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Abstract— User feedback could give a developer 

information on what should be fixed or should be 

improved. But there are many users feedback that 

is a spam. In user feedback, spam contents are 

more likely to be inappropriate feedback, feedback 

that is not feedback, just some random comment 

or even a question. Reading and choosing feedback 

manually could be costly, especially in terms of 

time and energy. Therefore, this research focuses 

on building a spam filtering model using 

Multinomial Naïve Bayes that implement a 

TF/IDF approach to detect spam automatically. 

For text classification, Multinomial Naïve Bayes 

proved on having better speed and having good 

performance. With TF/IDF, a word that highly 

occurred in many documents has less impact than 

others so it could help increasing performance 

from an imbalanced dataset. This research aims to 

implement Multinomial Naïve Bayes for spam 

filtering in user feedback and to measure the 

performance of the model. The best performance 

of this classifier was obtained when using the up-

sampling method and typo corrector with a 70:30 

ratio of train and test set resulting in 89.25% for 

accuracy, 45% for precision, 56% for recall, and 

50% for F1-Score. 

Index Terms— Spam filtering, Multinomial Naïve 

Bayes, User Feedback, TF/IDF, Requirements 

Engineering 

I. INTRODUCTION 

In software development, user requirements is a 

useful component that developers needed. In order to 

correctly analyse and define the users’ problem and 

needs, requirements engineering has become an 

important step in a software development lifecycle. 

Requirements engineering is a branch of software 

engineering which deals with problems that involve 

goals, functions, and restrictions on software systems 

[1]. Requirements engineering help software 

developer to have a better understanding about the 

problems. One of many ways to do requirements 

engineering is to directly involve the users in the 

development process. In the case in which the users of 

a software product is the public, it would be difficult 

to get all the users to be involved directly in the 

requirements specification and definition process. 

Many software developers rely on the users feedback 

gathered from many different sources online. For 

example, a mobile app developer in the Android 

environment would gather a lot of user feedback from 

the Google Play Store, and iOS environment from the 

Apple App Store. Another example is the web 

application of an e-commerce platform, the developers 

usually provide comment sections in order to gather 

feedbacks from their users, albeit content-related, 

product-related, or other categories of feedback. 

User feedback is defined as all information 

obtained from users about whether they are satisfied or 

not with a product or service [2].  Users will give 

feedback if they are satisfied or there is a problem 

when they use the software. Even though user 

feedback has a lot of benefits for software 

development, some problems could occur such as 

spam in user feedback. Spam is an activity to send a 

message to other people with an electronic device 

continuously without the consent of the other party 

[3]. Spam is usually targeting random people. Spam 

messages always have the same characteristics, 

therefore it is not too hard to distinguish. This is 

particularly a serious problem for software products 

with thousands or even millions of user feedback. 

Manually reading each of the feedback could take time 

and effort which otherwise could be used for other 

development activities. It is more time-wasting if the 

feedback themselves are actually spam messages. 

In user feedback, spam is more like inappropriate 

feedback, which is the feedback that is not actual 

feedback such as insulting feedback, fake review, etc. 

Inappropriate feedback is categorized as spam because 

that feedback is not useful for requirements 

engineering. Therefore, a classification system needs 

to be made to predict which feedback is spam. This 



 

 

 

 

109 Ultimatics : Jurnal Teknik Informatika, Vol. 13, No. 2 | December 2021 

 

ISSN 2085-4552 

research will use TF-IDF along with Multinomial 

Naive Bayes to make a classification system to detect 

spam in user feedback. 

II. RELATED WORK 

Multinomial Naive Bayes is an improvement from 

Naive Bayes Classifier. Naive Bayes itself is a 

classification method that uses Bayes Theorem where 

each feature is assumed as independent to each other 

[4]. According to research from [5], the Multinomial 

Naïve Bayes algorithm runs 2 to 6 times faster than the 

Support Vector Machine. Multinomial Naive Bayes do 

better performance in 9 out of 13 models that [5] have. 

According to research from [6], the Multinomial 

Naïve Bayes algorithm has 89.58% accuracy in the 

letter classification system. 

When dealing with text classification, it is 

necessary to do feature extraction before the 

classification. One of many popular feature extractions 

on text classification is TF-IDF and Doc2Vec. 

According to [7], TF-IDF has a better performance 

than Doc2Vec with 95% accuracy on Logistic 

Regression and 73.62% accuracy on Naïve Bayes. 

From the previous works, experiments related to the 

use of Multinomial Naïve Bayes and TF-IDF, which 

have been proven to be effective in other cases, for 

filtering spams in user feedback is still rare to be 

found. The main contributions of this research is to 

implement TF-IDF along with Multinomial Naïve 

Bayes to classify user feedback in Bahasa Indonesia 

and measure the performance of the system. Based on 

the results, we hope to be able to give more options to 

the developers to better their requirements engineering 

activities, especially when dealing with user feedback. 

Hopefully, by automating the spam filtering activity, 

more of the developers time and effort could be spent 

on other productive and creative activities to improve 

their products. 

III. RESEARCH METHODOLOGIES 

A. Dataset 

Dataset used in this research is user feedback from 

tiket.com app in Bahasa. Dataset is gathered using an 

automatic scrapping extension on the google play 

store. Then, the dataset is labelled by 5 of our 

colleagues with a majority vote.  The total dataset used 

in this research is 900 data with 810 data of Ham and 

90 data of Spam. The distribution of the dataset can be 

seen in Fig. 1. 

 

Fig. 1. Dataset distribution 

B. Preprocessing 

Preprocessing involved in this research is consist 

of Tokenizing, Filtering, and Stemming.  

Tokenizing separates each sentence into an array 

of words. For example, the sentence “There are 2 

winners of this game” will be tokenized like (‘There’, 

’are’, ’2’, ’winners’, ’of’, ’this’, ’game’). 

Filtering is a process that removes a bunch of 

words that is not useful in this research such as I, you, 

then. With stemming, words are reduced to their word 

stems [8]. For example, the sentence “He was 

swimming in the pool” will be reduced to “He is swim 

in the pool”. 

C. TF-IDF 

TF-IDF is an algorithm that is based on statistical 

values showing the appearance of a word in the 

document [9]. TF or Term-Frequency states how many 

words appear in a document. Meanwhile, IDF or 

Inverse Document Frequency states the number of 

documents that contain a word in one publication 

segment [6]. 

While computing TF, all words are treated equally 

important. However, it is known that certain words, 

such as “is”, “the”, and “and”, may appear a lot of 

times but have little importance. Therefore, we need to 

decrease the frequent terms while increasing the rare 

ones, by computing IDF, an inverse document 

frequency factor is integrated which depreciate the 

weight of words that occur very frequently in the 

document set and scale up the weight of words that 

occur rarely. 

IDF is the inverse of the document frequency 

which measures the informativeness of word t. When 

we calculate IDF, it will be very low for the most 

occurring words such as stop words (because stop 

words such as “is” is present in almost all of the 

documents, and N/df will give a very low value to that 

word). This finally gives what we want, a relative 

weightage. 
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Now there are few other problems with the IDF, in 

the case of a large corpus, the IDF value will explode. 

To avoid this effect, we use the log of the IDF. When a 

word that is not in vocab occurs, the DF will be 0. To 

avoid that, we add +1 to the denominator. Here is the 

final formula: 

𝑇𝐹 − 𝐼𝐷𝐹(𝑤, 𝑑) = 𝑇𝐹(𝑤, 𝑑)  ×  𝐼𝐷𝐹(𝑤)   (1) 

𝐼𝐷𝐹(𝑤) = 𝑙𝑜𝑔 (
𝑁

𝐷𝐹(𝑤)
)       (2) 

Where: 

- TF - IDF (w, d): weight of a word in all 

documents. 

- w: a word 

- d: a document 

- TF (w,d): the frequency of the occurring 

word w in document d 

- IDF (w): inverse DF from word w 

- N: a total of document 

- DF (w): total document that has word w 

D. Naive Bayes Classifier 

Naive Bayes Classifier is a classification algorithm 

based on the Bayes theorem. Naive Bayes Classifier 

assumes that every word in a document is 

independent. That is the presence of one particular 

feature does not affect the other [4]. Bayes theorem 

formula is shown in (3). 

𝑃(𝐵) =  
𝑃(𝐴)𝑥 𝑃(𝐴)

𝑃(𝐵)
  (3) 

E. Multinomial Naive Bayes 

Multinomial Naive Bayes is very similar to Naive 

Bayes Classifier. Multinomial Naive Bayes calculate 

the multinomial distribution from each feature in the 

documents [10]. The probability of a document d 

being in class c is computed as: 

𝑃(𝑐|𝑑)  ∝ 𝑃(𝑐) ∏ 𝑃(𝑡𝑘|𝑐)1≤𝑘≤𝑛𝑑
 (4) 

Where P(tk|c) is the conditional probability of term 

tk occurring in a document of class c. We interpret 

P(tk | c) as a measure of how much evidence tk 

contributes that c is the correct class. P(c) is the prior 

probability of a document occurring in class c. If a 

document’s words do not provide clear evidence for 

one class versus another, we choose the one that has a 

higher prior probability. The formula of Multinomial 

Naïve Bayes is shown in (5). 

𝐶𝑚𝑎𝑝 =𝑎𝑟𝑔 𝑎𝑟𝑔 𝑃(𝑐) ∏𝑚
𝑘=1 𝑃(𝑡𝑘  |𝑐)  (5) 

Parameter P(tk | c) (probability likelihood) is 

estimated by calculating the occurrence of tk on all 

training documents in c, using laplacean prior as 

shown in (6) [6]: 

𝑃(𝑡𝑘 | 𝑐) =  
1+ 𝑁𝑘

|𝑉|+𝑁
   (6) 

Where Nk counts the total occurrence of tk in c’s 

training document and N is the total occurrence of 

words in c [6]. For example, given training this 

training data: 

TABLE I. TRAIN DATA 

Text Class 

Free money, click the 

link now 

Spam 

Where are you now? Ham 

I am busy now, call later Ham 

Click the link and get 

free souvenir from me 

Spam 

Then we want to classify the sentence “Call me for 

free item” where the target class is spam or ham. First, 

we will calculate the probability likelihood of every 

word in the sentence using (6).  

TABLE II. PROBABILITY LIKELIHOOD 

Word P (word | spam) P(word | ham) 

Call 0 + 1

14 + 18
 

1 + 1

14 + 18
 

Me 1 + 1

14 + 18
 

0 + 1

14 + 18
 

For 0 + 1

14 + 18
 

0 + 1

14 + 18
 

Free 2 + 1

14 + 18
 

0 + 1

14 + 18
 

Item 0 + 1

14 + 18
 

0 + 1

14 + 18
 

Based on the calculation in Table 1, we can 

calculate the posterior probability of the sentence. 
𝑃(𝐶𝑎𝑙𝑙|𝑠𝑝𝑎𝑚)  × 𝑃( 𝑀𝑒|𝑠𝑝𝑎𝑚) × 𝑃(𝐹𝑜𝑟|𝑠𝑝𝑎𝑚)  

× 𝑃(𝐹𝑟𝑒𝑒|𝑠𝑝𝑎𝑚)  
× 𝑃(𝐼𝑡𝑒𝑚|𝑠𝑝𝑎𝑚)

=  
1

32
 ×  

2

32
 ×  

1

32
 × 

3

32
 ×  

1

32
=  0.000000178813934 

𝑃(𝐶𝑎𝑙𝑙|ℎ𝑎𝑚)  × 𝑃( 𝑀𝑒|ℎ𝑎𝑚)  × 𝑃(𝐹𝑜𝑟|ℎ𝑎𝑚)  
× 𝑃(𝐹𝑟𝑒𝑒|ℎ𝑎𝑚)  × 𝑃(𝐼𝑡𝑒𝑚|ℎ𝑎𝑚)

=  
2

32
 × 

1

32
 ×  

1

32
 ×  

1

32
 ×  

1

32
= 0.0000000596046448 

Based on the result above, we can conclude that 

the sentence “Call me for free item” is classified as 

Spam because the sentence has a higher posterior 

probability in class Spam. 
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F. The Learning Process 

This research uses TF-IDF along with Multinomial 

Naïve Bayes to classify a text as spam or ham. The 

learning process of the system can be seen in the 

following section. 

1. First, we load the file that contains the list of text 

that want to be classified. 

2. Then we begin the pre-processing that include 

tokenization, filtering, and stemming. 

3. We also use stop-words to remove the list of 

words that occur too often. 

4. When the pre-processing is over, we divide the 

dataset to train and test dataset. 

5. And then we made a vocabulary of features as a 

training process. 

6. After that, we convert the training dataset and test 

dataset to the TF-IDF model. 

7. Finally, we fit the model to the Multinomial Naïve 

Bayes algorithm and then calculate the 

performance of the model. 

G. Confusion Matrix 

A confusion matrix is a method to measure the 

performance of the classifier. The confusion matrix is 

in the form of a table with 4 different combinations of 

predicted and actual values [11].  

TABLE III. CONFUSION MATRIX 

 
Positive Negative 

Positive TP FP 

Negative FN TN 

Where TP occurred when the system predicted 

positive, and the actual data is positive (True Positive). 

TN means True Negative, where the system predicted 

negative, and the actual data is negative. FP occurred 

when the system predicted positive, but the actual data 

is negative (False Positive). FN means False Negative, 

where the system predicted negative, but the actual 

data is positive [11]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
   (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
   (9) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

Confusion matrix can be used to calculate 

precision, recall, F1-Score, and accuracy of the 

classifier. Accuracy is used to measure the accuracy of 

predictions made by the classifier. Precision calculates 

the ratio of true positive predictions to all positive 

predictions. While recall calculates the ratio of true 

positive predictions to all predictions in the actual 

class. 

IV. RESULT AND DISCUSSION 

A. Performance Evaluation 

Several testing scenarios are used in this research 

to determine the best approach to classify spam 

feedbacks. The first scenario is to compare the 

performance of different ratios of train and test sets 

(Scenario 1). The next scenario is using upsampling 

and downsampling train dataset (Scenario 2). 

Upsampling is done by increasing the minority class 

data to the same amount as the majority class. 

Downsampling is done by reducing the majority class 

data to the same amount of minority classes. And then 

we compare both methods to determine what is the 

best method for our research. The last scenario is we 

use a typo-corrector from [12] in our research 

(Scenario 3). A typo-corrector is a method to fix a 

typo in the text. Our dataset has many words that 

contain a typo. Therefore, with the use of a typo-

corrector, we believe it will increase the performance 

of the model.  

In Scenario 1, we compare the performance from 

the 70:30 ratio of train and test set with 80:20. 

According to the result of both methods, each method 

obtained low precision, recall, and F1-Score. That is 

because the dataset used in this research is 

imbalanced. However, the best performance in this 

scenario is the ratio of 70:30 with 50% precision, 3% 

recall, and 6% F1-Score on spam class. The 

performance of this scenario can be seen in the table 

below.  

TABLE IV. PERFORMANCE OF SCENARIO 1 

Metrics 70:30 80:20 

Spam Ham Spam Ham 

Precision 50% 89% 0% 91% 

Recall 3% 100% 0% 99% 

F1-Score 6% 94% 0% 95% 

The best performance of this scenario has an 

accuracy of 94.3% in the training dataset and 92.59% 
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in the test dataset. The overall accuracy of this 

scenario can be seen in the table below.  

TABLE V. ACCURACY OF SCENARIO 1 

Metrics 70:30 80:20 

Train Test Train Test 

Accuracy 94.3% 92.59% 90% 90% 

Because our dataset is imbalanced, then our next 

scenario is applying an up-sampling and down-

sampling method to our train data. With up-sampling 

and down-sampling, the performance of this 

imbalanced dataset is better than in the previous 

scenario. Up-sampling method got 46% precision, 

44% recall, and 45% F1-Score. The down-sampling 

method got 25% precision, 67% recall, and 37% F1-

Score on spam class. Up-sampling method has higher 

performance in precision and F1-Score, while the 

down-sampling method has higher scores in the recall. 

Therefore, it is necessary to decide which metric is a 

better value in this case. 

In requirements engineering, user feedback is used 

by developers to find out what user needs of the 

application are used. Therefore, in this case, recall is a 

better metric in our research. However, when dealing 

with an imbalance dataset we can not only look at the 

value of precision or recall. Because our dataset is 

imbalanced, the recall value could not be considered 

accurate. We need to consider another value that is a 

harmonic value of both precision and recall, which is 

F1-Score. According to the F1-Score value and other 

overall scores, up-sampling is a better method in our 

research. 

The performance and accuracy of scenario 2 can 

be seen in the table below. 

TABLE VI. PERFORMANCE OF SCENARIO 2 

Metrics Up-sampling Down-sampling 

Spam Ham Spam Ham 

Precision 46% 94% 25% 94% 

Recall 44% 93% 67% 78% 

F1-Score 45% 94% 37% 81% 

 

TABLE VII. ACCURACY OF SCENARIO 2 

Metrics Up-sampling Down-sampling 

Train Test Train Test 

Accuracy 98,67

% 

88,88

% 

98,41

% 

77,03

% 

In scenario 3, we apply typo-corrector to our 

dataset. In our dataset, there are many words used by 

users that are not listed in the dictionary and there are 

many typo errors. When we try to apply the typo-

corrector to our dataset, it shows a better performance 

in our model. In this scenario, our model has the best 

performance of 89.25% accuracy, 45% precision, 56% 

recall, and 50% F1-Score on spam class as shown in 

Table 8. From this scenario, we could say that the 

current typo-corrector improves the performance of 

the model. However, the improvement is not 

significant. The result of this scenario could be seen in 

Table 8 and Table 9. 

TABLE VIII. PERFORMANCE OF SCENARIO 3 

Metrics With Typo-

corrector 

Without Typo-

corrector 

Spam Ham Spam Ham 

Precision 45% 95% 45% 94% 

Recall 56% 93% 48% 93% 

F1-Score 50% 94% 46% 94% 

TABLE IX. ACCURACY OF SCENARIO 3 

Metrics With Typo-

corrector 

Without Typo-

corrector 

Train Test Train Test 

Accuracy 98,49

% 

89,25

% 

98,67% 88,88

% 

TABLE X. BEST MODEL PERFORMANCE 

Metrics Spam Ham 

Precision 45% 95% 

Recall 56% 93% 

F1-Score 50% 94% 

Accuracy 89.25% 
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Based on the test scenarios that have been done 

before, we conclude that using an upsampling method 

with the ratio of 70:30 in training and test data as well 

as the use of a typo-corrector succeeded in improving 

model performance that has an imbalanced dataset. 

The best model of these scenarios has 45% precision, 

56% recall, 50% F1-Score, and 89.25% accuracy on 

spam class. For the ham class, this model has 95% 

precision, 93% recall, and 94% F1-Score. 

V. CONCLUSION AND FUTURE WORKS 

In this research, we used TF-IDF as feature 

extraction and Multinomial Naive Bayes to classify 

whether the user feedback of tiket.com application is 

spam or not. Our dataset consists of 810 ham and 90 

spam data that are gathered using the scrapping 

method from the google play store. We use a 

confusion matrix to calculate the performance of the 

classification model. Based on previous test scenarios, 

the best model is reached when we apply upsampling 

method with the ratio of 70:30 in training and test data 

as well as using typo-corrector from [12]. The best 

performance of the model is 89.25% accuracy, 45% 

precision, 56% recall, and 50% F1-Score in the spam 

class. 

In future works, we suggest adding more data to 

our current dataset because our dataset has very low 

spam data. We recommend that at least the ratio of 

minority and majority class is 40:60 so it will be 

balanced. Typo-corrector has been proven to improve 

our model. However, the improvement is still very 

low. An improvement to the typo-corrector could 

make a better performance in the classifier. Last, we 

suggest trying a different method of upsampling and 

downsampling, since that method is very useful when 

handling an imbalanced dataset. There are a couple of 

upsampling methods like SMOTE (Synthetic Minority 

Over-Sampling Technique) that could perform better 

than our previous upsampling method. 
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