis of documents. However, most of them focus 

on analyzing tweets from Twitter. Like similar 

observation done by Vora, Khara, and Kelkar [9], they 

used different word embedding methods as the feature 

extraction to classify the sentiment of English tweet. 

For the classification algorithm, they used Random 

Forest Classifier. The result shows that when they 

used FastText with 300 dimensions as the feature 

extraction, the accuracy reached 91%. 

Based on those previous works on sentiment 

analysis, natural language processing, and the 

requirements engineering activity in the software 

engineering field, this research focuses on adapting [9] 

research but with different dataset. Our research aims 

to implement FastText and Random Forest Classifier 

to classify the sentiment of application user feedback 

in Bahasa Indonesia and measure the performance. 

III. RESEARCH METHODS 

A. Requirements Engineering 

Requirement engineering is the process of 

gathering, analyze, documenting, and managing the 

requirements needed for software development [1]. It 

always related to determine and understand the 

purpose, requirements, and even what the stakeholder 

trust [1]. 

In requirement engineering, some things need to be 

done, those are feasibility study, finding the 

requirements (gathering information and analyze), 

convert the requirements into the standard or 

specification, and ensure that the requirements are 

based on the user’s need (validation) [11]. In reality, 

this process is iterative and interleaved [11]. 

According to [11], in the requirement gathering 

process, the client is involved to determine the scope 

of the app, what services will exist in the system and 

the operational limits of the system. It may be 

involved the user, manager, engineer, and the people 

who will maintain the system. In all system, the 

requirements can be changed, the people who 

involved, developed a better understanding of what are 

they want in the app when it’s released, like the 

changes on the hardware, software, or the system 

environment [11]. The understanding and control 

process of changes on the system requirement is called 
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requirement management [11]. Besides that, the 

feedback from the user can cause changes to the 

requirements [2]. 

The software development activity [11] is not 

stopped when the software has been released. But it 

continues throughout its lifetime. There are five steps 

of the software lifetime, those are the initial 

development, the software engineer build the first 

version of the app or system, then evolve, the ability 

and functionality of the system are expanded to fulfill 

the user preferences, then servicing, the system is 

fixed from the bug, issues, and update the 

functionality, then phaseout, the system owner decided 

to stop the servicing process and make income from 

the system for a long time, and the last step is 

closedown, the owner takes down the system from the 

market and direct the users to the new system. 

B. Natural Language Processing 

Natural language processing (NLP) is a computer 

science field dealing with human language processing 

in either text or speech [12]. In this research, 

preprocessing of user feedback includes the 

punctuation, remove special character, lowering case, 

and tokenization. All that preprocessing method is 

done by the help of library string and re. 

C. Word Embedding 

It is shown in [13] that the computer can learn the 

character input with feature extraction. Every kind of 

feature is taken from the dataset, then the machine will 

learn it. In this research, the feature which will be 

extracted is the word similarity. 

There is a problem that has to be faced. The 

computer only can read the numbers. If the received 

objects are words, so it needs to be converted into the 

numeric vector which represents each word. Because 

of that, word embedding can be used as a feature 

extraction to learn the similarity between words. It 

uses a neural network model to learn the words [13]. 

Word embedding represent the words into vectors. 

For example, there is the sentence Word Embedding 

are Word Converted into numbers. First, it will make a 

dictionary to contain it, and the dictionary is [Word, 

Embeddings, are, Converted, into, number]. With one-

hot encoding, it will represent the vector where 1 

represent the position of a word. The vector 

representation of word numbers from that example is 

[0,0,0,0,1]. 

This method learns the vector representation of the 

constant vocabulary which exists in the corpus or 

dataset. It also uses neural network model for the task 

like document classification or with unsupervised 

learning using document statistics [13]. In general, 

three common models are often used to do word 

embedding, those are Latent Semantic Analysis 

(LSA), Word2Vec, and GloVe. 

D. FastText 

This research will use FastText as the word 

embedding method. FastText is the library from 

Facebook to do the word embedding method [14]. 

FastText is a newest version from Word2Vec which 

Google made. Actually, both of them can be used to 

determine the word similarity. 

According to the Indonesian Dictionary, semantic 

means the language structure related to the meaning of 

an expression or the structure of the meaning of a talk 

or text. Meanwhile, the syntactic comes from the 

‘syntax’ word adopted in English which is the 

structure or writing. In other words, if there is a word 

similarity syntactically, it means there is a similarity in 

the writing structure. 

The input words will be represented into the vector 

and placed in such a way so the words which have the 

similar meaning will appear close by, meanwhile, the 

opposite will appear far from the vector. The main 

difference between FastText and Word2Vec is 

FastText can process the input words which not exist 

in the vocabulary or out of vocabulary words.  

Like Word2Vec, there is two architecture on 

FastText, those are Continuous Bag of Words 

(CBOW) and Skip-Gram. CBOW predicts the current 

word (as a target) from the context (as an input) 

around it. Meanwhile, the Skip-Gram uses the current 

word (as an input) to predict the context (as a target). 

The visualization of CBOW and Skip-Gram can be 

seen in Fig.1 

 

Fig. 1. The concept of CBOW and Skip-Gram [10] 

In the Fig.2, there is an example which given the 

input words “the best revenge is massive success” and 

there is a forward-backward training with the CBOW 

architecture. Assume that w(t-2) = “the”, w(t-1) = 

“best”, w(t+1) = “is”, w(t+2) = “massive” as input and 

w(t) = “revenge” as target. 
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Fig. 2. Ilustration of forward-backward training CBOW [10] 

[14] said it requires a special dataset to get the 

expected result. [14] makes a term for the dataset 

which used for the training process using FastText as 

an embedding dataset. The embedding dataset trained 

using FastText will produce a vocabulary that consists 

of the vocabs that can be used to detect the word 

similarity. The result of the training of the process can 

be called a pre-trained model. 

 

Fig. 3. Ilustration of forward-backward training Skip-Gram[10] 

 

E. Decision Tree 

Decision Tree is a machine learning method that 

learns and take decision with the functional target that 

has discrete values [15]. This technique can be 

represented with a group of if-then rules so it will be 

understandable. Each tree consist of the leaf and 

branch. Each leaf reflect the group attribute which will 

be classified and each branch represent the values 

which taken by the leaf. 

There are three parts of decision tree like the Fig.4 

[16]. First is the root node which is the first node and 

there is no input branch in this node. The second is 

internal node which has branch, and just has one input 

and minimum two output. The last is leaf node that is 

the node which has just one input and no output. 

 

Fig. 4. Decision Tree Concept [6] 

The attribute selection [16] can be done by the 

Gini Index process. Gini index is a metric that measure 

how often the misclassification happened [15]. In this 

process, the smallest Gini Index value will be selected 

and be the root node or internal node. As it said in 

[15], (1), (2), and (3) can be used to determine Gini 

Index. 

 

𝐺𝑖𝑛𝑖 (𝐷) = 1 − ∑ 𝑃𝑖
2𝑚

𝑖=1
   (1) 

𝐺𝑖𝑛𝑖𝐴(𝐷) = ∑
|𝐷𝑗|

𝐷
𝐺𝑖𝑛𝑖(𝐷𝑖)

𝑣

𝑖=1
  (2) 

𝐺𝑖𝑛𝑖 𝐺𝑎𝑖𝑛 (𝐴) = 𝐺𝑖𝑛𝑖(𝐷) − 𝐺𝑎𝑖𝑛𝐴(𝐷) (3) 

According to [16], there are five steps to make a 

decision tree using Gini Index. First is determine the 

class or label which will be the root in the tree using 

(1).  All the lable’s probability with the constraint that 

has determined will be calculated for the probability 

and squared. The second is calculate the Gini Index on 

every attributes or features in the dataset using (2). All 

the label’s probability, in general, will be multiplied 

by each column of the Gini Index and calculated. 

The third is to choose the lowest Gini Index. The 

feature with the lowest Gini Index will be the root of 

an internal node in the decision tree. Then, in each 

branch, do the recursive way from the first step until 

the leaf or the Gini Index on the branch is zero. Then 

the last thing is to calculate the Gini Gain with (3) to 

determine the difference from (1) using Gini Index 

from each first branch. 

F. Random Forest Classifier 

Random Forest is an algorithm of machine 

learning that has ability to do the regression or 

classification task [17]. This algorithm consists of 

many decision trees which randomly selected from the 

subset of the training set. The classification of 

Random Forest is the accumulation of the votes which 

decision trees did. The process can be seen in Fig.5. 
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Fig. 5. Random Forect Classifier Structure [9] 

 

According to [18], bagging or bootstrap 

aggregation is the common technique used for 

Random Forest Algorithm. The bagging technique is 

used to reduce the variance of the prediction function 

which has been estimated. This method is considered 

effective for the data which has big variance and 

procedure which has a low bias like trees. In the case 

of classification, each tree will produce the prediction 

result which will calculate the majority result or in 

other words majority vote [18]. 

The tree-making process [19] can be done by Gini 

or Entropy. Gini is preferred for the attribute which 

has continuity, meanwhile, entropy is commonly used 

for a discrete attribute that exists on each label. The 

tree-making process can be seen in (4), (5), and (6) 

which is equal to the decision tree formula [20]. A 

decision tree can be made recursively based on the tree 

amount which has been determined. [19] also said that 

commonly the optimal tree amount made for the 

classification process is √𝑝 and for regression is 
𝑝

3
 

which p is the predictor amount that will be used. The 

output of each tree for the classification process will 

be submitted and there will be a majority vote process 

like (4) [18]. 

Ĉ𝑟𝑓
𝐵  (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒{Ĉ𝑏(𝑥)}1

𝐵         (4) 

IV. RESULT AND DISCUSSION 

A. Dataset 

In work conducted in this paper, we use user 

feedbacks from another research [9]. There is a total of 

553 feedbacks, which is contains of 259 positive, 241 

negative, and 53 neutral feedbacks. 

B. Performance Evaluation 

There are several scenarios are conducted to 

determine the best configuration for classifying the 

feedbacks’ sentiment. An experiment with two 

training-testing ratios, 70:30 and 80:20, is conducted. 

First we try to use the feedback as it is (Scenario 1). 

Furthermore, we try to upsample the neutral feedbacks 

(Scenario 2) and use the GridSearchCV library to find 

the best hyperparameter (Scenario 3). 

In each scenario, we used different embedding 

dataset to make the FastText pre-trained model, such 

as user feedbacks of BYU and Tokopedia app from 

Playstore (200 & 300 dimension), and 

SentimentAppReview dataset itself. We also used the 

original FastText pre-trained model from its official 

website as the feature extraction. 

In the experiment following Scenario 1, the best 

performance is reached when the embedding dataset is 

BYU (200 and 300 dimension) and the training-testing 

ratio is 80:20. The accuracy is 70,27%, the precision is 

80%, the recall reaches 54%, and the F1 score is same 

as the recall. This scenario can result the precision, 

recall, and F1 score equally. In all scenarios, the 

performance to detect neutral feedbacks is lower than 

the others because it is unbalanced. The neutral 

feedbacks from the dataset is just 53 of 553 row data. 

In general, if there is some addition on the test set 

and subtraction on a train set, the accuracy possibly 

increases. But, in this research, the 80:20 ratio is better 

than 70:30. Not only on accuracy, but also the 

precision, recall, and F1. Apart from the difference of 

train and test set ratio, the FastText pre-trained model 

which has chosen just give a small impact on the 

evaluation result. 

Both 80:20 and 70:30, in general, seem hard to 

detect the neutral label. This is caused by the lack of 

neutral labels in the dataset. It just 53 if 553 rows. 

That is why the classifier model is hard to detect the 

neutral label due to the underfitting issue. 

From the requirement engineering side, user 

feedback can be used to learn the needs, complaints, 

and user reviews. The negative feedbacks generally 

contain information that can be useful for future 

releases, like the bug report. The positive feedbacks 

usually contain the expression of thanks and user’s 

satisfaction when they use the feature. So, it is 

important to detect the feedback which has negative or 

positive sentiment. 

The precision calculates the prediction for the true 

positive to all positive label, that is why the precision 

score is the ideal measurement when the false positive 

has the high cost. In this case, false positive happens 

when feedback whose label is negative but predicted 

as positive. Meanwhile, the false-negative happens 

when feedback whose label is positive but it predicted 

as negative. 

In Scenario 2, we try to up-sample the neutral 

feedbacks. The result is no one of the accuracy 

reached 70%. The best performance is reached when 

we used Tokopedia (200 dimension) as embedding 

dataset and the training-testing ratio is 70:30. The 

accuracy is 69,63%, the precision is 76%, the recall is 

63%, and the F1 score is 64%. According to the result 
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of this scenario, up-sample can increase the 

performance from the precision, recall, and F1 score 

side, but it decreases the accuracy. 

Scenario 2 can produce the best result when using 

Sentiment App Review (200 dimensions) as the 

FastText pre-trained model and with the ratio of 80:20. 

In Table 1, we can see that the result of the training set 

is nearly perfect. There is still misclassification on the 

neutral label due to the lack of the neutral label data on 

the dataset and the up-sampling process which is done 

is not too big. Meanwhile, the data which has positive 

and negative label relatively give the precise 

prediction result because the amount of both is quite 

bigger and balanced. 

TABLE II.  THE BEST MODEL PERFORMANCE OF SCENARIO 2 

Real Label 
Predicted Negative Neutral Positive 

Negative 192 0 1 

Neutral 0 48 0 

Positive 0 0 207 

Based on the result and analysis of Scenario 2, 

upsampling is proven to increase the performance of 

the precision, recall, and F1 score, but it decreases the 

accuracy score even it is not too significant. 

In Scenario 3, we try to use GridSearchCV to find 

the best hyperparameter for the Random Forest 

Classifier. GridSearchCV is usually used to tune the 

hyperparameter. The method that used in this case is 

Cross-Validation. It is the statistical method to 

evaluate the model or algorithm where the data is 

separated into two subsets, which are training and test. 

Like the train_test_split, but in Cross-Validation, the 

data is split into the fold which has been determined. 

In each Fold, there are train and test sets. Its process is 

iteratively done until all data from the dataset is 

included in the fold. 

With the help of the GridSearchCV library, the 

Random Forest Classifier can tune its hyperparameter 

automatically based on the initial parameter that has 

been determined to find the best hyperparameter that 

can produce the best result. The hyperparameter tuned 

by the GridSearchCV in this case is the amount of 

leaf, tree, and max features. The tuning technique is 

done by initializing the input parameters in an array 

which will be tried on one by one by the library. 

In our case, the best parameter for the Random 

Forest Classifier is 81 for the n_trees, 15 for the 

n_leafs, and log 2 for the max_features. The best result 

is reached when BYU (200 and 300 dimension) user 

feedbacks are used as the embedding dataset and the 

training-test ratio is 70:30. The accuracy is 71.68, the 

precision is 48%, the precision is 53%, and the F1 is 

50%. This result if compared with Scenario 1, it is 

lower than Scenario 1. This scenario cannot detect the 

neutral feedbacks better than Scenario 1. 

 

V. CONCLUSION AND FUTURE WORKS 

In this research, we used FastText pre-trained 

model as the feature extraction and Random Forest 

Classifier to classify the sentiment of the user 

feedbacks. With this approach, we used the 

SentimentAppReview dataset from [12] which then is 

classified into positive, neutral, and negative label. 

In conclusion, the implementation of word 

embedding to classify user feedback using Random 

Forest Classifier is successfully done. FastText pre-

trained model which is used in this research is made of 

the user feedback dataset from the Tokopedia and 

ByU App at the Google Playstore. 

Based on the results before, the best result is 

reached when we used BYU user feedbacks dataset as 

embedding dataset to make FastText pre-trained 

model as the feature extraction and the training-testing 

ratio is 80:20. The accuracy is 70,27%, the precision is 

80%, the recall is 54%, and F1 score is 54%. 

In the future work, we hope that there is a larger 

scope of the dataset so it maybe increases the 

performance with the same method. The more data we 

can get, hopefully, the better the result that we can get. 

Furthermore, to make the more various results we 

can try different up-sampling or down-sampling 

methods. Hopefully, with this variance of methods, the 

result of the experiments can be more variance too. 

Trying another word embedding library or feature 

extraction methods such as Word2Vec and GloVe is 

not a bad idea. With the help of the Gensim library, 

that thing can be made easier and hopefully give better 

performance. 

Trying another cross-validation method or library 

also can be a good thing. For example, using the 

RandomizedSearchCV library to do the cross-

validation method. With this, maybe the 

hyperparameter tuning can be more variative and give 

a better result. 

If this classification method is combined with 

synonym extraction, we think it will increase the 

performance significantly. It will classify the word 

which has the same meaning with other word into one 

class more accurately. It will decrease the 

misclassification also. 
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