

Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021 108

ISSN 2085-4552

Spam Filtering on User Feedback via Text

Classification using Multinomial Naïve Bayes

and TF-IDF

Septiyan Mudhiya Sadid1, Julio Christian Young2, Andre Rusli3
Department of Informatics, Multimedia Nusantara University, Tangerang, Indonesia

1septiyan.mudhiya@student.umn.ac.id, 2julio.christian@umn.ac.id, 3andre.rusli@lecturer.umn.ac.id

Accepted 18 June 2021

Approved 12 September 2021

Abstract— User feedback could give a developer

information on what should be fixed or should be

improved. But there are many users feedback that

is a spam. In user feedback, spam contents are

more likely to be inappropriate feedback, feedback

that is not feedback, just some random comment

or even a question. Reading and choosing feedback

manually could be costly, especially in terms of

time and energy. Therefore, this research focuses

on building a spam filtering model using

Multinomial Naïve Bayes that implement a

TF/IDF approach to detect spam automatically.

For text classification, Multinomial Naïve Bayes

proved on having better speed and having good

performance. With TF/IDF, a word that highly

occurred in many documents has less impact than

others so it could help increasing performance

from an imbalanced dataset. This research aims to

implement Multinomial Naïve Bayes for spam

filtering in user feedback and to measure the

performance of the model. The best performance

of this classifier was obtained when using the up-

sampling method and typo corrector with a 70:30

ratio of train and test set resulting in 89.25% for

accuracy, 45% for precision, 56% for recall, and

50% for F1-Score.

Index Terms— Spam filtering, Multinomial Naïve

Bayes, User Feedback, TF/IDF, Requirements

Engineering

I. INTRODUCTION

In software development, user requirements is a

useful component that developers needed. In order to

correctly analyse and define the users’ problem and

needs, requirements engineering has become an

important step in a software development lifecycle.

Requirements engineering is a branch of software

engineering which deals with problems that involve

goals, functions, and restrictions on software systems

[1]. Requirements engineering help software

developer to have a better understanding about the

problems. One of many ways to do requirements

engineering is to directly involve the users in the

development process. In the case in which the users of

a software product is the public, it would be difficult

to get all the users to be involved directly in the

requirements specification and definition process.

Many software developers rely on the users feedback

gathered from many different sources online. For

example, a mobile app developer in the Android

environment would gather a lot of user feedback from

the Google Play Store, and iOS environment from the

Apple App Store. Another example is the web

application of an e-commerce platform, the developers

usually provide comment sections in order to gather

feedbacks from their users, albeit content-related,

product-related, or other categories of feedback.

User feedback is defined as all information

obtained from users about whether they are satisfied or

not with a product or service [2]. Users will give

feedback if they are satisfied or there is a problem

when they use the software. Even though user

feedback has a lot of benefits for software

development, some problems could occur such as

spam in user feedback. Spam is an activity to send a

message to other people with an electronic device

continuously without the consent of the other party

[3]. Spam is usually targeting random people. Spam

messages always have the same characteristics,

therefore it is not too hard to distinguish. This is

particularly a serious problem for software products

with thousands or even millions of user feedback.

Manually reading each of the feedback could take time

and effort which otherwise could be used for other

development activities. It is more time-wasting if the

feedback themselves are actually spam messages.

In user feedback, spam is more like inappropriate

feedback, which is the feedback that is not actual

feedback such as insulting feedback, fake review, etc.

Inappropriate feedback is categorized as spam because

that feedback is not useful for requirements

engineering. Therefore, a classification system needs

to be made to predict which feedback is spam. This

109 Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021

ISSN 2085-4552

research will use TF-IDF along with Multinomial

Naive Bayes to make a classification system to detect

spam in user feedback.

II. RELATED WORK

Multinomial Naive Bayes is an improvement from

Naive Bayes Classifier. Naive Bayes itself is a

classification method that uses Bayes Theorem where

each feature is assumed as independent to each other

[4]. According to research from [5], the Multinomial

Naïve Bayes algorithm runs 2 to 6 times faster than the

Support Vector Machine. Multinomial Naive Bayes do

better performance in 9 out of 13 models that [5] have.

According to research from [6], the Multinomial

Naïve Bayes algorithm has 89.58% accuracy in the

letter classification system.

When dealing with text classification, it is

necessary to do feature extraction before the

classification. One of many popular feature extractions

on text classification is TF-IDF and Doc2Vec.

According to [7], TF-IDF has a better performance

than Doc2Vec with 95% accuracy on Logistic

Regression and 73.62% accuracy on Naïve Bayes.

From the previous works, experiments related to the

use of Multinomial Naïve Bayes and TF-IDF, which

have been proven to be effective in other cases, for

filtering spams in user feedback is still rare to be

found. The main contributions of this research is to

implement TF-IDF along with Multinomial Naïve

Bayes to classify user feedback in Bahasa Indonesia

and measure the performance of the system. Based on

the results, we hope to be able to give more options to

the developers to better their requirements engineering

activities, especially when dealing with user feedback.

Hopefully, by automating the spam filtering activity,

more of the developers time and effort could be spent

on other productive and creative activities to improve

their products.

III. RESEARCH METHODOLOGIES

A. Dataset

Dataset used in this research is user feedback from

tiket.com app in Bahasa. Dataset is gathered using an

automatic scrapping extension on the google play

store. Then, the dataset is labelled by 5 of our

colleagues with a majority vote. The total dataset used

in this research is 900 data with 810 data of Ham and

90 data of Spam. The distribution of the dataset can be

seen in Fig. 1.

Fig. 1. Dataset distribution

B. Preprocessing

Preprocessing involved in this research is consist

of Tokenizing, Filtering, and Stemming.

Tokenizing separates each sentence into an array

of words. For example, the sentence “There are 2

winners of this game” will be tokenized like (‘There’,

’are’, ’2’, ’winners’, ’of’, ’this’, ’game’).

Filtering is a process that removes a bunch of

words that is not useful in this research such as I, you,

then. With stemming, words are reduced to their word

stems [8]. For example, the sentence “He was

swimming in the pool” will be reduced to “He is swim

in the pool”.

C. TF-IDF

TF-IDF is an algorithm that is based on statistical

values showing the appearance of a word in the

document [9]. TF or Term-Frequency states how many

words appear in a document. Meanwhile, IDF or

Inverse Document Frequency states the number of

documents that contain a word in one publication

segment [6].

While computing TF, all words are treated equally

important. However, it is known that certain words,

such as “is”, “the”, and “and”, may appear a lot of

times but have little importance. Therefore, we need to

decrease the frequent terms while increasing the rare

ones, by computing IDF, an inverse document

frequency factor is integrated which depreciate the

weight of words that occur very frequently in the

document set and scale up the weight of words that

occur rarely.

IDF is the inverse of the document frequency

which measures the informativeness of word t. When

we calculate IDF, it will be very low for the most

occurring words such as stop words (because stop

words such as “is” is present in almost all of the

documents, and N/df will give a very low value to that

word). This finally gives what we want, a relative

weightage.

Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021 110

ISSN 2085-4552

Now there are few other problems with the IDF, in

the case of a large corpus, the IDF value will explode.

To avoid this effect, we use the log of the IDF. When a

word that is not in vocab occurs, the DF will be 0. To

avoid that, we add +1 to the denominator. Here is the

final formula:

𝑇𝐹 − 𝐼𝐷𝐹(𝑤, 𝑑) = 𝑇𝐹(𝑤, 𝑑) × 𝐼𝐷𝐹(𝑤) (1)

𝐼𝐷𝐹(𝑤) = 𝑙𝑜𝑔 (
𝑁

𝐷𝐹(𝑤)
) (2)

Where:

- TF - IDF (w, d): weight of a word in all

documents.

- w: a word

- d: a document

- TF (w,d): the frequency of the occurring

word w in document d

- IDF (w): inverse DF from word w

- N: a total of document

- DF (w): total document that has word w

D. Naive Bayes Classifier

Naive Bayes Classifier is a classification algorithm

based on the Bayes theorem. Naive Bayes Classifier

assumes that every word in a document is

independent. That is the presence of one particular

feature does not affect the other [4]. Bayes theorem

formula is shown in (3).

𝑃(𝐵) =
𝑃(𝐴)𝑥 𝑃(𝐴)

𝑃(𝐵)
 (3)

E. Multinomial Naive Bayes

Multinomial Naive Bayes is very similar to Naive

Bayes Classifier. Multinomial Naive Bayes calculate

the multinomial distribution from each feature in the

documents [10]. The probability of a document d

being in class c is computed as:

𝑃(𝑐|𝑑) ∝ 𝑃(𝑐) ∏ 𝑃(𝑡𝑘|𝑐)1≤𝑘≤𝑛𝑑
 (4)

Where P(tk|c) is the conditional probability of term

tk occurring in a document of class c. We interpret

P(tk | c) as a measure of how much evidence tk

contributes that c is the correct class. P(c) is the prior

probability of a document occurring in class c. If a

document’s words do not provide clear evidence for

one class versus another, we choose the one that has a

higher prior probability. The formula of Multinomial

Naïve Bayes is shown in (5).

𝐶𝑚𝑎𝑝 =𝑎𝑟𝑔 𝑎𝑟𝑔 𝑃(𝑐) ∏𝑚
𝑘=1 𝑃(𝑡𝑘 |𝑐) (5)

Parameter P(tk | c) (probability likelihood) is

estimated by calculating the occurrence of tk on all

training documents in c, using laplacean prior as

shown in (6) [6]:

𝑃(𝑡𝑘 | 𝑐) =
1+ 𝑁𝑘

|𝑉|+𝑁
 (6)

Where Nk counts the total occurrence of tk in c’s

training document and N is the total occurrence of

words in c [6]. For example, given training this

training data:

TABLE I. TRAIN DATA

Text Class

Free money, click the

link now

Spam

Where are you now? Ham

I am busy now, call later Ham

Click the link and get

free souvenir from me

Spam

Then we want to classify the sentence “Call me for

free item” where the target class is spam or ham. First,

we will calculate the probability likelihood of every

word in the sentence using (6).

TABLE II. PROBABILITY LIKELIHOOD

Word P (word | spam) P(word | ham)

Call 0 + 1

14 + 18

1 + 1

14 + 18

Me 1 + 1

14 + 18

0 + 1

14 + 18

For 0 + 1

14 + 18

0 + 1

14 + 18

Free 2 + 1

14 + 18

0 + 1

14 + 18

Item 0 + 1

14 + 18

0 + 1

14 + 18

Based on the calculation in Table 1, we can

calculate the posterior probability of the sentence.
𝑃(𝐶𝑎𝑙𝑙|𝑠𝑝𝑎𝑚) × 𝑃(𝑀𝑒|𝑠𝑝𝑎𝑚) × 𝑃(𝐹𝑜𝑟|𝑠𝑝𝑎𝑚)

× 𝑃(𝐹𝑟𝑒𝑒|𝑠𝑝𝑎𝑚)
× 𝑃(𝐼𝑡𝑒𝑚|𝑠𝑝𝑎𝑚)

=
1

32
 ×

2

32
 ×

1

32
 ×

3

32
 ×

1

32
= 0.000000178813934

𝑃(𝐶𝑎𝑙𝑙|ℎ𝑎𝑚) × 𝑃(𝑀𝑒|ℎ𝑎𝑚) × 𝑃(𝐹𝑜𝑟|ℎ𝑎𝑚)
× 𝑃(𝐹𝑟𝑒𝑒|ℎ𝑎𝑚) × 𝑃(𝐼𝑡𝑒𝑚|ℎ𝑎𝑚)

=
2

32
 ×

1

32
 ×

1

32
 ×

1

32
 ×

1

32
= 0.0000000596046448

Based on the result above, we can conclude that

the sentence “Call me for free item” is classified as

Spam because the sentence has a higher posterior

probability in class Spam.

111 Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021

ISSN 2085-4552

F. The Learning Process

This research uses TF-IDF along with Multinomial

Naïve Bayes to classify a text as spam or ham. The

learning process of the system can be seen in the

following section.

1. First, we load the file that contains the list of text

that want to be classified.

2. Then we begin the pre-processing that include

tokenization, filtering, and stemming.

3. We also use stop-words to remove the list of

words that occur too often.

4. When the pre-processing is over, we divide the

dataset to train and test dataset.

5. And then we made a vocabulary of features as a

training process.

6. After that, we convert the training dataset and test

dataset to the TF-IDF model.

7. Finally, we fit the model to the Multinomial Naïve

Bayes algorithm and then calculate the

performance of the model.

G. Confusion Matrix

A confusion matrix is a method to measure the

performance of the classifier. The confusion matrix is

in the form of a table with 4 different combinations of

predicted and actual values [11].

TABLE III. CONFUSION MATRIX

Positive Negative

Positive TP FP

Negative FN TN

Where TP occurred when the system predicted

positive, and the actual data is positive (True Positive).

TN means True Negative, where the system predicted

negative, and the actual data is negative. FP occurred

when the system predicted positive, but the actual data

is negative (False Positive). FN means False Negative,

where the system predicted negative, but the actual

data is positive [11].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (8)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (9)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (10)

Confusion matrix can be used to calculate

precision, recall, F1-Score, and accuracy of the

classifier. Accuracy is used to measure the accuracy of

predictions made by the classifier. Precision calculates

the ratio of true positive predictions to all positive

predictions. While recall calculates the ratio of true

positive predictions to all predictions in the actual

class.

IV. RESULT AND DISCUSSION

A. Performance Evaluation

Several testing scenarios are used in this research

to determine the best approach to classify spam

feedbacks. The first scenario is to compare the

performance of different ratios of train and test sets

(Scenario 1). The next scenario is using upsampling

and downsampling train dataset (Scenario 2).

Upsampling is done by increasing the minority class

data to the same amount as the majority class.

Downsampling is done by reducing the majority class

data to the same amount of minority classes. And then

we compare both methods to determine what is the

best method for our research. The last scenario is we

use a typo-corrector from [12] in our research

(Scenario 3). A typo-corrector is a method to fix a

typo in the text. Our dataset has many words that

contain a typo. Therefore, with the use of a typo-

corrector, we believe it will increase the performance

of the model.

In Scenario 1, we compare the performance from

the 70:30 ratio of train and test set with 80:20.

According to the result of both methods, each method

obtained low precision, recall, and F1-Score. That is

because the dataset used in this research is

imbalanced. However, the best performance in this

scenario is the ratio of 70:30 with 50% precision, 3%

recall, and 6% F1-Score on spam class. The

performance of this scenario can be seen in the table

below.

TABLE IV. PERFORMANCE OF SCENARIO 1

Metrics 70:30 80:20

Spam Ham Spam Ham

Precision 50% 89% 0% 91%

Recall 3% 100% 0% 99%

F1-Score 6% 94% 0% 95%

The best performance of this scenario has an

accuracy of 94.3% in the training dataset and 92.59%

Actual

Predicted

Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021 112

ISSN 2085-4552

in the test dataset. The overall accuracy of this

scenario can be seen in the table below.

TABLE V. ACCURACY OF SCENARIO 1

Metrics 70:30 80:20

Train Test Train Test

Accuracy 94.3% 92.59% 90% 90%

Because our dataset is imbalanced, then our next

scenario is applying an up-sampling and down-

sampling method to our train data. With up-sampling

and down-sampling, the performance of this

imbalanced dataset is better than in the previous

scenario. Up-sampling method got 46% precision,

44% recall, and 45% F1-Score. The down-sampling

method got 25% precision, 67% recall, and 37% F1-

Score on spam class. Up-sampling method has higher

performance in precision and F1-Score, while the

down-sampling method has higher scores in the recall.

Therefore, it is necessary to decide which metric is a

better value in this case.

In requirements engineering, user feedback is used

by developers to find out what user needs of the

application are used. Therefore, in this case, recall is a

better metric in our research. However, when dealing

with an imbalance dataset we can not only look at the

value of precision or recall. Because our dataset is

imbalanced, the recall value could not be considered

accurate. We need to consider another value that is a

harmonic value of both precision and recall, which is

F1-Score. According to the F1-Score value and other

overall scores, up-sampling is a better method in our

research.

The performance and accuracy of scenario 2 can

be seen in the table below.

TABLE VI. PERFORMANCE OF SCENARIO 2

Metrics Up-sampling Down-sampling

Spam Ham Spam Ham

Precision 46% 94% 25% 94%

Recall 44% 93% 67% 78%

F1-Score 45% 94% 37% 81%

TABLE VII. ACCURACY OF SCENARIO 2

Metrics Up-sampling Down-sampling

Train Test Train Test

Accuracy 98,67

%

88,88

%

98,41

%

77,03

%

In scenario 3, we apply typo-corrector to our

dataset. In our dataset, there are many words used by

users that are not listed in the dictionary and there are

many typo errors. When we try to apply the typo-

corrector to our dataset, it shows a better performance

in our model. In this scenario, our model has the best

performance of 89.25% accuracy, 45% precision, 56%

recall, and 50% F1-Score on spam class as shown in

Table 8. From this scenario, we could say that the

current typo-corrector improves the performance of

the model. However, the improvement is not

significant. The result of this scenario could be seen in

Table 8 and Table 9.

TABLE VIII. PERFORMANCE OF SCENARIO 3

Metrics With Typo-

corrector

Without Typo-

corrector

Spam Ham Spam Ham

Precision 45% 95% 45% 94%

Recall 56% 93% 48% 93%

F1-Score 50% 94% 46% 94%

TABLE IX. ACCURACY OF SCENARIO 3

Metrics With Typo-

corrector

Without Typo-

corrector

Train Test Train Test

Accuracy 98,49

%

89,25

%

98,67% 88,88

%

TABLE X. BEST MODEL PERFORMANCE

Metrics Spam Ham

Precision 45% 95%

Recall 56% 93%

F1-Score 50% 94%

Accuracy 89.25%

113 Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021

ISSN 2085-4552

Based on the test scenarios that have been done

before, we conclude that using an upsampling method

with the ratio of 70:30 in training and test data as well

as the use of a typo-corrector succeeded in improving

model performance that has an imbalanced dataset.

The best model of these scenarios has 45% precision,

56% recall, 50% F1-Score, and 89.25% accuracy on

spam class. For the ham class, this model has 95%

precision, 93% recall, and 94% F1-Score.

V. CONCLUSION AND FUTURE WORKS

In this research, we used TF-IDF as feature

extraction and Multinomial Naive Bayes to classify

whether the user feedback of tiket.com application is

spam or not. Our dataset consists of 810 ham and 90

spam data that are gathered using the scrapping

method from the google play store. We use a

confusion matrix to calculate the performance of the

classification model. Based on previous test scenarios,

the best model is reached when we apply upsampling

method with the ratio of 70:30 in training and test data

as well as using typo-corrector from [12]. The best

performance of the model is 89.25% accuracy, 45%

precision, 56% recall, and 50% F1-Score in the spam

class.

In future works, we suggest adding more data to

our current dataset because our dataset has very low

spam data. We recommend that at least the ratio of

minority and majority class is 40:60 so it will be

balanced. Typo-corrector has been proven to improve

our model. However, the improvement is still very

low. An improvement to the typo-corrector could

make a better performance in the classifier. Last, we

suggest trying a different method of upsampling and

downsampling, since that method is very useful when

handling an imbalanced dataset. There are a couple of

upsampling methods like SMOTE (Synthetic Minority

Over-Sampling Technique) that could perform better

than our previous upsampling method.

ACKNOWLEDGEMENT

We would like to express our special gratitude to the

Software Engineering Laboratory in Universitas

Multimedia Nusantara who supported us a lot in

doing our research.

REFERENCES

[1] Wahono, R.S. (2006). MENYEGARKAN KEMBALI
PEMAHAMAN TENTANG REQUIREMENT
ENGINEERING. [Online] Available at:
https://romisatriawahono.net/2006/04/29/menyegarkan-
kembali-pemahaman-tentang-requirement-engineering/
[Accessed 1 Feb. 2020]

[2] Ceban, V. (2018). User Feedback: What It Really Is and
Why It’s So Important to Any Business’ Success?. [Online]
Available at: https://www.appzi.com/what-is-user-
feedback-and-its-role/ [Accessed 1 Feb. 2020].

[3] Maxmonroe, n.d. Arti Spam. [Online] Available at:
https://www.maxmanroe.com/vid/teknologi/arti-spam-
adalah.html [Accessed 20 Sep. 2019]

[4] Gandhi, R. (2018). Naive Bayes Classifier. [Online]
Available at: https://towardsdatascience.com/naive-bayes-
classifier-81d512f50a7c [Accessed 20 Sep. 2019]

[5] Matwin, S. & Sazonova, V. (2012). Direct comparison
between support vector machine and multinomial naive
bayes algorithms for medical abstract classification.
[Online] Available at:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422847/
[Accessed 1 Feb. 2020]

[6] Kalokasari, D. H., Shofi, D.I.M. & Setyaningrum, A.H.
(2017). IMPLEMENTASI ALGORITMA
MULTINOMIAL NAIVE BAYES CLASSIFIER PADA
SISTEM KLASIFIKASI SURAT KELUAR. JURNAL
TEKNIK INFORMATIKA, vol. 10, no. 2, pp. 109-118

[7] Arora, I. (2017). Document feature extraction and
classification. [Online] Available at:
https://towardsdatascience.com/document-feature-
extraction-and-classification-53f0e813d2d3 [Accessed 18
May 2020]

[8] Heidenrich, H. (2018). Stemming? Lemmatization? What?.
[Online] Available at:
https://towardsdatascience.com/stemming-lemmatization-
what-ba782b7c0bd8 [Accessed 20 Sep. 2019]

[9] Wijaya, A.P. & Santoso, H.A. (2016). Naive Bayes
Classification pada Klasifikasi Dokumen. Journal of
Applied Intelligent System, vol. 1, no.1, pp. 48-55

[10] Huang, O. (2017). Applying Multinomial Naive Bayes to
NLP Problems: A Practical Explanation. [Online]
Available at: https://medium.com/syncedreview/applying-
multinomial-naive-bayes-to-nlp-problems-a-practical-
explanation-4f5271768ebf [Accessed 20 Sep. 2019]

[11] Narkhede, S. (2018). Understanding Confusion Matrix.
[Online] Available at:
https://towardsdatascience.com/understanding-confusion-
matrix-a9ad42dcfd62 [Accessed 20 Sep. 2019]

[12] Setiabudi, Reza. (2020). Implementasi Algoritma
Levenshtein Distance untuk Typo Correction Bahasa
Indonesia pada User Feedback Aplikasi. Bachelor Thesis
thesis, Universitas Multimedia Nusantara.

https://romisatriawahono.net/2006/04/29/menyegarkan-kembali-pemahaman-tentang-requirement-engineering/
https://romisatriawahono.net/2006/04/29/menyegarkan-kembali-pemahaman-tentang-requirement-engineering/
https://www.appzi.com/what-is-user-feedback-and-its-role/
https://www.appzi.com/what-is-user-feedback-and-its-role/
https://www.maxmanroe.com/vid/teknologi/arti-spam-adalah.html
https://www.maxmanroe.com/vid/teknologi/arti-spam-adalah.html
https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c
https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422847/
https://towardsdatascience.com/document-feature-extraction-and-classification-53f0e813d2d3
https://towardsdatascience.com/document-feature-extraction-and-classification-53f0e813d2d3
https://towardsdatascience.com/stemming-lemmatization-what-ba782b7c0bd8
https://towardsdatascience.com/stemming-lemmatization-what-ba782b7c0bd8
https://medium.com/syncedreview/applying-multinomial-naive-bayes-to-nlp-problems-a-practical-explanation-4f5271768ebf
https://medium.com/syncedreview/applying-multinomial-naive-bayes-to-nlp-problems-a-practical-explanation-4f5271768ebf
https://medium.com/syncedreview/applying-multinomial-naive-bayes-to-nlp-problems-a-practical-explanation-4f5271768ebf
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

