

Ultimatics : Jurnal Teknik Informatika, Vol. 14, No. 2 | December 2022 83

ISSN 2085-4552

Implementing the Chaotic Permutation

Multicircular Cryptography Technique using

Asymmetric Key

Aria Lesmana1, Ruki Harwahyu2, Yohan Suryanto3

1,2,3 Department of Electrical Engineering, Universitas Indonesia, Depok, Indonesia
1aria.lesmana01@ui.ac.id, 2ruki.h@ui.ac.id, 3yohan.suryanto@ui.ac.id

Accepted 18 October 2022

Approved 30 November 2022

Abstract— In digital computing, cryptographic methods

consider performance in both speed and security. This

study aims to explore and improve a permutation-based

symmetric chaotic cryptography technique called

Chaotic Permutation Multicircular (CPMC). In this

study, a method is proposed to implement asymmetric

key system from CPMC technique by generating a

reverser key for reverting the permutation result of

CPMC encryption back to its original arrangement using

the same function as the encryption process. The reverser

key alongside the CPMC key act as encryption and

decryption key pair. The pair key generation and

cryptographic function utilizes the encryption function of

CPMC technique dubbed CPMC Shrinking algorithm.

Asymmetric implementation can simplify CPMC

technique by also using CPMC Shrinking algorithm for

decryption, therefore enabling it as a single function for

encryption and decryption. The asymmetric

implementation test showed improvement in total speed

compared to initial implementation by average of 75.87%

from tests using different block sizes.

Index Terms—asymmetric cryptography; chaos

cryptography; chaotic permutation; cryptography;

permutation-based cryptography.

I. INTRODUCTION

Digital communications are still vulnerable to

security risks, such as eavesdropping or data leakage.

Digital systems generally secure data by implementing

a cryptographic system. Cryptographic systems in

addition to requiring key confidentiality guarantees,

also require high randomization for the confidentiality

of the results and algorithms that are not heavy for

encryption and decryption.

The application of Chaos Theory in mathematics for

cryptographic methods gave rise Chaos Cryptography,

through making use of mathematics functions with

chaotic properties to be used as a pseudorandom

number generator and can be combined with other

functions or algorithms to become a cryptographic

method. The widely used chaos mathematical function

is in the form of a map, or dubbed chaotic map. Chaos

cryptography methods is widely applied as an image

encryption method [1-6], such algorithms also been

developed using public key or as an asymmetric

cryptography, especially the ones using Chebyshev

Polynomial [15], [16], another method proposed by

Silva-Garcia et. al. uses Elliptic Curve function

alongside S-box Permutation generated by chaos

resulting from Logistic Map function [17].

Permutation method in cryptography is widely

applied alongside the substitution cipher method [7-14].

In this study, we explore the application of a

permutation-based cryptography with a chaotic

characteristics dubbed Chaotic Permutation

Multicircular (CPMC). CPMC is a chaotic

cryptographic technique based on permutations by

Suryanto et al. [18], CPMC algorithm is suitable for

data encryption due to its large keyspace of (2N)! [19].

CPMC algorithm applies rotational shift of a set

elements, using a key generated with special modulus

and LCM rules towards a set of natural number

sequences to produce chaotic properties. CPMC

algorithm has been implemented for image encryption

[20-22] and audio [23], however both implementations

are limited to symmetric block cipher algorithm.

This study proposes an asymmetric key

cryptography implementation of the CPMC technique,

by designing an algorithm that can generate a key pair

from the CPMC encryption key. The current

implementation of CPMC is a symmetric cryptography

with a single key value, but the permutation functions

are feasible to be utilized for an asymmetrical key

values, so the proposed design expands the

implementation to enable the usage of asymmetrical

cryptography. For the implementation of cryptography,

the encryption algorithm function of the CPMC

technique, namely CPMC Shrinking, can be used as an

encryption algorithm as well as decryption using the

generated key pair. This works aims to:

• Explore an alternative implementation for the

CPMC encryption technique as an asymmetric

cryptography and its feasibility.

• Simplify the encryption-decryption processes

by using a single algorithm function for running

84 Ultimatics : Jurnal Teknik Informatika, Vol. 14, No. 2 | December 2022

ISSN 2085-4552

both processes and analyzing its cryptographic

performance improvements.

• Discover a different approach in implementing

key generation and management for CPMC, by

using different values of keys that can only

encrypt and decrypt each other’s messages, as

opposed to the basic CPMC implementation as

symmetric key algorithm.

II. PRELIMINARIES

A. Asymmetric Key

Asymmetric key cryptography is a cryptography

algorithm in which the algorithms use a pair of

different keys and use a different component of the pair

for conducting encryption and decryption operations

separately. Also widely known as Public Key

Encryption [24]. For CPMC impelementation, both the

encryption and decryption keys are presented as set of

values, and both uses the same single function to

conduct their respective operations. Here the usage of

asymmetric pair of keys in CPMC algorithm is

analyzed for feasibility of public key cryptography.

Fig. 1. Asymmetric Key Cryptography

B. Chaotic Permutation Multicircular

Chaotic Permutation Multicircular (CPMC) is a

symmetric cryptographic technique utilizing

permutation function with chaotic mathematical

properties. The algorithm performs rotational

permutations to the arrangement of array elements,

accompanied by changes in the permutation space each

iteration of the permutation process is complete. The

CPMC technique consists of two cryptographic

functions, CPMC Shrinking as the encryption function

and CPMC Expanding as the decryption function.

CPMC technique utilize its own key generator function

dubbed Expanded Key Generator [18] [19], while the

key value used by CPMC is an array of natural

numbers with a length of N – 1 where N is the length

of the plaintext. The value of the key element

determines the shift distance of the permutation on the

plaintext element, while the position of the key element

value in the array determines which order the elements

is permuted.

Fig. 2. Basic CPMC Encryption and Decryption Process

1) CPMC Shrinking

CPMC Shrinking (CPMCS) is a permutation

function that acts as the encryption algorithm for

CPMC. The permutation begins on all elements of the

array, then the permutation is continued with the

previous result with a range starting at the next index

to the last index. The CPMCS permutation algorithm

can be summarized in several steps [19]:

1. Determine the input set of plaintext X of size N,

and the key array set Key of size N – 1.

2. Initiate the index loop iterator value n = 1.

3. Start of the (n)th Permutation by clockwise

array rotation within range of (N – n + 1) on

array X from its (n)th element to the last

(X[n:N]), elements in the range are shifted as

far as the (n)th element value of the key set

array (Key[n]).

4. The first element of the result set of X is stored

in Y[n], the stored element is not included in the

next permutation.

5. Increment the loop iterator n = n + 1.

6. Check whether the value of n == N. If not,

repeat step 4. If yes, continue to the next step.

7. The results of the remaining X permutations are

stored at the last index Y (Y[N] = X[N]). Array

Y is output as the result of CPMCS

permutations.

Ultimatics : Jurnal Teknik Informatika, Vol. 14, No. 2 | December 2022 85

ISSN 2085-4552

Fig. 3. CPMC Shrinking

2) CPMC Expanding

CPMC Expanding (CPMCE) acts as a decryption

function of the CPMC technique, the permutation

process applied is the opposite of the CPMCS

permutation. The CPMCE permutation algorithm can

be summarized in several steps [19]:

1. Determine the input set of ciphertext X of size

N, and the key array set Key of size N−1.

2. Initiate the index loop iterator value n = 1, with

the last two elements X (X[N] and X[N – 1]).

3. Permuting the (n)th counterclockwise rotation

with a range of elements of n + 1 on X from

index N−n−1 to the last as far as the value of

Key[n].

4. The (N − n − 1)th element of the result of the

permutation X is stored in the Y set and

becomes an additional element in the input of

the next permutation.

5. Increment the loop iterator n = n + 1.

6. Check whether the value of n == N. If not,

repeat step 4. If yes, continue to the next step.

7. Array Y results from the last iteration is output

as the result of CPMCE permutation.

Fig. 4. CPMC Expanding

3) CPMC Expanded Key Generator

The expanded key generator algorithm for the

CPMC technique serves as a generator for the

permutation key value set for the CPMCS and CPMCE

algorithms to determine the element shift in the

permutation’s multi-rotational movement process.

This function uses three parameters of integer inputs,

the first two are the initial key and sequence key as the

main seed value parameters that determines how high

the values of the key elements which determine the

permutation shift distances. The third parameter is

block size N to determine the key array size and the

size limit of input that is eligible for the encryption and

decryption process. The output of the function is an

array of integers with the size of N−1 elements as the

key. The keys generated from this function has a key

space of (N!). The CPMC Expanded Key Generator

algorithm can be summarized in several steps [19]:

1. Input the parameters values of ‘Initial Key’ and

‘Sequence key’ as the key seed, and N as the

block size and the element permutation length.

2. Initiate iterator n = 1, and first element of array

‘Temp’ as Temp[n] = Initial Key.

3. Determine the value of the base modulus of the

initial key ‘Bi’ as Bi[n] = (N – n + 1), and the

base modulus of the sequence key ‘Bs’ as Bs[n]

= (N – n + 1).

4. If initially Bi[n] is a prime number, then Bi[n]

= 1, or if all prime factors of Bi[n] are the same

value, then Bi[n]=Bi[n]/prime factor. If neither

then the value of Bi[n] remains.

86 Ultimatics : Jurnal Teknik Informatika, Vol. 14, No. 2 | December 2022

ISSN 2085-4552

5. Calculate KeyI[n] as the modulus of Temp[n]

with base Bi[n] (KeyI[n] = mod(Temp[n],

Bi[n]))), and KeyS[n] as the modulus of the

sequence key with base Bs[n] (KeyS[n] =

mod(Sequence, Bi[n])).

6. Calculate Key[n] as the modulus of the sum

KeyI[n] + KeyS[n] with base Bs[n].

7. Calculating the rounding down of the quotient

Temp[n]/Bi[n], the result is added with KeyI[n]

and stored as Temp[n].

8. Increment the iterator n = n + 1.

9. Check whether n == N, if not then the process

returns to stage 3, if yes then the process

continues to stage 10.

10. Array Key is outputted as the CPMC

cryptographic key set.

Fig. 5. CPMC Expanded Key Generator Function

III. PROPOSED METHOD

A. CPMC Asymmetric Implementation

The asymmetric implementation of CPMC can be

described as such, if a CPMC function permute a set X

using Key A into different arrangement resulting in set

Y (Y=f(X,A)), then there is another set of values

denoted as Key B that can revert Y to X using the same

function. The encryption and decryption functions are

implemented using the CPMCS function. From its

permutative nature, the two keys in the pair can decrypt

each other's permutations. The results of the encryption

from the base key can be decrypted using the pair key,

as well as the result of the pair key permutation can be

decrypted using the base key (Figure 6).

Fig. 6. CPMC Cryptography with Asymmetric Key

B. CPMC Asymmetric Pair Key Generation

The asymmetric key implementation of the CPMC

technique uses a CPMC Permutation Key Finder

algorithm as the pair key generator. The CPMC key

finder algorithm is able to generate a CPMC key based

on existing permutation patterns. If the CPMCS

function permutes setA to setB using key KeyA, then

the Key Finder function will return the reverser key

dubbed KeyB that can permute setB back to setA using

the CPMCS function as well. The CPMC Key Finder

Algorithm generates an asymmetric pair key by using

a set filled with unique values. The algorithm steps for

the CPMC Key Pair Finder function, dubbed as

“kFind”, is described as such:

1. Get input setA as the initial set containing

unique values of numbers up to the N length of

block and setB as the permutation result of setA

using KeyA. Declare iterator i as 0, and KeyB

as an empty array initially for storing resulting

key value.

2. Element of KeyB on KeyB[i] is incremented.

Then KeyB is used to permute setB and the

result is stored in Temp.

(Temp=CPMCS(setB,KeyB)).

3. Check if the value of the Temp[i] element is

equal to the setA[i] element. If not, repeat

previous step until the element Temp[i] is

equal to the value in setA[i].

4. If the element value Temp[i] == setA[i], then

the iterator i is incremented to change the

position index check of KeyB and setA to the

next index. Then repeat step 3 until i reaches

the last index of the key (i == N−1).

5. KeyB is outputted as the key pair of KeyA,

which can permute setB back to setA.

Ultimatics : Jurnal Teknik Informatika, Vol. 14, No. 2 | December 2022 87

ISSN 2085-4552

Fig. 7. CPMC Asymmetric Key Generation

IV. RESULTS

The algorithm design and test are applied using

Matlab 2018b platform. The test is conducted in a

computer with the specifications of i7-10750H

2.60GHz CPU, 16 GB of RAM and a 64-bit Windows

10 OS. The test consists of Pair Key Generation

function, encryption and decryption test, and its runtime

measurement to compare with the basic implementation

of source method.

A. Pair Key Generation

The key generation algorithm is tested for an array

length of 100 elements (N). For the test, the base key is

generated using the PCMP Expanded Key Generator

function with the input parameters of N=100, Initial

Key = 12345678 and Sequence Key = 1234. The

resulting base key contains the set of values: {12, 28,

14, 70, 53, 66, 79, 92, 13, 27, 41, 77, 69, 83, 11, 26, 41,

72, 71, 32, 49, 49, 1, 17, 33, 49, 65, 66, 25, 27, 59, 7,

25, 28, 61, 14, 33, 52, 9, 14, 49, 54, 31, 52, 17, 39, 7,

15, 1, 25, 49, 10, 37, 12, 41, 22, 5, 30, 19, 4, 37, 28, 21,

13, 13, 12, 13, 16, 21, 25, 7, 16, 5, 22, 15, 12, 13, 15, 5,

19, 17, 18, 13, 10, 5, 7, 5, 12, 1, 2, 7, 1, 3, 2, 5, 4, 3, 1,

0}.

Using Pair Key Finder, the base key is inputted and

the resulting pair key is: { 19, 23, 36, 62, 67, 19, 26, 88,

67, 9, 23, 55, 61, 84, 0, 11, 34, 21, 53, 43, 41, 22, 74,

36, 23, 52, 45, 20, 65, 45, 54, 11, 9, 11, 2, 11, 32, 26,

61, 12, 6, 37, 47, 8, 55, 26, 46, 50, 15, 33, 11, 21, 26,

29, 45, 37, 5, 15, 41, 24, 11, 36, 20, 17, 20, 21, 17, 24,

27, 11, 27, 24, 15, 18, 22, 12, 7, 2, 16, 6, 13, 10, 17, 1,

15, 2, 11, 12, 4, 5, 8, 3, 6, 1, 3, 1, 2, 2, 1}.

B. Encryption & Decryption Function Test

The key pair generated is used for permutation

testing of the encryption function against a text input

string of 93 characters long including spaces, which has

been padded with additional spaces to achieve a match

with a key block size of 100 characters. The input text

is stored in the 'plaintext' variable. Since CPMC uses

permutation as its method for encryption and

decryption, the encryption and decryption test using the

asymmetric key pair shows the interchangeability of

each key usage for either encryption or decryption

function, with one key encryption can be decrypted

using the other in the pair.

Encryption is applied using both keys in the pair, the

encryption result of the base key (key1) is stored in the

variable 'ciphertext1' (Figure 10), while the encryption

result of the pair key (key2) is stored in the variable

'ciphertext2' (Figure 11). The decryption function test is

carried out using the ciphertext generated from the

encryption experiment, namely 'ciphertext1' and

'ciphertext2'. Decryption is performed using the PCMP

key as opposed to the key used for encryption.

'ciphertext1' is decrypted using the key pair 'key2'

(Figure 12), while 'ciphertext2' is decrypted using the

base key 'key1'.

Fig. 8. Plaintext Input as String and ASCII Number

Fig. 9. Pair Key Encryption

Fig. 10. Base Key as Description Key

88 Ultimatics : Jurnal Teknik Informatika, Vol. 14, No. 2 | December 2022

ISSN 2085-4552

Fig. 11. Base Key Encryption

Fig. 12. Pair Key Description

C. Encryption & Decryption Runtime

In testing the CPMC cryptographic algorithm,

runtime measurements of the encryption and decryption

functions were also carried out in Matlab.

Measurements were made during the running of the

proposed asymmetric implementation algorithm

program and the basic implementation as symmetric

cryptography, both of which were also run with

different input lengths (N) starting from 100 to 1000

elements in size. The basic implementation process

uses the CPMC Shrinking and Expanding permutation

algorithm separately as encryption and decryption

functions, respectively, using the key generated by the

Expanded Key Generator function, while the

asymmetric implementation uses CPMC Shrinking as

the encryption and decryption function, where the

encryption process uses the same key (Expanded Key)

as in the basic implementation, and the decryption

process uses the key (Pair Key) generated by the KFind

function, so that the runtime measured is one time

encryption process using CPMCS with two decryption

processes using the CPMCE and CPMCS functions

respectively along with their difference ratio

percentage.

TABLE I. RUNTIME OF ENCRYPTION AND DECRYPTION TEST BY

PERMUTATION LENGTH (N)

N
Runtime (s) Runtime

Difference

(%)
CPMCS

Encryption
CPMCE

CPMCS

Decryption

100 1.11E-04 5.13E-04 1.12E-04 78.18

200 2.22E-04 9.76E-04 2.13E-04 78.2

300 2.87E-04 1.28E-03 2.69E-04 76.98

400 4.44E-04 1.78E-03 4.41E-04 75.21

500 4.91E-04 2.28E-03 4.95E-04 78.29

600 6.41E-04 2.56E-03 6.42E-04 74.94

700 7.84E-04 3.02E-03 7.57E-04 74.94

800 9.72E-04 3.48E-03 8.75E-04 74.85

900 1.13E-03 3.94E-03 1.01E-03 74.32

1000 1.14E-03 4.19E-03 1.14E-03 72.81

Average 75.87

TABLE II. RUNTIME COMPARISON WITH SOURCE DATA AT

N=300

Test
Runtime (s)

Encryption Decryption Total

CPMCS +

CPMCE Test

2.87E-04 1.28E-03 1.57E-03

Asymmetric

Key CPMCS
2.87E-04 2.69E-04 5.57E-04

CPMC

Source [19]
3.08E-03 3.22E-03 6.30E-03

The runtime measurement results in Table I show

that the speed of the CPMCS function both as an

encryption and decryption function runs faster than

CPMCE, where the use of CPMCS as a decryption

function increases the decryption runtime by an average

of 75.87%. Then the measured runtimes were compared

with data from literature sources that recorded

measurements at N=300 (Table 2). This comparison is

used to show the difference between the results of the

basic implementation test and the proposed method

with the source data, in which the Matlab test version

runtime are found to be faster for both basic and

proposed implementation compared to the source data.

The basic implementation CPMC encryption and

decryption runtime on the running test in Matlab give

results of a total of 1.57E-03 seconds, while the source

data gives a total of 6.30E-03 seconds. The proposed

asymmetric implementation results in a total runtime of

5.57E-04 seconds, which is an increase of 75.16%

compared to basic CPMC from the Matlab test and by

91.17% from the source data.

D. Public Key Feasibility

The permutation key and CPMC Shrinking

algorithm properties made it so that a certain key set

values are only pairable with a specific key set value so

that one key’s encryption result can only be decrypted

using the other key using the same permutation

Ultimatics : Jurnal Teknik Informatika, Vol. 14, No. 2 | December 2022 89

ISSN 2085-4552

function. However, since the base permutation

algorithms were meant as a symmetric cryptographic

function, the leakage of one pair of keys can

compromise the secrecy of the encrypted data content.

A modification on the permutation step and encryption

process while without requiring to modify the key value

can add better secrecy.

V. CONCLUSIONS

CPMC technique can apply cryptography

asymmetrically using key pairs that can perform

decryption using the same algorithm for encryption,

namely CPMC Expanding, where the results of one key

encryption permutation can be decrypted using another

key in the pair. The implementation of asymmetric keys

in the CPMC technique can simplify the work of the

algorithm by using the same function to perform

encryption and decryption, and produce better

performance at the decryption speed than the basic

CPMC technique. This means the speed of the CPMC

Shrinking algorithm is found to be faster than the

CPMC Expanding, so the implementation of

asymmetric key cryptography for CPMC can be used as

a more efficient alternative for fast encryption and

decryption method using a pre-generated key. The use

of CPMC Shrinking as a decryption function results in

an average decryption speed increase of 75.87% from

testing with different iterations of block size.

REFERENCES

[1] M. Kumar, A. Saxena, and S. S. Vuppala, "A Survey on

Chaos Based Image Encryption Techniques," in Multimedia
Security Using Chaotic Maps: Principles and Methodologies,

K. M. Hosny Ed. Cham: Springer International Publishing,

pp. 1-26, 2020.
[2] M. T. Suryadi, Y. Satria, and M. Fauzi, "Implementation of

digital image encryption algorithm using logistic function

and DNA encoding," Journal of Physics: Conference Series,
vol. 974, p. 012028, 2018/03 2018, doi: 10.1088/1742-

6596/974/1/012028.

[3] M. Wang, X. Wang, Y. Zhang, S. Zhou, T. Zhao, and N. Yao,
"A novel chaotic system and its application in a color image

cryptosystem," Optics and Lasers in Engineering, vol. 121,

pp. 479-494, 2019, doi:
https://doi.org/10.1016/j.optlaseng.2019.05.013

[4] A. M. Elshamy, A. I. Hussein, H. F. A. Hamed, M. A.

Abdelghany, and H. M. Kelash, "Color Image Encryption
Technique Based on Chaos," Procedia Computer Science,

vol. 163, pp. 49-53, 2019/01/01/ 2019, doi:

https://doi.org/10.1016/j.procs.2019.12.085.
[5] Y. Liu, J. Zhang, D. Han, P. Wu, Y. Sun, and Y. S. Moon, "A

multidimensional chaotic image encryption algorithm based

on the region of interest," Multimedia Tools and
Applications, vol. 79, no. 25, pp. 17669-17705, 2020/07/01

2020, doi: 10.1007/s11042-020-08645-8.

[6] S. Zhou, X. Wang, M. Wang, and Y. Zhang, "Simple colour
image cryptosystem with very high level of security," Chaos,

Solitons & Fractals, vol. 141, p. 110225, 2020/12/01/ 2020,
doi: https://doi.org/10.1016/j.chaos.2020.110225.

[7] Y. Naseer, T. Shah, and D. Shah, "A novel hybrid

permutation substitution base colored image encryption
scheme for multimedia data," Journal of Information Security

and Applications, vol. 59, p. 102829, 2021/06/01/ 2021, doi:

https://doi.org/10.1016/j.jisa.2021.102829.
[8] L. Teng, X. Wang, and Y. Xian, "Image encryption algorithm

based on a 2D-CLSS hyperchaotic map using simultaneous

permutation and diffusion," Information Sciences, vol. 605,
pp. 71-85, 2022/08/01/ 2022, doi:

https://doi.org/10.1016/j.ins.2022.05.032.

[9] E. A. Albahrani and T. K. Alshekly, "New Chaotic Substation
and Permutation Method for Image Encryption,"

International Journal of Applied Information Systems, vol.

12, pp. 33-39, 2017.
[10] J. I. Moreira Bezerra, V. Valduga de Almeida Camargo, and

A. Molter, "A new efficient permutation-diffusion encryption

algorithm based on a chaotic map," Chaos, Solitons &
Fractals, vol. 151, p. 111235, 2021/10/01/ 2021, doi:

https://doi.org/10.1016/j.chaos.2021.111235.
[11] R. S. Devi, K. Thenmozhi, R. Amirtharajan, and P.

Padmapriya, "A Novel Multiple Segmented Image

Encryption," in 2019 International Conference on Computer

Communication and Informatics (ICCCI), 23-25 Jan. 2019

2019, pp. 1-5, doi: 10.1109/ICCCI.2019.8822155.

[12] M. Wang, X. Wang, Y. Zhang, and Z. Gao, "A novel chaotic
encryption scheme based on image segmentation and

multiple diffusion models," Optics & Laser Technology, vol.

108, pp. 558-573, 2018/12/01/ 2018, doi:
https://doi.org/10.1016/j.optlastec.2018.07.052.

[13] S. Sun, Y. Guo, and R. Wu, "A Novel Image Encryption

Scheme Based on 7D Hyperchaotic System and Row-column
Simultaneous Swapping," IEEE Access, vol. 7, pp. 28539-

28547, 2019, doi: 10.1109/ACCESS.2019.2901870.

[14] A. A. Karawia and Y. A. Elmasry, "New Encryption
Algorithm Using Bit-Level Permutation and Non-Invertible

Chaotic Map," IEEE Access, vol. 9, pp. 101357-101368,

2021, doi: 10.1109/ACCESS.2021.3096995.
[15] I. Mishkovski and L. Kocarev, "Chaos-Based Public-Key

Cryptography," in Chaos-Based Cryptography: Theory,

Algorithms and Applications, L. Kocarev and S. Lian Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 27-65,

2011.

[16] D. Yoshioka, "Security of Public-Key Cryptosystems Based
on Chebyshev Polynomials Over Z/pk Z," IEEE Transactions

on Circuits and Systems II: Express Briefs, vol. 67, no. 10,

pp. 2204-2208, 2020, doi: 10.1109/TCSII.2019.2954855.
[17] V. M. Silva-García, R. Flores-Carapia, M. D. González-

Ramírez, E. Vega-Alvarado, and M. G. Villarreal-Cervantes,

"Cryptosystem Based on the Elliptic Curve With a High
Degree of Resistance to Damage on the Encrypted Images,"

IEEE Access, vol. 8, pp. 218777-218792, 2020, doi:

10.1109/ACCESS.2020.3042475.
[18] Y. Suryanto, Suryadi and K. Ramli, "Chaos properties of the

Chaotic Permutation generated by Multi Circular Shrinking

and Expanding Movement," 2015 International Conference
on Quality in Research (QiR), 2015, pp. 65-68, doi:

10.1109/QiR.2015.7374896.

[19] Y. Suryanto, "Pengembangan dan Analisis Metode Permutasi
Chaotic Baru Berbasis Multiputaran Mengecil dan Membesar

untuk Enkripsi Citra dengan Tingkat Keamanan Tinggi,

Cepat dan Tahan Terhadap Gangguan," Program Doktor
[Dissertation], Universitas Indonesia, 2016.

[20] Y. Suryanto, Suryadi, and K. Ramli, "A Secure and Robust

Image Encryption Based on Chaotic Permutation Multiple
Circular Shrinking and Expanding," J. Inf. Hiding Multim.

Signal Process., vol. 7, pp. 697-713, 2016.

[21] Y. Suryanto, Suryadi, and K. Ramli, "A new image
encryption using color scrambling based on chaotic

permutation multiple circular shrinking and expanding,"

Multimedia Tools and Applications, vol. 76, no. 15, pp.
16831-16854, 2017, doi: 10.1007/s11042-016-3954-5.

[22] K. Ramli, Y. Suryanto, Magfirawaty, and N. Hayati, "Novel
Image Encryption Using a Pseudoset Generated by Chaotic

Permutation Multicircular Shrinking With a Gradual

Deletion of the Input Set," IEEE Access, vol. 8, pp. 110351-
110361, 2020, doi: 10.1109/ACCESS.2020.3001949.

[23] N. Hayati, Y. Suryanto, K. Ramli, and M. Suryanegara, "End-

to-End Voice Encryption Based on Multiple Circular Chaotic
Permutation," in 2019 2nd International Conference on

Communication Engineering and Technology (ICCET), 12-

15 April 2019 2019, pp. 101-106, doi:
10.1109/ICCET.2019.8726890.

90 Ultimatics : Jurnal Teknik Informatika, Vol. 14, No. 2 | December 2022

ISSN 2085-4552

[24] R. Shirey, "Internet Security Glossary, Version 2", FYI 36,
RFC 4949, doi: 10.17487/RFC4949, August 2007. Network

Working Group [Internet]. Available: https://www.rfc-
editor.org/info/rfc4949.

