

10 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023

ISSN 2085-4552

Estimated Value of Software Developer

Productivity at the Software Implementation

Stage Using Function Points

Asri Maspupah1, Lukmannul Hakim Firdaus2, Wendi Wirasta2

1,2,3 Jurusan Teknik Komputer dan Informatika, Politeknik Negeri Bandung, Bandung, Indonesia
1 asri.maspupah@polban.ac.id, 2 lukmannul.hakim@polban.ac.id, 3 wendi.wirasta@polban.ac.id

Accepted 10 October 2022

Approved 28 November 2022

Abstract— Most Software Development Processes (SDP)

project failures occur due to errors in estimating the cost,

time, and effort during the planning stage. This happened

because the planning still relied on the intuition and

experience of the programmer. One approach that can be

taken to plan the right SDP is to know the value of SDP

productivity. The focus of this research was to determine

the value of productivity based on the differences in

programmers’ skills. This case study was conducted to

determine the productivity value of the web-based

software that has been built, namely McDelivery. The

productivity value was calculated based on the ratio of

software size to effort. In this case, the software size was

obtained by calculating the Application Function Point

Count (APFC). Meanwhile, the effort was obtained from

expert judgment to determine the time needed by the

development team at the junior, middle, and senior

software developers to implement software functionality

in person-day to the form of program code. The result

showed that the productivity value of SDP was directly

proportional to the level of ability of the programmers.

These productivity values can be used as a solution option

to calculate the estimated time, cost, and even the

availability of programmers that were adjusted to the

conditions faced in planning software development.

Index Terms— application function point count;

function point analysis; productivity metrics; software

development process; software developer.

I. INTRODUCTION

The accuracy of activity planning determines the

success factor of the software development process

(SDP) project at the beginning of a development which

is directly proportional to the realization of the

implementation of activities at the end of time [1]. This

accuracy is indicated by the software meeting the

requirements within a period and incurring reasonable

and planned costs [2]. Most SDP project failures

occurred due to incompatibility of planning with actual

implementation. Generally, the cause of the

discrepancy lies in the estimation of cost, time, and

effort [3]. Meanwhile, the estimated effort is used to

plan and calculate the software development costs.

Based on the research conducted by Usman in 2015

concerning the measurement of the accuracy of

planning estimates with the implementation in agile

software development through a survey of 60

companies showed that approximately 78.33% of the

companies stated that there was an inaccuracy

estimation between the implementation and the

planning [4]. The inaccuracy estimation occurs when

the implementation of software development exceeds

the planning estimate (60%) or solves faster than the

planning estimate (18.33%). One of the contributing

factors is that software development planners need to

think about the best scenario based on the development

team's ability to deal with software complexity. In

addition, planners also need to pay more attention to the

software development effort.

Proper SDP planning can be done by considering

realistic costs, time, and effort [5]. However, as SDP

planners, IT project managers have difficulty in making

accurate effort estimates [6]. In general, the calculation

of each functional software's development effort

depends on intuitive experience, which is a subjective

assessment of the SDP planner. In this case,

development effort is defined as person-hour working

on several SDP activities [7]. At the same time, the

determination of person-hours depends on the software

developer's ability level and the work's difficulty [8].

The accuracy of SDP planning is related to

productivity metrics because the value of productivity

can measure the development process's effectiveness at

the project's end [9]. In general, productivity is defined

as the ratio between input and output. Input is a resource

to produce output. This definition is very suitable for

the manufacturing industry because it clearly shows the

quality standard of input and output measurement units

[8]. In the field of software engineering (SE), the term

productivity refers to the effectiveness of development

project efforts measured by the output rate per unit of

software [10] [7].

The calculation of the SDP productivity value is

generally done twice; those are at the beginning and the

end of the project. The difference in productivity values

shows the inaccurate prediction of project planning

effort estimates. However, using historical SDP

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023 11

ISSN 2085-4552

productivity data from previous projects in similar

software developments can increase the accuracy of

project planning parameter estimates (effort, time, and

cost) [9].

On the other hand, most IT projects have used

productivity metrics to measure SDP productivity

based on the comparison between software size (output)

and effort (input) required in developing software [11].

In this case, the accuracy of the productivity value of

the productivity metric must consider three criteria: (1)

the scope of the resource; (2) the scope of input; and (3)

the scope of the output to be calculated [12]. Thus,

practitioners and academics must carefully know the

scope of effort and software size that will be useful for

measuring the SDP productivity.

Most previous researchers used time as the

definition of effort in measuring SDP productivity.

However, the definition of productivity in the SE

concept should focus on the level of complexity of work

done by each person [8]. Using time as a criterion for

measuring productivity inputs can lead to the question,

what time should be used? In this case, the time is the

duration spent by the person doing a job or time paid

(contract) person within the worked hour range. On the

other hand, each person has a different level of ability,

so the level of productivity in completing the work is

also different. In the context of SE, software developers'

ability can affect the productivity level in software

development [8]. Meanwhile, software metrics can

quantify software size as a productivity output criterion

[2]. Software metrics as software measurement

standards aim to get a value for the size of software

complexity [13].

In previous research, the researchers proposed

several software metrics, including line of code (LOC),

constructive cost model (COCOMO), and function

point analysis (FPA). LOC is the most straightforward

software metric using the actual line code as a criterion

[2]. However, LOC is so dependent on programming

languages and development technologies that it cannot

be used to measure the productivity of non-technical

activities and is challenging to be measured at the

beginning of development [14][2]. Furthermore,

COCOMO uses a mathematical formula to determine

software development efforts. COCOMO involves line

code information and justification of development

efforts by domain experts [15].

Meanwhile, FPA uses the requirement specification

functionality as the basis for measurement. The FPA

calculation uses the standard method to measure

software engineering based on the scope of the

software. Thus, the FPA calculation, regardless of

technology and programming language, is more

straightforward and meaningful from the end user's

point of view [16] [15].

Among the various variations of software metrics,

FPA is the most commonly used approach [5]. Alan J.

Albrecht introduced FPA from IBM in 1979 [3]. At the

end of the FPA measurement process, the software has

a function point (FP) value. In this case, FP shows the

value of software functionality as the basis for

successful product delivery to end users [8]. Thus, FP

is a unit of software size for software development

analysis. For example, realistic cost estimation,

measurement of SDP productivity value based on the

ratio of effort spent on each FP, and measurement of

software quality based on the ratio of the number of

defects found in each FP [17].

Based on the explanation above, this study aimed to

obtain the value of software developer productivity at

the software implementation stage. The focus of the

study was the analysis of effort and software size from

the side of software developers with different levels of

programming ability in the case of software

development from similar applications that already

exist. In this case, the SDP productivity measurement

parameters were Effort and software size. The

definition of the software developer's programming

ability specifications is through the justification of

domain experts, namely software developer experts

with 12 years of experience as a team leader of software

developers. Furthermore, the value of software

development productivity is used as an indicator of time

and cost estimation so that SDP planning becomes

realistic. In addition, the productivity measurement

parameters used time-person as input and FP as output.

At the same time, the selection of FP is a unit of

software size because it is more appropriate to use

functional measurement software independent of

technology to be used as a parameter for calculating

SDP planning.

II. METHODS

The research stage started with the analysis of

problems in software coding productivity. The next

stage was selecting a productivity measurement

method—finally, the measurement of productivity in

this case was carried out through an experiment. Figure

1 shows the research flow.

Problem Analysis
Productivity

Measurement Method
Selection

Measurement of Productivity
through Experiments

 1) Preparation
 2) Implementation
 3) Experiment Conclusion

1 2

3

Fig. 1. The Research Stage

The productivity measurement method used

productivity metrics. Then, the input and output

terminology were mapped into the software

12 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023

ISSN 2085-4552

development process. Furthermore, the product output

calculation used FPA, while software coding input used

calculating effort (person-day) required by the

developer. The productivity measurement experiment

consisted of 3 stages. First, experimental preparation

including preparing the case studies of products to be

built and mapping the developer programming skills

into three levels (junior, middle, and senior). Second,

the implementation of experiments to calculate the

input, output, and productivity of the implementation

software stage. Third, the conclusion of the

experimental results, which was to analyze the

productivity value at each developer level.

A. Function Point Analysis (FPA)

A measure of software complexity is the output

produced during software development. Furthermore,

the output was used as a parameter to generate

productivity values by comparing the effort when

carrying out activities. Software complexity becomes a

number through software measurements. FPA is a

method used to measure the complexity and

functionality of software in SDP projects [2] [18].

The method used in FPA was dividing the size of

the software into smaller components so that it was

easier to analyze [3]. The critical value in the FPA

measurement is the calculation of software function

based on five standard functions set by the International

Function Point Users Group (IPPUG), namely internal

logical files (ILF), external logical files (EIF), external

input (EI), external output (EO), and external inquiries

(EQ) [5]. In this case, the FP calculation process started

from a high level by analyzing the software

functionality specifications. It consisted of six steps,

namely (1) determining the type of FP count; (2)

identifying the software scope; (3) weighing the

software based on standard function; (4) calculating the

unadjusted function point (UFP); (5) justifying the

value adjustment factor (VAF), and (6) calculating the

adjusted function point (AFP) [19] [3].

Determining the type of FP Count

The calculation of software size depends on the

purpose of the type of software to be analyzed. In 2010,

IFPUG divided the types of FP calculations into three

categories. First, the development project function

point count (DPFPC) is the type of FP count intended

for software developed for the first time and released to

end users. Second, enhancement project function count

(EPFC) is the type of FP count intended for software

developed in adaptive maintenance projects. Adaptive

maintenance projects aim to improve performance and

implement change requirements from end users that

must be matched in the first stage of development.

Third, application function point count (AFPC) is the

type of FP count intended for software developed on

existing software products. However, adding new

functionality are needed when there is changing

requirements from end users.

This study used APFC to calculate software size

with the formula shown in equation 1.

 𝐴𝐹𝑃 = 𝐴𝐷𝐷 × 𝑉𝐴𝐹 (1)

Information:

• AFP : application project function point count

• ADD : unadjusted function point count from application
functionality added to an existing application

• VAF : value adjustment factor

1) Identifying the scope and limitations of the

software

The scope and limitations of the software form the

basis of software development. The scope defines a set

of software functionality that includes data, screens,

and reports. At the same time, the limitation of software

as an interface between software and end users defines

things outside the software's scope. Thus, determining

the scope and limitations of the software can provide

information on the size of the software based on

functionality at the end of development so that the FP

count can be carried out [20]. The steps for determining

the scope and limitations of the software are:

a) defining a set of sub-processes within the scope

of the software.

b) understanding the purpose of measuring the FP

count on the software.

c) defining the software process flow in managing

data into information.

d) defining business areas to support each process

in the software.

e) defining logical data both within the scope of

the software and logical data originating from

outside the scope of the software.

2) Identifying the scope and limitations of the

software

Unadjusted function points show the value of

software complexity by weighing each functional

requirement based on five standard functions [3] [2].

The weighting of software complexity consists of three

categories, namely low (L), average (A), and high (H)

[20]. Meanwhile, the five standard functions are

divided into data and transactional [20] [5].

The data function shows software functionality on

internal and external data storage requirements. Data

functions include logical data in software (ILF) and

external interface files that connect data from outside

with internal software (EIF). The transactional function

shows the software's functionality in processing data

when there is an interaction between the software and

the end user. The transaction process includes

transactions receiving input data (EI), displaying output

(EO), and querying data (EQ) [20].

The weighting of complexity in each standard

function is conducted based on the functional software's

RET, DET, and FTR values. In this case, RET (record

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023 13

ISSN 2085-4552

element type) is a subgroup of data elements in data

storage, DET (data element type) is an attribute in data

storage and application, and FTR (file type reference)

is a type of data files read/managed in a transaction. The

data function weighting matrix involves RET and DET

values, while the transactional function weighting

matrix involves FTR and DET values [5].

Based on the explanation above, the calculation of

the unadjusted function point is divided into two parts:

the standard weighting of the function and the

calculation of all weight values.

3) Weighing the Standard Function

a) External Input (EI)

EI is an elementary software process related to

receiving data from outside the system so that changes

in software behavior and changes in ILF data occur.

Examples of EI are input data from end users or other

systems. Table 1 shows the EI complexity matrix and

the weight value for each level of complexity.

TABLE I. EI COMPLEXITY MATRIX

Number of File

Type Reference

(FTR)

Number of Data Element Type (DET)

1-4 5-15 > 16

0 - 1 Low (3) Low (3) Average (4)

2 Low (3) Average (4) High (6)

> 2 Average (4) High (6) High (6)

b) External Output (EO)

EO is an elementary software process that sends

data from inside to outside the system. The logical

process of retrieving data from within the system

contains at least one of the processes between the

mathematical calculation process, the process of

making derived data, and changing the data of one or

more ILFs. An example of EO is creating an output file

sent to another system [20]. Table 2 shows the EO

complexity matrix and the weight value for each level

of complexity.

TABLE II. EO COMPLEXITY MATRIX

Number of File

Type Reference

(FTR)

Number of Data Element Type (DET)

1-5 6-19 > 19

0 – 1 Low (4) Low (4) Average (5)

2 – 3 Low (4) Average (5) High (7)

> 3 Average (5) High (7) High (7)

c) External Inquiries (EQ)

EQ is an elementary software process that sends

data from inside to outside the system. The difference

between EQ and EO lies in data collection. EO does not

create data from the mathematical calculation and

derived data process [20]. Table 3 shows the EQ

complexity matrix and the weight value for each level

of complexity.

TABLE III. EQ COMPLEXITY MATRIX

Number of File

Type Reference

(FTR)

Number of Data Element Type (DET)

1-5 6-19 > 19

0 – 1 Low (3) Low (3) Average (4)

2 – 3 Low (3) Average (4) High (6)

> 3 Average (4) High (6) High (6)

d) Internal Logical File (ILF)

ILF is a logical group of corresponding data within

the software scope and managed by one or more leading

software processes. An example of an ILF is a table in

a relational database and a collection of files stored in

an application [20]. Table 4 shows the ILF complexity

matrix and the weight values for each level of

complexity.

TABLE IV. ILF COMPLEXITY MATRIX

Number of File

Type Reference

(FTR)

Number of Data Element Type (DET)

1 - 19 20 - 50 > 50

1 Low (7) Low (7) Average (10)

2 – 5 Low (7) Average (10) High (15)

> 5 Average (10) High (15) High (15)

e) External Output (EO)

EIF is a logical group of interrelated data from

outside the scope of the software and managed by one

or more of the leading software processes. Logical data

EIF is a source of reference data by the software being

measured [20]. Table 5 shows the EIF complexity

matrix and the weight values for each level of

complexity.

TABLE V. EIF COMPLEXITY MATRIX

Number of File

Type Reference

(FTR)

Number of Data Element Type (DET)

1 - 19 20 - 50 > 50

1 Low (5) Low (5) Average (5)

2 – 5 Low (5) Average (7) High (10)

> 5 Average (7) High (10) High (10)

4) Calculating Unadjusted Function Point (UFP)

The calculation of the UFP value is carried out by

adding the weights of EI, EO, EQ, ILF, and EIF, which

are calculated based on the complexity value of the

software functionality [3]. Table 6 shows the process of

calculating UFP.

5) Justifying the Value Adjustment Factor (VAF)

Value adjustment factor (VAF) is a set of factors

that affect software complexity [20]. VAF uses

standardized questions of general system characteristics

(GSCs) to assess general characteristics of software

functionality. GSCs have 14 characteristics that reflect

the degree of influence of requirements on functional

software. The VAF value is calculated based on the

justification of the domain expert who knows the

software domain by giving weight to each characteristic

between the ranges of 0 (not essential) to d. 5 (very

important) [3]. Table 7 shows a list of VAF questions.

Furthermore, the TDI value was used in calculating

the VAF value using Equation 2.

14 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023

ISSN 2085-4552

 𝑉𝐴𝐹 = 0.65 + (𝑇𝐷𝐼 × 0.01) (2)

Information:

• VAF : value adjustment factor

• TDI : total degree of influence

TABLE VI. UNADJUSTED FUNCTION POINT (UFP) CALCULATION [3]

Standard Function
Software Complexity

Low (L) Average (A) High (H) Total

External Input (EI) __ x 3 = __ x 4 = __ x 6 = Total wight of EI

Enternal Output (EO) __ x 4 = __ x 5 = __ x 7 = Total wight of EO

External Inquries (EQ) __ x 3 = __ x 4 = __ x 6 = Total wight of EQ

Internal Logical Files (ILF) __ x 7 = __ x 10 = __ x 15 = Total wight of ILF

External Interface File (EIF) __ x 5 = __ x 7 = __ x 10 = Total wight of EIF

Unadjusted Function Point (UFP) The sum of weight EI EO, EQ, ILF, EIF

TABLE VII. UNADJUSTED FUNCTION POINT (UFP) CALCULATION [3]

No. Characteristics Question
Degree of Influence

(DI) *)

1. Data communications How many communication facilities are there to aid the transfer or

exchange of information with the application or system?

2. Distributed data processing How are distributed data and processing functions handled? _______

3. Performance Did the user require response time or throughput? _______

4. Heavily used configuration How heavily used is the current hardware platform where the

application will be executed?

5. Transaction rate How frequently are transactions executed daily, weekly, monthly,

etc.?

6. On-Line data entry What percentage of the information is entered On-Line? _______

7. End-user efficiency Was the application designed for end-user efficient? _______

8. On-Line update How many ILF’s are updated by On-Line transaction? _______

9. Complex processing Does the application have extensive logical or mathematical

processing?

10. Reusability Was the application developed to meet one or many user’s needs? _______

11. Installation ease How difficult is conversion and installation? _______

12. Operational ease How effective and/or automated are start-up, back up, and
recovery procedures?

13. Multiple sites Was the application specifically designed, developed, and

supported to be installed at multiple sites for multiple
organizations?

14. Facilitate change Was the application specifically designed, developed, and

supported to facilitate change?

Total Degree of Influence (TDI) Σ DI1-14

6) Calculating Adjusted Function Point (AFP)

Adjusted function point (AFP) is the final value of

FP as the value of software complexity calculated based

on the type of software [20]. AFP calculation was done

by using equation 1 formula with APFC software type.

B. Software Developer Specification

Software developers are experts who are engaged in

developing software. A software developer career in

software engineering consists of three levels based on

programming skills: junior, middle, and senior [21].

These levels reflect the specifications of the software

developer, who can show the responsibilities,

qualifications, and amount of take-home pay, as well as

the level of productivity in program coding.

• A junior software developer is a developer who has

experience developing software for 1-3 years and is

familiar with 1 or 2 programming languages/

development frameworks as well as basic programs,

such as programming structures, ACID attributes

(atomicity, consistency, isolation, and durability)

databases, data transactions in databases, and the

basis of database design [21][22].

• A middle software developer is a developer who has

experience in developing software for 3-5 years,

mastering 2 or 3 programming languages/

framework development, programming with

reasonably high complexity, able to work as a

problem solver, and able to perform proper

debugging but has not been able to make

appropriate technology decisions [21] [22]. At this

level, the developer is suitable for software

development, has enough experience working in the

field of software development, and is usually quite

proficient at being a full-stack developer (backend,

frontend, and database).

• Senior software developers have experience in

developing software for at least five years, master

new programming languages, adapt quickly, and

work as problem solvers by providing the best

solutions [21] [22]. Senior software developers

generally analyze problems that have not occurred,

then take preventive measures by preparing the right

technology during software development. At this

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023 15

ISSN 2085-4552

level, the developer has experience as an expert in

the world of work.

The software developer specifications were further

used as the research object to determine the productivity

value during software implementation in SDP.

Furthermore, the programming skills in software

development at each level of software developer were

mapped through domain expert interviews.

C. Analytical Hierarchy Process

SDP productivity measures software developer

performance by calculating the comparison ratio

between software size, the product produced, and the

effort spent producing the product (Adrián, 2015).

Figure 1 shows an illustration of the SDP productivity

model.

Process or
Subprocess SDP

Cost
Resource
(Effort)

Requirement
(Input)

Product
(Software)

Value

Fig. 2. Productivity Model [9]

Figure 1 is a productivity diagram that shows that

there is effort as a resource needed to produce software

on SDP. Thus, the measurement of SDP productivity

used the Equation 3.

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑆𝑖𝑧𝑒

𝑒𝑓𝑓𝑜𝑟𝑡
 (3)

Software size is a software size calculated based on

the value of software complexity. Meanwhile, effort is

the time a developer takes to produce software.

However, equation 3 still used general parameters

because the software size and SDP effort values can be

calculated using various approaches, as shown in

Tables 8 and 9.

TABLE VIII. SOFTWARE SIZE MEASUREMENT [10]

Size Parameter
Units of

measurement

Task Number of: Classes,

Modifications,

Modifications Request,
Module Modifications,

Modules, Work Items,

Pages, Requirements

#Classes,

#Modifications,

#Modules,
#WorkItems,

#Pages,

#Requirements

EP FP, CFP, EFP, S, Code

Size, OOmFPWeb, UFP,

OOFP, SM

function points

LOC LOC, KLOC, KSLOC,

SLOC, ELOC, NLOC,

AvgLOC, WSDI, SLC,

KNCSS, LOC added, S,
SL L, CP, Size, Total

Churn, NCLOC, Code

Contribution

lines of code

TABLE IX. INPUT MEASUREMENT [10]

Size Parameter
Units of

measurement

person developer person

cost C, man-cost person-cost

time hour, T, time, minute, dav-time,
time-month, month, cycle-time,

year

hour, minute,
month, year

effort developer-hour, developer-
quarter, developer-year, E, Eft,

engineering-month, H, man-

day, man-hour, man-month,
effort, PD, PH, man-quarter,

PM, man-project-time, SM,

person-days, person-month,

staff-hour, Staff-month

person-hour,
person-day,

person-month,

person-quarter,
person-year

Based on the table above, the SDP productivity

parameters used function points as the value of software

complexity and person-day as a unit of effort. The

selection of person-day as an effort parameter because

the FP that is done at one time is easier to analyze in

units of days. In addition, planning a software

implementation schedule by a domain expert on a

feature with low complexity must be done at least one

day before making the program. It is necessary to

understand software functionality so that there is time

allocation for unexpected conditions.

Function points were calculated through FPA, while

person-days were determined based on the software

developer's programming ability in software

development. Thus, the calculation of the SDP

productivity value used Equation 4.

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑆𝐷𝑃 =
𝐹𝑃

𝑃𝑒𝑟𝑠𝑜𝑛−𝐷𝑎𝑦
 (4)

Description:

• FP : function point, a measure of software
complexity

• Person-Day : total working time (days) per software

developer in implementing each functional software.

The SDP productivity measured was the

programming ability of software developers at different

levels in software implementation, from design to

program code. Furthermore, the productivity value was

compared to get the percentage level of speed of

software implementation on the same FP software.

III. RESULTS AND DISCUSSION

A. Case Study

The focus of the study was FP calculations on

software development from similar applications,

namely the McDelivery application, which can be

accessed at the link https://www.mcdelivery.co.id/id/.

McDelivery is a web-based application used for

ordering food and paying for restaurants. The

application has simple software functionality, such as

user authentication, viewing data, inserting data,

updating data, deleting data, and validating

transactions. In addition, services come from outside

16 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023

ISSN 2085-4552

the system, such as payment gateways during payment

processing and location coordinates from the Google

API. These two characteristics are the basis for

choosing McDelivery as a case study describing FP as

software size calculation. The scope of the McDelivery

application is divided into two parts, namely the

ordering process and the payment process with the

software functionality shown in Table 10.

 TABLE X. MCDELIVERY FUNCTIONALITY SOFTWARE

Feature

Code

Software

Functionality
Specification Details

FR01 Homepage The interface displays general information about the ordering system.

FR02 The page starts ordering

with a page in the form
of a pop-up order box

The order registration process interface consists of three ways:

• Method 1. Log in for customers who have registered a user.
• Method 2. Registration for customers who do not have an account and are visiting the website

for the first time. Orders are made using a personal identity stored on the website.

• Method 3. Order food with guest status for customers who want to place an order without register.

FR03 Registration page The account registration process on the website.

FR04 Delivery address input

page

The interface for filling out the order delivery address form which includes the process:

a. filling in the order field.

b. displaying the delivery location map.

FR05 Menu package list page The interface displays a food menu catalog, and there is a process for adding menus to the order cart.

FR06 Early message pop up The order process ahead of delivery time.

FR07 Food ordering page The food ordering process includes the process:

a. displaying menu list.
b. viewing order list information.

c. completing the order.

FR08 Order details page The food ordering detail process interface includes the process:

a. viewing detailed menu information.
b. placing an order by inputting the number of orders on the selected menu and entering unique

request data.

c. calculating the total price of the order.
d. adding order to cart.

FR09 Order overview page The interface displays an order summary which includes the process:

a. displaying a list of order details.
b. entering unique record data.

c. displaying a list of payment bills.

d. entering captcha code.

FR10 Payment page The interface displays the payment type for processing, including
a. Entering the payment method by selecting the available payment types.

b. Entering the delivery contact.
c. showing a list of bills including order code.

d. confirmation of order data.

FR11 Payment processing

page

The order bill payment process, including the process:

a. displaying the billing list and buyer contact.
b. displaying a choice of payment methods (debit or gopay).

c. processing the payment using the debit or gopay method according to the selected payment

method.

FR12 Order confirmation

page

The successful order confirmation to the customer includes the process:

a. displaying information on successful payment and display shipping address.

b. customer can track order.
c. customer can add order to favorite list.

d. sending an email to provide information about successfully placing an order and displaying the

details of the order list.

FR13 Order tracking page The interface displays the order status after the order is received by McDelivery. There are four order
statuses, namely orders received, in process, being delivered, and sent.

FR14 Order page failed The interface displays an order failed message when the booking time exceeds the order limit of 30

minutes. The failed booking page contains the following order failed information dan cancel order
button. The system displays the close application page when the customer presses the cancel order

button.

FR15 Great offers page The interface displays a list of promos offered by McDelivery at the time of food/beverage

purchases.

FR16 Website headers Navigation links are located in the header section at the top of each website page.

FR17 Website Footer Navigation links are located in the footer at the bottom of each website page.

FR18 Order sidebar The navigation link on the side is for displaying the menu list category of the food/beverage ordering

page.

FR19 Terms and conditions

page

The interface displays a list of terms and conditions for placing an order from the menu offered by

McDelivery.

FR20 Privacy policy page The interface displays policies and privacy as long as the customer makes a menu order on the

system.

FR21 Question and answer

page

The interface displays a list of questions and answers about how to order menus on the McDelivery

information system.

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023 17

ISSN 2085-4552

B. Software Size Calculation

Software size was calculated using the FPA method,

which consisted of 3 stages. FP calculations on a

McDelivery system are described below.

1) Unadjusted Function Point (UFP) Calculation

UFP was used to see software complexity by

weighing the software functionality against five

standard functions based on process logic design. Table

12 shows the software's weighting results, while Table

13 shows the results of the calculation of UFP.

2) Value Adjustment Factor (VAF) Justification

VAF justification was carried out by a senior

developer with 12 years of experience developing web-

based software who knows the logic's complexity in

implementing software functionality into a program

code. Table 11 shows the results of VAF justification

for GSCs by domain experts.

TABLE XI. NORMALIZED DECISION MATRIX

Serial

Number

Criteria

C1 C2 C3 C4 C5

A1 0,1672 0,1689 0,4628 0,4036 0,3404

A2 0,2326 0,1639 0,4474 0,5340 0,3341

A3 0,3126 0,4273 0,1645 0,2607 0,3530

A4 0,0872 0,2832 0,1645 0,2607 0,4224

A5 0,3126 0,3329 0,3291 0,2794 0,0756

A6 0,1672 0,4273 0,2725 0,2607 0,2017

A7 0,3126 0,4819 0,2314 0,1490 0,2900

A8 0,3853 0,2782 0,1645 0,2670 0,2837

A9 0,3199 0,2236 0,1182 0,2607 0,2017

A10 0,5816 0,1689 0,5040 0,3290 0,4665

Furthermore, the calculation of VAF used the

equation 2.

𝑉𝐴𝐹 = 0.65 + (𝑇𝐷𝐼 × 0.01)

 = 0.65 + (42 × 0.01) = 1.07

3) Adjusted Function Point (AFP) Calculation

The FP value used the equation on the type of APFC

software development using the 1 equation.

𝐴𝐹𝑃 = 𝐴𝐷𝐷∗ × 𝑉𝐴𝐹

𝐴𝐹𝑃 = 496 × 107 = 530,72

*) The ADD value was taken from the results of the UFP value

in Table 12

C. Software Size Calculation

Determination of software developer specifications

on programming skills used interview techniques to

domain software development experts who have

positions as senior software developers. The interview

technique aimed to justify the effort as SDP

productivity input parameters have a domain scope

consistent with developer specifications at each level.

The domain expert has experience developing

software on various software functionalities, such as

software development on multi-platforms (web,

mobile, and desktop), data retrieval into excel and pdf

files, coding with scheduled running (schedulers),

application programming interfaces (API), and creation

of user interfaces in web and mobile form. In addition,

the domain expert can map human resources (HR) into

software development projects based on the level of

software complexity and software developer

programming skills. Table 14 shows the results of the

analysis of software developer specifications at each

level of programming ability.

TABLE XII. WEIGHTING THE FUNCTIONALITY OF MCDELIVERY SOFTWARE

Software

Functionality

EI EO EQ ILF EIF

FTR DET W FTR DET W FTR DET W FTR DET W FTR DET W

FR01 3 49 H 0 0 L 3 3 L 6 16 A 0 0 L

FR02 1 12 L 0 0 L 1 2 L 1 2 L 0 0 L

FR03 1 31 A 1 4 L 1 28 A 4 13 L 0 0 L

FR04 2 13 A 0 0 L 2 10 A 1 8 L 1 6 L

FR05 1 15 L 0 2 L 1 8 L 3 7 L 0 0 L

FR06 1 7 L 2 5 L 1 9 L 2 6 L 0 0 L

FR07 1 17 A 1 5 L 2 35 H 2 21 A 0 0 L

FR08 1 14 L 2 6 A 1 32 A 3 15 L 0 0 L

FR09 2 14 A 2 5 L 2 16 A 1 19 L 0 0 L

FR10 2 14 A 2 2 L 2 13 A 2 21 A 0 0 L

FR11 2 27 H 0 0 L 2 57 H 4 15 L 1 1 L

FR12 1 5 L 0 0 L 1 22 A 4 14 L 0 0 L

FR13 1 2 L 0 0 L 1 8 L 1 6 L 0 0 L

FR14 0 2 L 0 0 L 0 4 L 0 0 L 0 0 L

FR15 1 4 L 0 0 L 1 11 L 1 6 L 0 0 L

FR16 1 9 L 0 0 L 1 7 L 2 4 L 0 0 L

FR17 1 17 A 0 0 L 1 8 L 3 7 L 0 0 L

FR18 1 3 L 0 0 L 0 11 L 2 7 L 0 0 L

FR19 1 4 L 0 0 L 0 4 L 2 5 L 0 0 L

FR20 1 4 L 0 0 L 1 4 L 2 5 L 0 0 L

FR21 1 7 L 0 0 L 1 10 L 3 6 L 0 0 L

*) W = Weight of Level Complexity Software

18 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023

ISSN 2085-4552

TABLE XIII. UFP MCDELIVERY CALCULATION RESULTS

Standard Function
Software Complexity Value

Low (L) Average (A) High (H) Total

External Input (EI) 13 x 3 = 39 6 x 4 = 24
2 x 6 =

12

75

Enternal Output (EO) 20 x 4 = 80 1 x 5 = 5
0 x 7 =

0
85

External Inquries (EQ) 13 x 3 = 39 6 x 4 = 24
2 x 6

=12

75

Internal Logical Files (ILF)
18 x 7 =

126
3 x 10 = 30

0 x 15 =
0

156

External Interface File (EIF)
21 x 5 =

105
0 x 7 = 0

0 x 10 =

0

105

Unadjusted Function Point (UFP)
496

TABLE XIV. SOFTWARE DEVELOPER PROGRAMMING SPECIFICATIONS

Level Category Programming Ability

Junior Algorithm understanding • basic validation logic, namely mandatory, field format, data type,

and alignment.

• regular operating business.

• basic algorithm structure, namely sequence, selection, and

repetition.

• complex algorithm structure, namely nested if with two levels,

nested repetition with 2-3 levels, and combination of if and
repetition with two levels.

Coding • reading the source code process flow.

• creating program code according to software functionality.

• proprietary bug fixing program code.

• implementation of functions according to the development

framework.

• understand aspects of clean code.

Query database managing database with data definition language and data

manipulation language, and retrieve data with the complexity of two

tables.

Technology exploration installing and adding plugin tools.

Software testing self-testing, unit testing, and code quality checker.

Middle Algorithm understanding middle developers have all the algorithm understanding abilities of

junior-level software developers, business validation, and the use of
algorithm structures with a complexity of 3 to 5 levels.

Coding middle developers have all the coding skills of a junior-level

software developer, bug fixing in other people's code, and can create

effective code.

Query database middle developers have all the skills to make database queries

owned by junior-level software developers, manage databases with

additional data control languages, master PL/SQL and retrieve data
with a complexity of 3 to 5 tables.

Technology exploration installing, adding plugin tools, and modifying tools.

Software testing self-testing, unit testing, and code quality checker.

Senior Algorithm understanding senior developers have all the algorithm understanding abilities of
medium-level software developers and use algorithm structures with

six levels of complexity to infinity.

Coding senior developers have all the coding skills of medium-level

software developers, review the creation of effective program code
structures following the software development framework, and can

create development frameworks.

Query database senior developers have all the capabilities to make database queries
owned by medium software developers and retrieve data with six

levels of complexity to infinity.

Technology exploration senior developers have all the capabilities of a medium-level

software developer and decide on the right technology according to
the problem domain.

Software testing self-testing, unit testing, and code quality checker.

D. SDP Productivity Calculation

The effort to calculate the SDP productivity value is

the time required for software developers to complete

program coding of software functionality in person-day

units. It was assumed that work effort for one day is 8

hours. The determination of effort is known through

justification by domain experts based on the software

developer's level of software complexity and

programming ability.

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023 19

ISSN 2085-4552

Based on the detailed specifications of the software

functionality in Table 10, the SDP productivity value

for each software developer is shown in Table 15. The

effort value of each software developer can be

determined from the programming ability and work

attitude so that each developer at the same level of

programming ability has a different effort value.

However, in this study, the effort justification process

only involved programming skills, while the ability-to-

work attitude was considered the same.

TABLE XV. SOFTWARE DEVELOPMENT EFFORT

Feature Code
Software Developer Effort (person-day)

Junior Middle Senior

FR01 3 2 2

FR02 5 3 3

FR03 4 3 3

FR04 4 3 2

FR05 2 1 1

FR06 1 1 1

FR07 3 2 2

FR08 5 4 3

FR09 3 2 2

FR10 2 1 1

FR11 5 3 3

FR12 2 2 2

FR13 2 1 1

FR14 3 2 2

FR15 3 2 2

FR16 3 2 2

FR17 1 1 1

FR18 2 1 1

FR19 1 1 1

FR20 1 1 1

FR21 1 1 1

Total Effort 56 40 37

Furthermore, SDP productivity was calculated

using equation 4 in each software developer

specification. The software size parameter uses FP,

worth 530.72, while the effort value is based on the total

effort per person-day. The value of software developer

productivity on SDP is the number of function points

that can be worked on for one day to create programs

based on requirements specifications and software

design. Table 16 shows the results of the calculation of

productivity.

TABLE XVI. EFFORT SOFTWARE DEVELOPMENT IN CODING

STAGE

Software

Developer Level

Effort

(person-day)

Productivity

(FP/person-day)

Junior 56 9.87

Middle 40 13.27

Senior 37 14.34

Table 16 illustrates that junior software developers

can implement 9 FPs in one day, middle software

developers implement 13 FPs in one day, and senior

software developers implement 14 FPs per day in the

case of the McDelivery ordering system. Based on the

effort given in each software developer specification in

the case of APFC software development, it can be

concluded that the production value is directly

proportional to the level of programming ability. This

is in line with the visualization of Figure 3.

Fig. 3. Software Developer Productivity Comparison

Figure 3 compares software developer productivity

at each level in developing software—the developers'

ability at every level goes with their experience in

software development. The productivity of software

developers depends on the software's complexity and

the software developer's programming skills. So Figure

3 relates to Table 14 regarding the specification of the

software developer's programming abilities for four

abilities: algorithms, coding, database queries,

technology exploration, and software testing. Junior

developers have fewer abilities compared to the two

levels of developers above. The middle developer status

is between junior and senior, while the senior developer

has the highest ability.

The higher the understanding of programming skills

when implementing software, the higher the level of

productivity. For example, in Table 16 or Figure 3,

senior software developers have higher productivity

scores and programming skills as problem solvers.

Thus, calculating software developer productivity in

making program code on SDP using equation 4 can

describe productivity quantitatively.

The productivity value at each level of a software

developer can be used as an alternative solution to

calculate the estimated time, cost, and availability of

human resources in planning software development for

similar applications that already exist. The estimation is

calculated based on the software size, the required

software developer specifications, and the productivity

value at each developer level who can implement

several FPs in one day in the form of program code.

Each software developer has a different productivity

value based on the level of programming ability and

software complexity.

This productivity value is very likely to be used for

all software development projects, mainly if the project

has limited resources (time, cost, and human resources).

For example, suppose a software development project

has a time limit that must be completed immediately. In

that case, the selection of a software developer is based

on the least effort by prioritizing the productivity of

highly qualified human resources. Meanwhile, suppose

a software development project has limited human

resources with senior software developer conditions

already mapped out on other software development

20 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023

ISSN 2085-4552

projects. In that case, the alternative is to choose a

software developer with slightly lower productivity—

for example, the selection of HR with medium or low

qualifications.

However, the estimated cost of software

development calculation needs to be studied deeper, to

know whether the increase in productivity is inversely

proportional to the cost. For example, the higher the

value of HR productivity, the lower the development

costs or vice versa. On the other hand, increased

productivity may be directly proportional to

development costs; the higher the value of HR

productivity, the more expensive development costs.

Development costs are increasing because of the need

for highly qualified human resources with higher

salaries.

IV. CONCLUSIONS

Information on software developer productivity at

every level of programming ability is the primary key

to making a more realistic SDP plan, namely

determining the duration of software development

based on the number of FP/day each software developer

can develop. For example, senior software developers

have less development time than junior and middle

developers. This statement is evidenced by the

productivity value of senior developers being higher

than that of middle and junior developers, namely 9.87

for junior developers, 13.27 for middle developers, and

14.34 for senior developers.

The estimated productivity value is calculated based

on the level of programming ability at the software

implementation stage to the complexity of the software

functionality. The use of function points in calculating

the productivity of specific projects allows it to be used

as a comparison with other projects in similar problem

domains. The number of FP/day implemented by

software developers utilizes previous productivity data

so that the productivity measure of software developers

can be used as an estimated parameter for software

development planning and a better estimate of the

budget for new projects. This is because the calculation

of development effort in planning, which is initially

based on the subjective assessment of the SDP planner,

can be replaced with an objective assessment by

utilizing the productivity value of each software

developer's programming ability calculated

quantitatively.

Suggestions for further research include adding

parameters to calculate software developer effort. For

example, the specification of programming skills and

work attitude skills, so it is necessary to design a case

study on a software development project. In addition,

the scope of productivity calculations is not only at the

software implementation stage. However, it can involve

other development stages, such as functionality

specification analysis, design, testing, or software

maintenance so that function point calculations can use

the DPFPC and EPFC software types.

ACKNOWLEDGMENT

Researchers would like to thank the Center for

Research and Community Service (PPPM) Bandung

State Polytechnic (POLBAN), which has supported the

implementation of this research, for the financial

assistance that has been provided.

REFERENCES

[1] N. Rachmat and Saparudin, “Estimasi Ukuran Perangkat

Lunak Menggunakan Function Point Analysis-Studi Kasus

Aplikasi Pengujian dan Pembelajaran Berbasis Web,” in
Prosiding Annual Research Seminar, 2017, pp. 3–5.

[2] H. Rohayani, F. L. Gaol, B. Soewito, and H. L. Hendrie,
“Estimated Measurement Quality Software On Structural

Model Academic System With Function Point Analysis,” in

International Conference on Applied Computer and
Communication Technologies (ComCom), May 2017.

[3] A. Y. P. Putri and A. P. Subriadi, “Software Cost Estimation

Using Function Point Analysis,” in The 4th International
Seminar on Science and Technology, Aug. 2018, vol. 79, pp.
79–83.

[4] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in

Agile software development: A survey on the state of the

practice,” in ACM International Conference Proceeding
Series, Apr. 2015, vol. 27-29-April-2015. doi:

10.1145/2745802.2745813.

[5] M. F. Hillman and A. P. Subriadi, “40 Years Journey of
Function Point Analysis Against Real-time and Multimedia

Applications,” in The fifth Information System International
Conference , 2019, pp. 266–274.

[6] B. Prakash and V. Viswanathan, “A survey on software

estimation techniques in traditional and agile development
models,” Indonesian Journal of Electrical Engineering and

Computer Science, vol. 7, no. 3, pp. 867–876, Sep. 2017, doi:
10.11591/ijeecs.v7.i3.pp867-876.

[7] S. Wagner, “Defining Productivity in Software Engineering,”

in Rethinking Productivity in Software Engineering, First
Edition., C. Sadowski and T. Zimmermann, Eds. Apress
Oppen, 2019. doi: 10.1007/978-1-4842-4221-6.

[8] A. H. López, R. C. Palacios, P. S. Acosta, and C. C. Lumberas,
“Productivity measurement in software engineering: A study

of the inputs and the outputs,” International Journal of

Information Technologies and Systems Approach, vol. 8, no. 1,
pp. 45–67, Jan. 2015, doi: 10.4018/IJITSA.2015010103.

[9] E. A. de Oliveira and R. C. Noya, “Using Productivity Measure
and Function Points to Improve the Software Development
Process,” Computer Science, 2013.

[10] E. Oliveira, D. Viana, M. Cristo, and T. Conte, “How have
software engineering researchers been measuring software

productivity?: A systematic mapping study,” in ICEIS 2017 -

Proceedings of the 19th International Conference on
Enterprise Information Systems, 2017, vol. 2, pp. 76–87. doi:
10.5220/0006314400760087.

[11] A. H. López, R. C. Palacios, Á. G. Crespo, and F. C. Isla,

“Software Engineering Productivity: Concepts, Issues and

Challenges,” International Journal Information Technology
Project Managemet, vol. 2, pp. 37–41, 2011.

[12] S. I. Mohamed, “Software development productivity impact

from an industrial perspective,” Int J Sci Eng Res, vol. 6, no. 2,
pp. 1333–1342, Feb. 2015, [Online]. Available:
http://www.ijser.org.

[13] J. Rashid, T. Mahmood, and W. M. Nisar, “A Study on

Software Metrics and its Impact on Software Quality,”

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023 21

ISSN 2085-4552

Technical Journal, University of Engineering and Technology
(UET), vol. 24, no. 1, pp. 1–14, 2019.

[14] N. Choursiya and R. Yadav, “An Enhanced Function Point
Analysis (FPA) Method for Software Size Estimation,”

International Journal of Computer Science and Information
Technologies IJCSIT, vol. 6, no. 3, pp. 2797–2799, 2015.

[15] S. M. R. Chirra and H. Reza, “A Survey on Software Cost

Estimation Techniques,” Journal of Software Engineering and

Applications, vol. 12, no. 06, pp. 226–248, 2019, doi:
10.4236/jsea.2019.126014.

[16] P. Vickers, “An Introduction to Function Point Analysis,”
2003. [Online]. Available:
www.paulvickers.com/northumbria.

[17] D. Garmus and D. Herron, Function Point Analysis:

Measurement Practices for Successful Software Project.
Addison Willey Professional, 2000.

[18] J. Shah, N. Kama, and S. A. Ismail, “An empirical study with

function point analysis for software development phase

method,” in ACM International Conference Proceeding Series,
May 2018, pp. 7–11. doi: 10.1145/3220267.3220268.

[19] A. Alexander, “How to Determine Your Application Size
Using Function Points,” 2004. [Online]. Available:
http://ifpug.org.

[20] IFPUG, “Function Point Counting Practices Manual,” 2010.

[21] AltexSoft Team, “Software Engineer Qualification Levels:

Junior, Middle, and Senior,” Altexsoft, Sep. 23, 2018.
https://www.altexsoft.com/blog/business/software-engineer-

qualification-levels-junior-middle-and-senior/ (accessed Sep.
27, 2022).

[22] K. Anderson, “Junior vs. Mid vs. Senior software engineers –

experience, skills, & expectations,” DEPT.
https://www.deptagency.com/en-us/insight/junior-vs-mid-vs-

senior-software-engineers-experience-skills-expectations/
(accessed Sep. 27, 2022).

