

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023 71

ISSN 2085-4552

Comparative Study of Robot Framework and

Cucumber as BDD Automated Testing Tools

Khaerunnisa1, Nungki Selviandro2, Rosa Reska Riskiana3

1,2,3Faculty of Informatics, Telkom University, Bandung, Indonesia
1khaerunnisa@students.telkomuniversity.ac.id, 2nselviandro@telkomuniversity.ac.id,

3rosareskaa@telkomuniversity.ac.id

Accepted 20 June 2023

Approved 11 July 2023

Abstract— Automation testing is much more efficient and

accurate, the script is easy to document, and update

compared to manual testing. Testing a website may

necessitate time and effort to learn the tools to be used.

Cucumber and Robot Framework are well-known open-

source frameworks, according to Stack Overflow and

GitHub. Cucumber and Robot Frameworks are known

on an international scale, especially Robot Frameworks,

which are often used by large companies. Each uses the

Java and Python languages, which both support BDD.

The comparative efforts of the two tools aim to help

testers compare and determine automated testing tools in

the BisOps Logee Port Web Admin case study based on

the effectiveness and efficiency of the tools and create

specific test cases as test documentation so that testers do

not need to spend time analyzing both. Because this

research involves evaluation and comparison, several

criteria were chosen to support the evaluation process,

namely functionality, reliability, usability, performance

efficiency, and portability. The results of this study show

that both tools can be recommended for novice QA's who

want to learn the basics of automation by implementing

BDD. Meanwhile, for QA's who have done automation

before and want to do more in-depth configuration and

reporting, it is recommended to use Robot Framework

because the syntax is short, has lots of keywords that

make it easier for testers, and can make the testing system

shorter but more specific.

Index Terms— automated-testing; behavior-driven

development; comparative-evaluation; cucumber;

Robot-framework.

I. INTRODUCTION

Software product testing is one of the phases of the

Software Development Life Cycle (SDLC), which aims

to find errors in the source code that might cause bugs

in software functionality. Testing can improve the

quality of software. There are two types of testing,

namely manual testing, and automation testing.

Automation testing is far more efficient and accurate,

and the script can be easily documented and updated

compared to manual testing [1]. When automating

testing on web-based applications, the tester may need

to invest time and effort in learning the tools that will

be used later [2].

The method used in this research is BDD. Behavior-

Driven Development (BDD) is an agile software

development methodology that assists teams in creating

high-quality, fast-moving software [3]. BDD was first

introduced by Dan North in the early 2000s as an easier

way to teach and practice test-driven development

(TDD) [4]. The BDD method was chosen because its

main benefit is to facilitate organized communication

within teams, meaning that product owners, developers,

and testers will have a better-shared understanding of

how the system works. Requirements written by the

customer in a given-when-then format can be

immediately used as a starting point for acceptance

tests. This means that it is easier for non-developers to

participate in the creation of acceptance tests [5]. Many

tools that can be used for automation testing have been

developed. There are at least 59 tools that can be used

for automated testing. The first tool, Cucumber, was

chosen because it is a well-known open-source testing

tool that supports BDD. Cucumber has 3200 stars on

GitHub and 634 forks. Robot Framework was chosen

as the second tool because it is popular and supports

BDD. Robot Framework has 5600 stars on GitHub and

1600 forks [5]. The first testing tool, Selenium

Cucumber, was chosen because it is an internationally

renowned framework and open source. The second test

tool is the keyword-driven open-source framework

(Robot Framework), which was also chosen because it

is comprehensive and is used by many large

international companies [6] and the robot framework is

very easy to use in writing test scripts. The Robot

Framework has a very modular architecture [7]. The

two test tools are the most well-known testing tools

according to the GitHub platform and support BDD,

which will be used in this research.

In Juuso Jokio's research, namely "Test automation

tools: Robot Framework vs. Selenium-Cucumber" [6],

which focuses on automatic testing to test the

functionality of the e-mail service, namely the login

feature that is implemented in several browsers, there is

no specific test case used by researchers. Therefore, in

this study, the researcher uses the same framework as

the previous study but with more specific test cases, not

only for the login feature but also for other features, so

that the researcher can see and analyze the differences

72 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023

ISSN 2085-4552

between the two betters. Researchers tried comparative

efforts on Cucumber and robot frameworks, which

were carried out to assist testers in comparing and

determining automated testing tool frameworks in the

BisOps Logee Port Web Admin case study based on the

effectiveness and efficiency of testing tools so that

testers do not need to spend time trying and analyzing

both, and testers making specific test cases as test

documentation, which will help the testers in terms of

trying and analyzing both. Because this research

involves evaluation and comparison, several criteria

were chosen to support the evaluation process, namely

functionality, reliability, usability, performance

efficiency, and portability [1].

The case study in this research refers to the Web

Admin BisOps Logee Port, which is a web-based

application for Internal Admin Operations that is useful

for managing NPCT-1, NLE, and KOJA master data

and is located in Indonesia. NPCT-1 is a web-based

one-stop service platform for handling import and

export containers and ordering fleets to and from

Container Terminals; NLE is a web-based application

for a logistics ecosystem that aligns the flow of

international goods and documents traffic from the

arrival of the means of transportation until the goods

arrive at warehouses; KOJA is a web-based one-stop

service platform for handling import and export

containers and ordering fleets to and from Container

Terminals.

This research effort was carried out to help the

Logee port QA team (developers) in determining and

comparing which tools are better and more efficient for

the BisOps Logee Port Web Admin project so that the

team does not need to spend time trialing and analyzing

the automation tools to be used. Also, complete

documentation will make it easier for future developers

if they want to make improvements to the website, and

developers can consider which features should be fixed,

added, or even removed [8][9].

II. METHODOLOGY

This research will be carried out individually by

researchers in two ways, namely, through observation

and testing by researchers related to the comparative

evaluation of automated testing tools. The testing tools

that will be used in this study are the cucumber and

robot frameworks by adopting Jureczko's research

method, namely the process evaluation tool [10].“Fig.

1” below describes the research process stages.

Fig. 1. Describes the Research Process Stages

The following is a detailed explanation of the stages

of the research:

a) Choose Tools

There are two testing tools used in this study,

namely Cucumber and the Robot Framework, which

were evaluated using the Eclipse IDE. An IDE

(integrated development environment) is needed as a

basis for writing and running test cases and generating

test script code. Eclipse IDE was chosen because it is a

Java platform. The Java programming language is the

most popular and frequently used lately [11]. IDE is an

open-source, commonly used tool that can automate

many functions that are usually written manually by

developers and can be integrated with Cucumber and

robot frameworks [12]. There are three main folders in

the Cucumber project:
• \src\test\java which contains 2 more folders,

page factory, and step definitions. The page
factory folder is a folder used to write the
function of the step in the step definitions folder
based on the page or feature page being tested.
Meanwhile, the step definitions folder is a folder
that is used to write down the steps of the test in
detail according to the test cases that have been
made in the file .feature using the BDD method.
In this folder, there is also a runner that is used
if the tester wants to run a test, which will later
be used to get a report from the test.

• \src\test\resources which contains the features
folder, where this folder is the folder to hold all
the feature files.

• The target folder is the folder that contains the
report.

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023 73

ISSN 2085-4552

Meanwhile, there are two main folders in the robot

framework project:

• Resources, in which there is a Pagefactory
folder that is used to write the functions of the
test cases in the test suite. The files in this folder
contain *** Settings ***, *** Variables ***,
and *** Keywords ***.

• Test Suite is a folder to hold files .robot is used
to store test cases made using the BDD method.
Files in this folder contain *** Settings *** and
*** Test Cases ***.

b) Create Test Cases

In making test cases, both tools use the BDD

principle, where the format of the test cases will be the

same. In the first test tool, namely Cucumber, test cases

are created in the feature file [13]. Whereas in the

second test tool, namely the robot framework, test cases

are made in the script file, namely the robot file [14].

Due to time constraints, the researcher chose to

implement the main features of the Logee Port admin

website. The selected test cases are the result of

discussions with the Logee Port QA team regarding

features that are often used in using the Logee Port

admin website. There are six frequently used features:

login features, dashboard menus, dashboards,

containers, truck orders, and transactions. Of the 6

features, 12 test cases are often used and implemented

in this study.

The following test cases are:

• feature to test login functionality.

• feature to test dashboard functionality Transaksi
Per Periode.

• feature to test dashboard functionality Laporan
Aktivitas Hari Ini untuk fitur belum dibayar.

• feature to test dashboard functionality Laporan
Aktivitas Hari Ini untuk fitur telah dibayar.

• feature to test dashboard functionality Laporan
Performa Bisnis.

• feature to test dashboard functionality armada.

• feature to test dashboard2 functionality lihat
detail port.

• feature to test dashboard2 functionality lihat
detail truk.

• feature to test transaksi functionality cari nomor
proforma.

• feature to test the pemesanan truk page
functionality.

• feature to test kontainer functionality.

• feature to test logout functionality.

c) Program Code Implementation

In Cucumber, the program code or test script code

is implemented in the definitions step, which calls the

main function on the page factory using the Java

language, and all test cases defined in the feature file

are mapped using annotations in the step definition file.

Configuration for running test cases and reports is done

on a test runner or file runner using Junit and Maven.

Meanwhile, in the robot framework, the program code

or test script code is implemented in resources using the

Python language, and all test cases defined in the robot

file are mapped using annotations in the resource file.

configuration in running test cases and reports using the

built-in robot framework feature, namely logs.

d) Answering Questions Based on Comparative

Evaluation Criteria

The next step after the test cases have been

implemented and executed is to answer questions based

on comparative evaluation criteria. Questions are

answered in two ways: through system testing and

observation. The description of these two methods can

be seen in “TABLE I” below. There are three

modifications to the comparative evaluation questions

referred to in Sandin's research [15].

The following are the three-modification explained:

• Modification of the functionality criteria in
which Sandin's research reference implements
the "unit testing" context while this research
implements the "BDD testing" context.

• Elimination of one of the questions on the
functionality criteria related to the number of
methods of the two tools. This is done because
based on observations, researchers do not use
methods in their services. Researchers want to
evaluate from a more objective standpoint.
Therefore, as a substitute, the author describes
the features in the analysis of the results.

• Adding questions to the usability criteria
regarding the author's length of time studying
and writing programs This is done because the
author is using these two tools for the first time,
and later this research can be useful for novice
QAs who want to start automating.

“Table I” below explains modified comparison

questions.

TABLE I. MODIFIED COMPARISON QUESTIONS [15].

Criteria Questions Possible Answers

Functionality Test tool simplicity

in BDD testing

implementation?

(Tested in system)

• Easy

• Medium

• Hard

How many lines of

code need to be
executed for each

case study?

(Tested in system)

Lines of code

74 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023

ISSN 2085-4552

Reliability Can the tool detect
and perform error

checking in any

condition?
(Tested in system)

• Possible

• Not possible

Usability Is the tool

documentation

provided available
and can the user

rely on that

documentation to
understand and

learn about the tool
used?

(Tested based on

observation)

• Easy (Available
with many
documents
provided)

• Medium (Available
but needs more
effort)

• Hard (Available
but need hard effort
or not available at
all)

Can the user
understand the code

(test script)?

(Tested in system)

• Easy

• Medium

• Hard

How long has it

taken me to study

and write test code?
(Tested in system)

Time to study and

write the test code.

Performance

efficiency

How long is the

execution time to

perform the past
and failed testing

and resource used?

(Tested in system)

Execution time

Portability Ease of

installation.?

(Tested based on
observation)

• Easy

• Medium

• Hard

Can the tool

integrate with the

development
environment or in

other words, run on
different platforms?

(Tested based on

observation)

• Can run in many
IDE

• Can but in certain
IDE only

• Not portable

e) Comparison of All Tools

The comparison of the two test tools is done by

comparing the performance results of the two test tools

that have been executed based on test cases. After that,

an analysis related to the comparison was carried out

based on the questions that had been answered by the

two testing tools. In the final step, the researcher makes

a description and conclusion regarding the advantages

and disadvantages of the testing tool.

III. RESULTS AND DISCUSSION

In this section, the researcher evaluates the two test

tools described in the previous chapter. The following

are more detailed test results and analyses of test

results:

a) Test result

“Table II” describes the results of the evaluation of

the two tools used in this study, namely the cucumber

and robot frameworks, based on the comparative

evaluation criteria of the implemented test cases. The

perspective reviewed is a more detailed matter for each

criterion reviewed.

TABLE II. THE RESULTS OF EVALUATION OF THE TWO

TOOLS

Criteria
Aspects

Considered

Tools

Cucumber
Robot

framework

Functionality Test

Implementation

Easy Easy

Lines of code 1.379 lines 567 lines

Reliability Error checking Possible Possible

Usability Documentation
and learning

Easy Easy

Code

readability

Medium Easy

Time to study

and write the

test code

16 days 10 days

Performance
Efficiency

Execution time
(seconds)

491.314
seconds

(8 minutes

11 seconds)

276.438
seconds

(4 minutes

36 seconds)

Portability Ease of

installation

Easy Easy

Integrated

development
environment

Can but in

certain IDE
only

Can run on

many IDE

b) Analysis of Test Results

1) Functionality

In its implementation, the test cases and test scripts

for both frameworks, namely the Cucumber and Robot

Frameworks, adopted the BDD principles almost the

same. Cucumber requires a file .feature to store BDD

test scripts, while the robot framework requires a file

.robot to store BDD test scripts.

The basic difference is the language used;

Cucumber uses Java language. Meanwhile, the robot

framework uses Python language. "Fig. 2" below shows

cucumber with Java libraries and robot framework with

Python libraries.

Fig. 2. Cucumber with Java Libraries and Robot Framework with

Python Libraries

Another difference lies in the use of the library. The

Cucumber library facilitates the implementation of

annotations and methods that are implemented in test

cases and test scripts. There are 10 annotations used in

this study, which are the basic annotations needed so

that test cases can be run. Meanwhile, the robot

framework uses a keyword-based standard library,

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023 75

ISSN 2085-4552

which in its implementation allows BDD test scripts

that have been made before to be used as keywords and

called back by other functions without the need for a

constructor like the one in Cucumber. The keywords

used in this study are 17; these are the basic keywords

needed for the test cases to run.

In running one test case, the cucumber requires 3

files, namely:

• File .feature (for writing BDD scripts, scenarios,
or test scripts). "Fig. 3" below shows the
cucumber file .feature.

Fig. 3. Cucumber File.Feature

• file.java in the step definition folder (to write the
implementation of BDD scripts that have been
made in the file .feature). "Fig. 4" below shows
the cucumber step definitions folder.

Fig. 4. Cucumber Step Definitions Folder

• file.java in the page factory folder (to write the
functions that will be called in implementing the
BDD script in the step definition folder). "Fig.
5" below shows the cucumber PageFactory
folder.

Fig. 5. Cucumber PageFactory Folder

To run all test cases, one additional file is needed,

namely the test runner (file.java, which contains the

runner file so that the test cases can be run). The

configuration of this test runner requires an annotation,

namely @CucumberOption, which is shaped like an

array of associations and can be changed according to

needs. "Fig. 6" below shows the cucumber test runner.

Fig. 6. Cucumber Test Runner

Meanwhile, in running one or all the test cases on

the robot framework, only two files .robot are needed,

namely:

• File .robot in the test suite folder (to write BDD
scripts, scenarios, or test scripts). "Fig. 7" below
shows the Robot Framework Test Suite Folder.

Fig. 7. Robot framework TestSuite Folder

• File .robot in the resource folder (to write the
implementation of the BDD script that was
created in File .robot in the previous test suite
folder, as well as the implementation of the
functions needed in the BDD test script). "Fig.
8" below shows the robot framework
Resources/PageFactory Folder.

Fig. 8. Robot framework Resources/PageFactory Folder

The last difference lies in the reporting. In

Cucumber, in terms of generating reports, it is still done

manually, namely by creating a manual folder and

manually creating a .html file that will later be included

in the test runner file so that later the report can be

generated, and every time you want to open a report,

you have to refresh it first so that the report or reporting

can be updated to the file that was run most recently.

"Fig. 9" below shows the cucumber Report Folder.

Fig. 9. Cucumber Report Folder

76 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023

ISSN 2085-4552

Meanwhile, in the robot framework, reports are

generated automatically, so after installing the robot

framework, the console will automatically have the

message log and execution view options. In fact, after

running the test case on the default console, a link will

be given to see more detailed reporting. "Fig. 10" below

shows the robot framework message log dan execution

view console.

Fig. 10. Robot framework Message Log dan Execution View

Console

"Fig. 11" below shows the robot framework default

console.

Fig. 11. Robot framework Default Console

There are 4 types of output in Cucumber: the default

console, Junit console, HTML, and JSON. Whereas in

the robot framework, there are six types of output:

default console, console execution view, console

message log, output.xml, log.html, and report.html.

Cucumber only displays the BDD test script in the .html

format output for cases with a green tick or a red cross

symbol indicating whether a test case was successful or

not. Whereas in the robot framework, there is a very

informative log option, where in the output detailed

information, such as time and others, is given, and if

there is an error, a screenshot of the error page, along

with the error code and some other additional

information, is displayed.

2) Reliability

When implementing the library in test cases and

code, there are no problems with the Cucumber and

Robot frameworks. The problem that was found was the

Selenium web driver, which executed the program too

quickly while the browser was still in a loading state,

which caused the test case to fail to run and the console

to display the web driver used to reach out. This can be

overcome by using the Selenium function itself, namely

WebDriverWait(), which waits for a while before

executing the next step, or you can also write code in

the cucumber, namely Thread .sleep(millisecond); and

on the robot framework, namely the sleep second

keyword, which functions to wait for a few seconds

before executing the next step according to the number

of seconds’ input.

3) Usability

Cucumber and robot frameworks have learning

documentation or user guides regarding how to use

them on their respective official websites.

Cucumber documentation can be accessed at the

following link: https://docs.cucumber.io/docs/guides/

and robot framework documentation can be accessed at

the following link:

https://robotframework.org/robotframework/latest/Rob

otFrameworkUserGuide.html. Both documents have

good structure and detailed information. Both also have

guides for beginners, such as in Cucumber's

introduction and Robot Framework's getting started,

and in both, there are examples of program code to give

users a better understanding. When implementing the

program code, both tools have end-to-end

documentation. So, when hovering over the library or

keywords, information about the libraries or keywords

used will be displayed, which helps writers in writing

program code using these two tools. As a result, it is

possible to conclude that these two test tools are simple

to document and learn. “Table III” below shows forum

activeness comparison on stack overflow.

TABLE III. FORUM ACTIVENESS COMPARISON ON STACK

OVERFLOW

Feature Cucumber Robot

Framework

The whole question 10.585 6.499

Questions without
answers

1.777 1.089

Questions without

upvotes or answers are

accepted

4.205 2.515

“Table IV” below shows a forum activeness

comparison on GitHub.

TABLE IV. FORUM ACTIVENESS COMPARISON ON GITHUB

Feature Cucumber Robot Framework

Stars 2.507 7.500+

Watchers 223 484

Forks 2.000+ 2.000+

Last Commit 15 November 2022

5.970 commits

12 November 2022

13.771 commits

In both tools, the program code can be read

properly, as explained in the functionality sub-chapter.

The difference lies in the difference in language, which

makes the robot framework shorter because the syntax

uses Python and because the robot framework doesn't

require a test runner to run its test cases. The author

takes 16 days to learn and write using the Cucumber

tools and 10 days using the Robotframework tools.

4) Performance Efficiency

In the Sandin research, the test cases were run three

times [15]. The author also does the same thing to find

out the average execution time value of each tool or

framework. Robot Framework executes test cases 2

times faster than Cucumber, this includes when

Cucumber and Robot Framework generate reports

automatically.

5) Portability

These two tools use different languages; therefore,

the libraries and dependencies used are also different.

The installation process or setup of the first test tool,

namely Cucumber, can be seen as follows:

• Created a new Maven project.

https://docs.cucumber.io/docs/guides/
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023 77

ISSN 2085-4552

• Adding Maven dependencies Cucumber Java |
Cucumber JUnit | JUnit | Selenium Java. "Fig.
12" below shows cucumber dependency.

Fig. 12. Cucumber Dependency

The installation process or setup of the first test tool,

namely the robot framework, can be seen as follows:

• Check if the device has Python, if not then
install Python."Fig. 13" below shows Python
version 3.10.8.

Fig. 13. Python Version 3.10.8

• Check if the device has pip, if not then install
pip."Fig. 14" below shows pip version 22.3.

Fig. 14. Pip Version 22.3

• In the command prompt, type "pip install robot
framework to install robot framework" to install
the robot framework. "Fig. 15" below shows
robot framework version 6.0.

Fig. 15. Robot Framework Version 6.0

• Download Eclipse RED—the Robot Editor—
from the Eclipse Marketplace.

• Added the path to RED in Eclipse / Windows /
Preferences / RF / Installed FWs

The author was confused when trying to install the

robot framework on the Eclipse IDE because, according

to the robot framework user guide, the way to install it

is to use the command prompt and input the pip install

robot framework command. The version to be installed

is the latest, namely version 6.0. Meanwhile, RED or

the Eclipse robot editor can only support robot

framework 3. x and Eclipse IDE version 2020-06

(4.16). Overall, the installation process for these two

tools is easy. "Fig. 16" below shows the RED user

guide.

Fig. 16. RED User Guide

Regarding integration with other platforms, based

on what is stated on each tool's official website,

Cucumber can only be implemented in the Eclipse IDE

and IntelliJ IDEA and can also be implemented in the

NetBeans IDE, which may still be under development.

Meanwhile, robot framework can be implemented in

almost any IDE, such as RIDE, sublime plugin, atom

plugin, notepad++, IntelliSense for Visual Studio Code,

and many more.

IV. CONCLUSION

Robot Framework is easier to use than Cucumber.

This can be seen in the table of test results in Sub-

Chapter 4. Where 5 differences make the robot

framework superior, namely:

1. On the functionality criteria. The test script's

lines of code require only 567 lines of code to

run the 14 test cases discussed previously.

Meanwhile, cucumber requires 1,379 lines of

code to run the same test case.

2. On usability criteria. The readability of the

program code on the cucumber has an

intermediate status, while the robot framework

has an easy status. This is because Cucumber

uses the Java language and the robot

framework uses Python, which makes the

syntax shorter.

3. Still on usability criteria. The author's time

spent studying and writing test code, where

learning and writing code on Cucumber took

the writer approximately 16 days, but only 10

days on the Robot Framework. This is because,

apart from the short syntax of Python, you don't

need to build a constructor to call one function

to another like the one in Cucumber. With the

keyword facility in the robot framework, it

makes it easier for writers to call functions.

4. On Performance Efficiency criteria. The

execution time of the Robot framework is quite

short, at 4 minutes and 36 seconds, whereas the

cucumber takes 8 minutes and 11 seconds to

execute the same test case.

5. On the portability criteria, the robot framework

can be integrated with almost any IDE

78 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 1 | June 2023

ISSN 2085-4552

platform. Meanwhile, Cucumber can only be

integrated into certain IDEs.

Although the Cucumber forum is more active on the

Stack Overflow platform, with a total of 10,585

questions, the RobotFramework forum only has 6,499

questions. However, on the GitHub platform, the robot

framework is far more popular, with more than 7,500

stars, while Cucumber only has 2,507 stars as of

November 16, 2022. This shows that Robotframework

is no less competitive than Cucumber in terms of

popularity.

In terms of reporting, automatic reporting from the

robot framework has very clear details, time

information, error messages, and logs, even when an

error occurs, a screenshot of the error page will be

displayed, and many other features. which is not owned

by the cucumber's automatic reporting.

The two tools in this study, Cucumber, and Robot

Framework can be recommended for novice QAs who

want to learn the basics of automation and implement

automated BDD testing easily. However, specifically

for QAs who have done automation before and want to

do more in-depth configuration and reporting, the

authors recommend using a robot framework because,

in addition to having a short syntax, it also has many

keywords that make it easier for testers and can make

the testing system shorter but more specific.

Suggestions for future work are to make

comparisons with different criteria and different case

studies and to use more test cases to get a longer total

time result so that the comparison can be seen more

clearly.

ACKNOWLEDGMENT

This paper and the research behind it would not

have been possible without the exceptional support of

my lecturers, Nungki Selviandro, S. Kom, M. Kom,

Ph.D., and Rosa Reska Riskiana, S.T., M.T.I. Their

enthusiasm, knowledge, and exacting attention to detail

have been an inspiration and kept my work on track.

Their generosity and expertise have improved this study

in innumerable ways and saved me from many errors.

REFERENCES

[1] SVS College of Engineering, Institute of Electrical and

Electronics Engineers. Madras Section, and Institute of

Electrical and Electronics Engineers, Proceedings of 2017
Second IEEE International Conference on Electrical,

Computer, and Communication Technologies : 22-24,

February 2017, SVS College of Engineering, Coimbatore,
Tamil Nadu, India.

[2] T. Akhir, “Evaluasi Komparatif Automated Behavior Driven
Development Testing Tool Framework pada Aplikasi Berbasis
Web menggunakan Comparative Evaluation Criteria.

[3] T. Couto, S. Marczak, and F. Gomes, “On the Understanding
of How to Measure the Benefits of Behavior-Driven

Development Adoption: Preliminary Literature Results from a

Grey Literature Study,” in ACM International Conference
Proceeding Series, Dec. 2020. doi 10.1145/3439961.3440000.

[4] S M. Härlin, “Testing and Gherkin in agile projects.

[5] V. Österholm, “Overview of Behaviour-Driven Development
tools for Web applications,” 2021.

[6] J. Jokio, “Test automation tools Robot Framework vs.
Selenium-cucumber,” 2020.

[7] N. Huu and N. Triem, “RESEARCH AND COMPARE SOME

FRAMEWORKS COMMONLY USED IN AUTOMATION

TESTING GRADUATION THESIS SUMMARY
INFORMATION TECHNOLOGY Student : Luong Khac
Tuan Anh-ID: 17IT001,” 2017.

[8] U. Nugraha, S. Atikah Nurduha Robaiah, and D. Rospinoedji,
“TESTING THE INFORMATION SYSTEM SOFTWARE

USING BEHAVIOR DRIVEN DEVELOPMENT METHOD

Ucu Nugraha, Siti Atikah Nurduha Robaiah, Djoko
Rospinoedji. Testing The Information System Software Using

Behavior Driven Development Method-Palarch’s Journal Of
Archaeology Of Egypt,” vol. 17, no. 10, 2020.

[9] H. Lopes Tavares, G. G. Rezende, V. Mota Dos Santos, R.

Soares Manhães, and R. Atem De Carvalho, “A tool stack for
implementing Behaviour-Driven Development in Python

Language.” [Online]. Available:
http://www.renapi.org/biblioteca-digital/ferramentas.

[10] M. Jureczko and M. Mlynarski, “Automated acceptance testing

tools for web applications using Test-Driven Development,”
2010.

[11] K. Kumar and S. Dahiya, “Programming Languages: A Survey

International Journal on Recent and Innovation Trends in
Computing and Communication Programming Languages: A
Survey”, [Online]. Available: http://www.ijritcc.org.

[12] “geer2005”.

[13] M. Wynne and A. Hellesøy, “What Readers Are Saying
About..

[14] Sumit. Bisht, Robot Framework Test Automation. Packt

Publishing, 2013.

[15] R. Mohamad and N. M. Yassin, “Comparative Evaluation of

Automated Unit Testing Tool for PHP Development of

Dengue-Entomological Surveillance System View project
SBSE, meta-heuristic search algorithms and Artificial immune

system View project.” [Online]. Available:
https://www.researchgate.net/publication/313208886.

