

101 Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021

ISSN 2085-4552

FastText Word Embedding and Random Forest

Classifier for User Feedback Sentiment

Classification in Bahasa Indonesia

Yehezkiel Gunawan1, Julio Christian Young2, Andre Rusli3

Department of Informatics, Multimedia Nusantara University, Tangerang, Indonesia

1yehezkiel.gunawan@student.umn.ac.id, 2julio.christian@umn.ac.id, 3andre.rusli@lecturer.umn.ac.id

Accepted 14 June 2021

Approved 18 June 2021

Abstract— User feedback nowadays become a platform

for software developer to identify and understand user

requirements, preferences, and user’s complaints. It is

important for the developer to identify the problem that

exist in user feedback. According to software growth,

user amount also growth. Read and classify one by one

manually are wasting time and energy. As the solution

for the problem, sentiment analysis system using

Random Forest Classifier which use word embedding as

the feature extraction is made to help to classify which

feedback is positive, neutral, or negative. Random

Forest Algorithm is chosen because it gives the best

performance, even its need the larger resources.

Furthermore, with word embedding, the words which

has semantic or syntactic similarities will be detected.

Word embedding does not need stemming and stop

word removal, so the context of the sentences keep

remains. This research is made to implement word

embedding to classify sentiment of user feedbacks using

Random Forest Classifier. 70.27% accuracy, 80%

precision, 54 recall and 54% F1 score is reached when

BYU dataset (200 dimension) as embedding dataset with

the train and test ratio 80:20.

Index Terms— Bahasa Indonesia, Random Forest, Word

Embedding, NLP, user feedback

I. INTRODUCTION

In software engineering, there is a term called

‘requirements engineering’. It means a process which

the requirements for a software are assembled,

documented, and managed as long as the software

engineering process [1]. Interpreting and

understanding the purpose, stakeholder’s requirements

and trust are the main focus of requirement

engineering [1].

It was shown in [2] that nowadays users or clients

are involved in the software engineering process, so

the developers will know the needs, preferences, and

problems which users experienced. Software

developers must understand the issues or problem that

appear from the app which they developed, like bugs,

unwanted feature, and adding the new feature which

accurate and on time in the future [3]. Users who

experience some issues when they use an app can send

some feedbacks that can reflect their experience when

they use it, then the feedbacks can be considered by

the developers to improve the app quality [3].

When the scope of the application are become

greater, it is much challenging to identify user

feedbacks issues [4]. Modern problems require

modern solutions, so a recommendation system or

sentiment classification needs to be made regarding to

the growth of user feedbacks [4]. There are more than

a hundred or even thousand user feedbacks have been

sent in one day. Checking users’ comment one by one

can be exhausting and wasting time. That is the reason

why automated sentiment analysis is needed to

analyze and generalize the user’s feedback with the

sentiment analysis technique.

A method called CRISTAL is introduced by

Palomba et al [4] which can detect the impact caused

by the informative user comment on the changes or

updates of the app's source code. The research is done

to determine how impactful the app review on the

software development process [4]. Its result stated that

49% of developers will consider the informative user

comments or feedback for their next updates. It also

considered very impactfully on the app success

because the increase of the rating and positive

feedback from the users directly compared with the

fulfillment of the requirements based on the user

review. This result can strengthen the reason why we

need a system to recommend or classify the user

feedbacks to help the developer on developing their

app [4].

Sentiment analysis is the process that learn

people’s opinion, sentiment, emotion, rating, and

gesture on an entity [5]. There are a lot of activities

that are related to the sentiment analysis process and

even harder to separate it because there are a lot of

aspects, and one of them is sentiment classification.

Sentiment classification is based on the idea that text

can be the expression of a person’s opinion on an

entity and trying to predict what kind of sentiment that

mailto:yehezkiel.gunawan@student.umn.ac.id

Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021 102

ISSN 2085-4552

can be resulted [6]. Machine learning in general can be

used to classify the sentiment and give the good

accuracy.

As in [7], sentiment analysis is an automated

process to mine and classify opinion, view, emotion,

and sentiment from the text dataset which are not

structured for machine language and computer

programming. In sentiment classification, text can be

classified to several labels, for example positive or

negative.

Nowadays, people express their opinion with their

language which tends to be ambiguous and

complicated words [8]. Commonly, there are related

words one each other and it often seems similar. To

help to solve the problem, there is a method called

word embedding. It is a kind of word representation

that make the words which have similarity can be

understood by the machine learning algorithm [9].

Technically, the input words will be mapped into

number vector using neural network, probability

model, or the dimension reduction on the word co-

occurrence matrix.

It is stated in [10] that word embedding is

considered can learn the word vector with high quality

from a big dataset. Instead of that, the existing

vocabulary that has been made from the pre-trained

model of the word embedding also considered

detecting the word similarity both semantically or

syntactically. It can help the machine to recognize the

similarity which exists in the dataset.

Currently, two big platforms that provide the apps

choice and review, are Google Playstore and Apple

Appstore. The user feedback dataset from these

platforms is considered because when a user wants to

give some feedback to an app, he or she must have an

account so it will allow the user to give some review.

For example, when a person wants to give some

feedback to an app in Google Playstore or an Apple

Appstore, so that person must have a Google or Apple

account to allow him or her to write the feedback on

their smartphone. Besides that, some developers can

set the app which they made to allow the user to give

some review within a certain period, so that can be

confirmed if the user who gives the feedback is the

user of the app.

This research will use word embedding as the

feature extraction and Random Forest Classifier to

classify the user feedback’s sentiment. This research

aims to study, analyze, and implement the Random

Forest Classifier to analyzing the sentiment of

application user feedbacks in Bahasa Indonesia. The

paper is organized as follows. In the following section,

we review some related works of ours. Then we

present a brief overview of some research in sentiment

analysis.

II. RELATED WORK

A comparative study has been done by [8] on few

machine learning algorithms used for classification.

Those are Naïve Bayes, Max Extropy, Boosted Trees,

and Random Forest. The result of the research is

Random Forest has the best performance with the high

simplicity even it requires more resources.

Following similar trends, several works of

literature can also be found working on sentiment

analysis of documents. However, most of them focus

on analyzing tweets from Twitter. Like similar

observation done by Vora, Khara, and Kelkar [9], they

used different word embedding methods as the feature

extraction to classify the sentiment of English tweet.

For the classification algorithm, they used Random

Forest Classifier. The result shows that when they

used FastText with 300 dimensions as the feature

extraction, the accuracy reached 91%.

Based on those previous works on sentiment

analysis, natural language processing, and the

requirements engineering activity in the software

engineering field, this research focuses on adapting [9]

research but with different dataset. Our research aims

to implement FastText and Random Forest Classifier

to classify the sentiment of application user feedback

in Bahasa Indonesia and measure the performance.

III. RESEARCH METHODS

A. Requirements Engineering

Requirement engineering is the process of

gathering, analyze, documenting, and managing the

requirements needed for software development [1]. It

always related to determine and understand the

purpose, requirements, and even what the stakeholder

trust [1].

In requirement engineering, some things need to be

done, those are feasibility study, finding the

requirements (gathering information and analyze),

convert the requirements into the standard or

specification, and ensure that the requirements are

based on the user’s need (validation) [11]. In reality,

this process is iterative and interleaved [11].

According to [11], in the requirement gathering

process, the client is involved to determine the scope

of the app, what services will exist in the system and

the operational limits of the system. It may be

involved the user, manager, engineer, and the people

who will maintain the system. In all system, the

requirements can be changed, the people who

involved, developed a better understanding of what are

they want in the app when it’s released, like the

changes on the hardware, software, or the system

environment [11]. The understanding and control

process of changes on the system requirement is called

103 Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021

ISSN 2085-4552

requirement management [11]. Besides that, the

feedback from the user can cause changes to the

requirements [2].

The software development activity [11] is not

stopped when the software has been released. But it

continues throughout its lifetime. There are five steps

of the software lifetime, those are the initial

development, the software engineer build the first

version of the app or system, then evolve, the ability

and functionality of the system are expanded to fulfill

the user preferences, then servicing, the system is

fixed from the bug, issues, and update the

functionality, then phaseout, the system owner decided

to stop the servicing process and make income from

the system for a long time, and the last step is

closedown, the owner takes down the system from the

market and direct the users to the new system.

B. Natural Language Processing

Natural language processing (NLP) is a computer

science field dealing with human language processing

in either text or speech [12]. In this research,

preprocessing of user feedback includes the

punctuation, remove special character, lowering case,

and tokenization. All that preprocessing method is

done by the help of library string and re.

C. Word Embedding

It is shown in [13] that the computer can learn the

character input with feature extraction. Every kind of

feature is taken from the dataset, then the machine will

learn it. In this research, the feature which will be

extracted is the word similarity.

There is a problem that has to be faced. The

computer only can read the numbers. If the received

objects are words, so it needs to be converted into the

numeric vector which represents each word. Because

of that, word embedding can be used as a feature

extraction to learn the similarity between words. It

uses a neural network model to learn the words [13].

Word embedding represent the words into vectors.

For example, there is the sentence Word Embedding

are Word Converted into numbers. First, it will make a

dictionary to contain it, and the dictionary is [Word,

Embeddings, are, Converted, into, number]. With one-

hot encoding, it will represent the vector where 1

represent the position of a word. The vector

representation of word numbers from that example is

[0,0,0,0,1].

This method learns the vector representation of the

constant vocabulary which exists in the corpus or

dataset. It also uses neural network model for the task

like document classification or with unsupervised

learning using document statistics [13]. In general,

three common models are often used to do word

embedding, those are Latent Semantic Analysis

(LSA), Word2Vec, and GloVe.

D. FastText

This research will use FastText as the word

embedding method. FastText is the library from

Facebook to do the word embedding method [14].

FastText is a newest version from Word2Vec which

Google made. Actually, both of them can be used to

determine the word similarity.

According to the Indonesian Dictionary, semantic

means the language structure related to the meaning of

an expression or the structure of the meaning of a talk

or text. Meanwhile, the syntactic comes from the

‘syntax’ word adopted in English which is the

structure or writing. In other words, if there is a word

similarity syntactically, it means there is a similarity in

the writing structure.

The input words will be represented into the vector

and placed in such a way so the words which have the

similar meaning will appear close by, meanwhile, the

opposite will appear far from the vector. The main

difference between FastText and Word2Vec is

FastText can process the input words which not exist

in the vocabulary or out of vocabulary words.

Like Word2Vec, there is two architecture on

FastText, those are Continuous Bag of Words

(CBOW) and Skip-Gram. CBOW predicts the current

word (as a target) from the context (as an input)

around it. Meanwhile, the Skip-Gram uses the current

word (as an input) to predict the context (as a target).

The visualization of CBOW and Skip-Gram can be

seen in Fig.1

Fig. 1. The concept of CBOW and Skip-Gram [10]

In the Fig.2, there is an example which given the

input words “the best revenge is massive success” and

there is a forward-backward training with the CBOW

architecture. Assume that w(t-2) = “the”, w(t-1) =

“best”, w(t+1) = “is”, w(t+2) = “massive” as input and

w(t) = “revenge” as target.

Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021 104

ISSN 2085-4552

Fig. 2. Ilustration of forward-backward training CBOW [10]

[14] said it requires a special dataset to get the

expected result. [14] makes a term for the dataset

which used for the training process using FastText as

an embedding dataset. The embedding dataset trained

using FastText will produce a vocabulary that consists

of the vocabs that can be used to detect the word

similarity. The result of the training of the process can

be called a pre-trained model.

Fig. 3. Ilustration of forward-backward training Skip-Gram[10]

E. Decision Tree

Decision Tree is a machine learning method that

learns and take decision with the functional target that

has discrete values [15]. This technique can be

represented with a group of if-then rules so it will be

understandable. Each tree consist of the leaf and

branch. Each leaf reflect the group attribute which will

be classified and each branch represent the values

which taken by the leaf.

There are three parts of decision tree like the Fig.4

[16]. First is the root node which is the first node and

there is no input branch in this node. The second is

internal node which has branch, and just has one input

and minimum two output. The last is leaf node that is

the node which has just one input and no output.

Fig. 4. Decision Tree Concept [6]

The attribute selection [16] can be done by the

Gini Index process. Gini index is a metric that measure

how often the misclassification happened [15]. In this

process, the smallest Gini Index value will be selected

and be the root node or internal node. As it said in

[15], (1), (2), and (3) can be used to determine Gini

Index.

𝐺𝑖𝑛𝑖 (𝐷) = 1 − ∑ 𝑃𝑖
2𝑚

𝑖=1
 (1)

𝐺𝑖𝑛𝑖𝐴(𝐷) = ∑
|𝐷𝑗|

𝐷
𝐺𝑖𝑛𝑖(𝐷𝑖)

𝑣

𝑖=1
 (2)

𝐺𝑖𝑛𝑖 𝐺𝑎𝑖𝑛 (𝐴) = 𝐺𝑖𝑛𝑖(𝐷) − 𝐺𝑎𝑖𝑛𝐴(𝐷) (3)

According to [16], there are five steps to make a

decision tree using Gini Index. First is determine the

class or label which will be the root in the tree using

(1). All the lable’s probability with the constraint that

has determined will be calculated for the probability

and squared. The second is calculate the Gini Index on

every attributes or features in the dataset using (2). All

the label’s probability, in general, will be multiplied

by each column of the Gini Index and calculated.

The third is to choose the lowest Gini Index. The

feature with the lowest Gini Index will be the root of

an internal node in the decision tree. Then, in each

branch, do the recursive way from the first step until

the leaf or the Gini Index on the branch is zero. Then

the last thing is to calculate the Gini Gain with (3) to

determine the difference from (1) using Gini Index

from each first branch.

F. Random Forest Classifier

Random Forest is an algorithm of machine

learning that has ability to do the regression or

classification task [17]. This algorithm consists of

many decision trees which randomly selected from the

subset of the training set. The classification of

Random Forest is the accumulation of the votes which

decision trees did. The process can be seen in Fig.5.

105 Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021

ISSN 2085-4552

Fig. 5. Random Forect Classifier Structure [9]

According to [18], bagging or bootstrap

aggregation is the common technique used for

Random Forest Algorithm. The bagging technique is

used to reduce the variance of the prediction function

which has been estimated. This method is considered

effective for the data which has big variance and

procedure which has a low bias like trees. In the case

of classification, each tree will produce the prediction

result which will calculate the majority result or in

other words majority vote [18].

The tree-making process [19] can be done by Gini

or Entropy. Gini is preferred for the attribute which

has continuity, meanwhile, entropy is commonly used

for a discrete attribute that exists on each label. The

tree-making process can be seen in (4), (5), and (6)

which is equal to the decision tree formula [20]. A

decision tree can be made recursively based on the tree

amount which has been determined. [19] also said that

commonly the optimal tree amount made for the

classification process is √𝑝 and for regression is
𝑝

3

which p is the predictor amount that will be used. The

output of each tree for the classification process will

be submitted and there will be a majority vote process

like (4) [18].

Ĉ𝑟𝑓
𝐵 (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒{Ĉ𝑏(𝑥)}1

𝐵 (4)

IV. RESULT AND DISCUSSION

A. Dataset

In work conducted in this paper, we use user

feedbacks from another research [9]. There is a total of

553 feedbacks, which is contains of 259 positive, 241

negative, and 53 neutral feedbacks.

B. Performance Evaluation

There are several scenarios are conducted to

determine the best configuration for classifying the

feedbacks’ sentiment. An experiment with two

training-testing ratios, 70:30 and 80:20, is conducted.

First we try to use the feedback as it is (Scenario 1).

Furthermore, we try to upsample the neutral feedbacks

(Scenario 2) and use the GridSearchCV library to find

the best hyperparameter (Scenario 3).

In each scenario, we used different embedding

dataset to make the FastText pre-trained model, such

as user feedbacks of BYU and Tokopedia app from

Playstore (200 & 300 dimension), and

SentimentAppReview dataset itself. We also used the

original FastText pre-trained model from its official

website as the feature extraction.

In the experiment following Scenario 1, the best

performance is reached when the embedding dataset is

BYU (200 and 300 dimension) and the training-testing

ratio is 80:20. The accuracy is 70,27%, the precision is

80%, the recall reaches 54%, and the F1 score is same

as the recall. This scenario can result the precision,

recall, and F1 score equally. In all scenarios, the

performance to detect neutral feedbacks is lower than

the others because it is unbalanced. The neutral

feedbacks from the dataset is just 53 of 553 row data.

In general, if there is some addition on the test set

and subtraction on a train set, the accuracy possibly

increases. But, in this research, the 80:20 ratio is better

than 70:30. Not only on accuracy, but also the

precision, recall, and F1. Apart from the difference of

train and test set ratio, the FastText pre-trained model

which has chosen just give a small impact on the

evaluation result.

Both 80:20 and 70:30, in general, seem hard to

detect the neutral label. This is caused by the lack of

neutral labels in the dataset. It just 53 if 553 rows.

That is why the classifier model is hard to detect the

neutral label due to the underfitting issue.

From the requirement engineering side, user

feedback can be used to learn the needs, complaints,

and user reviews. The negative feedbacks generally

contain information that can be useful for future

releases, like the bug report. The positive feedbacks

usually contain the expression of thanks and user’s

satisfaction when they use the feature. So, it is

important to detect the feedback which has negative or

positive sentiment.

The precision calculates the prediction for the true

positive to all positive label, that is why the precision

score is the ideal measurement when the false positive

has the high cost. In this case, false positive happens

when feedback whose label is negative but predicted

as positive. Meanwhile, the false-negative happens

when feedback whose label is positive but it predicted

as negative.

In Scenario 2, we try to up-sample the neutral

feedbacks. The result is no one of the accuracy

reached 70%. The best performance is reached when

we used Tokopedia (200 dimension) as embedding

dataset and the training-testing ratio is 70:30. The

accuracy is 69,63%, the precision is 76%, the recall is

63%, and the F1 score is 64%. According to the result

Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021 106

ISSN 2085-4552

of this scenario, up-sample can increase the

performance from the precision, recall, and F1 score

side, but it decreases the accuracy.

Scenario 2 can produce the best result when using

Sentiment App Review (200 dimensions) as the

FastText pre-trained model and with the ratio of 80:20.

In Table 1, we can see that the result of the training set

is nearly perfect. There is still misclassification on the

neutral label due to the lack of the neutral label data on

the dataset and the up-sampling process which is done

is not too big. Meanwhile, the data which has positive

and negative label relatively give the precise

prediction result because the amount of both is quite

bigger and balanced.

TABLE II. THE BEST MODEL PERFORMANCE OF SCENARIO 2

Real Label
Predicted Negative Neutral Positive

Negative 192 0 1

Neutral 0 48 0

Positive 0 0 207

Based on the result and analysis of Scenario 2,

upsampling is proven to increase the performance of

the precision, recall, and F1 score, but it decreases the

accuracy score even it is not too significant.

In Scenario 3, we try to use GridSearchCV to find

the best hyperparameter for the Random Forest

Classifier. GridSearchCV is usually used to tune the

hyperparameter. The method that used in this case is

Cross-Validation. It is the statistical method to

evaluate the model or algorithm where the data is

separated into two subsets, which are training and test.

Like the train_test_split, but in Cross-Validation, the

data is split into the fold which has been determined.

In each Fold, there are train and test sets. Its process is

iteratively done until all data from the dataset is

included in the fold.

With the help of the GridSearchCV library, the

Random Forest Classifier can tune its hyperparameter

automatically based on the initial parameter that has

been determined to find the best hyperparameter that

can produce the best result. The hyperparameter tuned

by the GridSearchCV in this case is the amount of

leaf, tree, and max features. The tuning technique is

done by initializing the input parameters in an array

which will be tried on one by one by the library.

In our case, the best parameter for the Random

Forest Classifier is 81 for the n_trees, 15 for the

n_leafs, and log 2 for the max_features. The best result

is reached when BYU (200 and 300 dimension) user

feedbacks are used as the embedding dataset and the

training-test ratio is 70:30. The accuracy is 71.68, the

precision is 48%, the precision is 53%, and the F1 is

50%. This result if compared with Scenario 1, it is

lower than Scenario 1. This scenario cannot detect the

neutral feedbacks better than Scenario 1.

V. CONCLUSION AND FUTURE WORKS

In this research, we used FastText pre-trained

model as the feature extraction and Random Forest

Classifier to classify the sentiment of the user

feedbacks. With this approach, we used the

SentimentAppReview dataset from [12] which then is

classified into positive, neutral, and negative label.

In conclusion, the implementation of word

embedding to classify user feedback using Random

Forest Classifier is successfully done. FastText pre-

trained model which is used in this research is made of

the user feedback dataset from the Tokopedia and

ByU App at the Google Playstore.

Based on the results before, the best result is

reached when we used BYU user feedbacks dataset as

embedding dataset to make FastText pre-trained

model as the feature extraction and the training-testing

ratio is 80:20. The accuracy is 70,27%, the precision is

80%, the recall is 54%, and F1 score is 54%.

In the future work, we hope that there is a larger

scope of the dataset so it maybe increases the

performance with the same method. The more data we

can get, hopefully, the better the result that we can get.

Furthermore, to make the more various results we

can try different up-sampling or down-sampling

methods. Hopefully, with this variance of methods, the

result of the experiments can be more variance too.

Trying another word embedding library or feature

extraction methods such as Word2Vec and GloVe is

not a bad idea. With the help of the Gensim library,

that thing can be made easier and hopefully give better

performance.

Trying another cross-validation method or library

also can be a good thing. For example, using the

RandomizedSearchCV library to do the cross-

validation method. With this, maybe the

hyperparameter tuning can be more variative and give

a better result.

If this classification method is combined with

synonym extraction, we think it will increase the

performance significantly. It will classify the word

which has the same meaning with other word into one

class more accurately. It will decrease the

misclassification also.

REFERENCES

[1] A Van Lamsweerde (2009). Requirements engineering :
from system goals to UML models to software

107 Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021

ISSN 2085-4552

specifications. Chichester, England ; Hoboken, Nj: John
Wiley, Cop.

[2] Morales-Ramirez, I. (2013). On Exploiting End-User
Feedback in Requirements Engineering. [online] Available
at:
https://www.researchgate.net/publication/237064827_On_
Exploiting_End-
User_Feedback_in_Requirements_Engineering

[3] Gao, C., Zeng, J., Lyu, M.R. and King, I. (2018). Online
app review analysis for identifying emerging issues.
Proceedings of the 40th International Conference on
Software Engineering - ICSE ’18.

[4] Palomba, F., Linares-Vasquez, M., Bavota, G., Oliveto, R.,
Di Penta, M., Poshyvanyk, D. and De Lucia, A. (2015).
User reviews matter! Tracking crowdsourced reviews to
support evolution of successful apps. 2015 IEEE
International Conference on Software Maintenance and
Evolution (ICSME).

[5] Zhang, L., Wang, S. and Liu, B. (2018). Deep learning for
sentiment analysis: A survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 8(4).

[6] Serrano-Guerrero, J., Olivas, J.A., Romero, F.P. and
Herrera-Viedma, E. (2015). Sentiment analysis: A review
and comparative analysis of web services.Information
Sciences, 311, page.18–38.

[7] Fiarni, C., Maharani, H. dan Pratama, R., 2016, May.
Sentiment analysis system for Indonesia online retail shop
review using hierarchy Naive Bayes technique. In
Information and Communication Technology (ICoICT),
2016 4th International Conference on (page. 1-6). IEEE.

[8] Gupte, A., Joshi, S., Gadgul, P. and Kadam, A. (2014).
Comparative Study of Classification Algorithms used in
Sentiment Analysis. International Journal of Computer
Science and Information Technologies, 5(0975–9646),
page.6261, 6264.

[9] Vora, P., Khara, M. and Kelkar, K. (2017). Classification
of Tweets based on Emotions using Word Embedding and
Random Forest Classifiers. International Journal of
Computer Applications, 178(0975 – 8887).

[10] Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013).
Efficient Estimation of Word Representations in Vector
Space. [online] Tersedia
di:https://arxiv.org/pdf/1301.3781.pdf [Accessed 6 Feb.
2020].

[11] Sommerville, I. (2016). Software engineering. Harlow:
Pearson Education.

[12] Pamungkas, E.W., Putri and Prasetyo, D.G. (2017). Word
Sense Disambiguation for Lexicon-Based Sentiment
Analysis. In: Proceedings of the 9th International
Conference on Machine Learning and Computing. ACM,
pp.442–446.

[13] Abdullah, A. (2018). Word Embedding. [online] Available
at: https://rpubs.com/ahmadhusain/wordembedding
[Accessed 8 Jan. 2020].

[14] Rehurek, R. (2019). Gensim: Topic Modelling For
Humans. [online] Radimrehurek.com. Available at:
https://radimrehurek.com/gensim/auto_examples/tutorials/r
un_fasttext.html#sphx-glr-auto-examples-tutorials-run-
fasttext-py [Accessed 6 Feb. 2020].

[15] Mitchell, T.M. (2017). Machine learning. New York:
Mcgraw Hill.

[16] Han, J., Kamber, M. and Pei, J. (2012). Data Mining
Concepts and Techniques. 225 Wyman Street, Waltham,
MA, 02451, USA: Morgan Kaufmann Publishers.

[17] Eletter, S., Yasmin, T., Elrefae, G., Aliter, H., & Elrefae,
A. (2020). Building an Intelligent Telemonitoring System
for Heart Failure: The Use of the Internet of Things, Big
Data, and Machine Learning. 2020 21st International Arab
Conference on Information Technology (ACIT).
https://doi.org/10.1109/acit50332.2020.9300113

[18] Hastie, T., Tibshirani, R. and Friedman, J. (2009). The
elements of statistical learning, second edition: data
mining, inference, and prediction. New York: Springer

[19] Sieling, G (2014). Decision Trees: “Gini” vs. “Entropy”
criteria. Minnesota.

[20] Breiman, L. (2001). Random Forests. [online] 45. Tersedia
di: stat.berkeley.edu/forests_V3.1.pdf [Accessed 8 Mar.
2020

