

42 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025

ISSN 2085-4552

Development of Restful API Mental Health

Application with Microservices Architecture

Using Google Cloud Platform

Muhamad Zidan1, Is Mardianto2, Agus Salim3

1,2,3 Universitas Trisakti, Jakarta, Indonesia
1 aldy10ball@gmail.com, 2 mardianto@trisakti.ac.id, 3 agus@trisakti.ac.id

Accepted 08 January 2025

Approved 24 June 2025

Abstract— Circle application is an application on the

Android operating system that is engaged in the field of

mental health. The application requires a server that

receives requests to fulfill the features contained in the

application, therefore a server is needed one that can be

scaled easily and quickly so that there are no long delays

in requests, and it is hoped that the code base is easy to

maintain and can be rapidly deployed.

Index Terms— Cloud Computing, Google Cloud

Platform, Microservices, Docker.

I. INTRODUCTION

Mental health is a vital aspect of a person's life.

Mental health is no less important than physical health

for a person to have an everyday life and be able to

adapt to the problems encountered throughout his life.

According to WHO, mental health is a condition of

well-being that individuals realize, in which they can

manage reasonable life stress, work productively and

productively, and participate in their community [1].

One in three teenagers (34.9%), equivalent to 15.5

million Indonesian teenagers, had one mental health

problem in the last 12 months [2]. Of all primary

caregivers who stated that their teenager needed help,

more than two-fifths (43.8%) reported that they did not

seek help because they preferred to handle the

teenager's problems themselves or with support from

family and friends. [2].

From the previously mentioned problems, there is

the Circle application, Circle is a mental health

application that has features, namely meditation,

support groups, and online counseling with

professional psychologists.

The application has a support group search feature,

recommendation system, and payment system requires

a server to process requests sent from the Circle

application, so the application requires a scalable

infrastructure, has an acceptable response time and is

easy to maintain.

There are four main problems in developing and

deploying a web application [3], namely: (1)

Dependencies: a software depends on much other

software, especially in the form of libraries for certain

specific. (2) Incomplete documents or not solving

initial installation and operational problems. (3) Code

rot. Different versions of the library, operating system

(kernel), or development language (interpreter) can

also differ in the results provided by the application.

For example, a bug update to a kernel or library can

make software created to handle previous errors create

new problems. (4) Barriers to adoption and reuse of

pre-existing solutions.

The difficulties present in the above traditional

approaches can be solved by virtualization technology.

According to Zhang [4], virtualization is an integral

part of modern cloud infrastructure such as Amazon's

Elastic Compute Cloud (EC2) and Google's App

Engine.

With the use of container-based virtualization

technology in the form of Docker, web application

development has several advantages [5], namely,

making portable applications, more efficient use of

computer resources, lightweight, fast, and suitable for

developing microservices architecture.

This research improve reliability, fault tolerance,

scalability and Flexibility with the use of virtualization

technology and utilizing Google Cloud Platform

robust infrastructure.

II. LITERATURE REVIEW

There are studies conducted by previous

researchers who handled cases similar to this research.

Here is a list of prior research used in this research as

a reference in building solutions.
• Qalam AIlmiah dan Riko Virgiawan Z.

PERANCANGAN ARSITEKTUR

BACKEND MICROSERVICE PADA

STARTUP CAMPAIGN.COM, The problem

experienced by this research is that the system

design built at campaign.com still uses a

monolithic architecture. The user interface,

logic processing, and data access are

mailto:pri@staff.gunadarma.ac.id,

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 43

ISSN 2085-4552

combined into one program and placed in one

database. So it isn’t easy to maintain. The

advantages in this study, namely the provision

of methods that are easy to understand and

implement in different studies, while the

weaknesses in this study are that the endpoint

is only accessed by the web, and the docker

configuration and implementation are still

done manually, there is no stress testing.

• Sinambela A dan Farady Coastera F,

IMPLEMENTASI ARSITEKTUR

MICROSERVICES PADA RANCANG

BANGUN APLIKASI MARKETPLACE

BERBASIS WEB. The problem experienced

by researchers is the use of monolith

architecture which makes the research server

consume significant computing resources and

also causes obstacles in developing new

features on the system. The advantage of this

research is the creation of an API gateway that

can unite separate services. In contrast, the

disadvantages contained in this research are

deployments that are still done manually and

there is no stress testing.

• Jhay Shah dan Dushyant Dubaria. Building

modern clouds: Using Docker, Kubernetes

Google Cloud Platform. The problem

experienced by researchers is that researchers

want to find a faster way of deployment, and

need a facility that can scale well. The

advantages of this research discuss the use of

Kubernetes that can manage many docker

containers efficiently and are fully

documented. In contrast, the disadvantages of

this research are the lack of performance tests

on the infrastructure that has been created.

A. Microservice Architecture

Unlike a monolithic application, Microservice

means dividing an application into smaller,

interconnected services. Each microservice is a small

application with a hexagonal architecture consisting of

logic and various adapters, as illustrated in Figure 1.

Figure 1. Microservices Architecture
Microservice architecture is a more scalable

distributed alternative that provides more focused and

specific services. Large problems will be broken down

into several small solutions organized into a single

service, where each service has its responsibilities.

With this approach, an information system will consist

of several services that can be managed and distributed

independently, making it easier for the system to adapt

to changing needs [6].

B. RestFul API

Figure 2. REST Architecture Diagram

Representational State Transfer (REST) is a style

of software architecture for web services that provides

standards for data communication between different

types of systems [11]. In simple terms, REST is a

standard for exchanging data over the Web for

interoperability between computer systems. REST

allows us to distinguish between client and server and

implement client and server independently. The most

important feature of REST is its statelessness, which

means that neither client nor server needs to know each

other's status to be able to communicate [7].

C. Docker

Docker is an open platform that can be used to

build, distribute, and run applications and has a

portable, lightweight packaging tool known as the

Docker Engine. Docker also provides Docker Hub, a

cloud service for sharing applications. The cost of

using Docker containers is much more efficient than

ordinary virtual machines. This reduces the cost of

building applications on cloud computing platform

providers [8]

Applications built on Docker are packed with all

the dependencies they need into a standard form called

a container. These containers continue to run in

isolation on top of the operating system kernel, Docker

containers can be easily deployed to cloud-based

environments [3].

Containerization is a way of running multiple

software applications on the same machine. Each is run

in an isolated environment called a container. A

container is a closed environment for software. It

combines all the files and libraries the application

needs to function correctly. Multiple containers can be

deployed on the same machine and share resources.

Docker uses images to create containers [9].

44 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025

ISSN 2085-4552

Figure 3. REST Docker Containerization

D. Google Cloud Platform

Google Cloud Platform (GCP) is a cloud

computing service product owned by Google. GCP

includes public cloud infrastructure and enterprise

versions of G-Suite of Android, Chrome, and

application programming interfaces for machine

learning and enterprise mapping services. Google

Cloud Platform provides over 100 services, such as

computing, Networking, Storage and Databases, and

others [10].

E. Cloud Build

Cloud Build is a service that runs app builds or

dockers on Google Cloud. Cloud Build can import

code from various repositories or cloud storage spaces,

resulting in predefined specifications, and generate

artifacts such as Docker containers or Java archives

[11]. Cloud Build can easily be integrated into various

public or private repositories such as existing

repositories on GitHub this integration is done by

Cloud Build utilizing pub-sub actions contained in the

repository, Cloud Build can also automatically perform

unit tests and integration tests to other Google Cloud

Platform services and also Cloud Build has an auto

deployment feature where the results of the build can

be directly deployed to several Google Cloud services

Platforms like Cloud Run.

F. Cloud Run

Cloud Run is a Serverless computing platform

entirely managed by Google, Cloud Run can help run

applications in highly scalable containers and can be

called via web requests or from webhooks. Built on

Knative, it enables high application portability. With

Cloud Run, users can automatically scale up or down

from zero to N. Cloud Run services are regional and

automatically replicated across multiple zones. Cloud

Run provides out-of-the-box integrations with Cloud

Monitoring, Cloud Logging, Cloud Trace, and Error

Reporting to monitor application performance [12].

Cloud Run offers some configurations that can be

changed in each of the revisions of the container that

we deploy, some of the configurations namely: (1) Port

which request will be sent to the port of the container,

(2) CPU allocation, which we can toggle if CPU is only

allocated during request processing or CPU is always

allocated, (3) Capacity of the Container including

Memory, numbers of vCPUs, how long the request

should be timed out, and maximum number of

concurrent requests per container instance, (4)

Execution environment which is First generation who

prioritize speed from a cold start and Second

generation that can utilize files system, full Linux

compatibility, faster CPU, and Network performance,

(5) Autoscaling that Bounds the number of container

instances for the created container revision, and Lastly

(6) Environment Variables

G. Cloud Storage

Cloud storage is one of Google Cloud Platform

services to store unstructured data, Cloud storage uses

an object-based storage system. An object is an

immutable data consisting of files of any format. You

store objects in containers called buckets. All buckets

are associated with a project, and you can group your

projects under an organization. Every project, bucket,

and object in Google Cloud is a resource Google

Cloud, as are things like Compute Engine instances.

Cloud storage has several classes for its storage types:

Table 1. Cloud Storage Classes
Storage

Class

API Name

and CLI

Minimum

Duration

Storage

Typical

Monthly

Availability

Standard

Storage

STANDARD None >99.99% di

multi-

regions dan

dual-

regions,

99.99% di

regions

Nearline

Storage

NEARLINE 30 Days 99.95% di

multi-

regions dan

dual-

regions,

99.9% di

regions

Coldline

Storage

COLDLINE 90 Days 99.95% di

multi-

regions dan

dual-

regions,

99.9% di

regions

Archive

Storage

ARCHIVE 365 Days 99.95% di

multi-

regions dan

dual-

regions,

99.9% di

regions

H. Flask

Flask is a lightweight microframework for web

applications built on Python, which provides an

efficient framework for building web-based

applications that use the flexibility of Python and

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 45

ISSN 2085-4552

strong community support with scaling capabilities to

serve millions of users [7]. Flask has two main

components, Werkzeug and Jinja. While Werkzeug is

responsible for providing routing, debugging, and Web

Server Gateway Interface (WSGI). Flask leverages

Jinja2 as a template engine. Natively, flask does not

support database access, user authentication, or other

high-level utilities. Still, it provides support for the

integration of extensions to add all such functionality,

making Flask a micro yet production-ready framework

for developing applications and web services. A simple

flask of an application can fit into a single Python file

or it can be modulated to make the application

production-ready. The idea behind Flask is to build a

good foundation for all applications leaving everything

else on the extension [7].

I. Firebase

Firebase is a BaaS (Backend as a Service) service

provided by Google, Firebase is considered a web

application platform. Firebase helps developers build

quality apps quickly. then Firebase stores the data in

JavaScript Object Notation Format (JSON) which does

not use queries to insert, update, delete, or append data

to it. The system’s backend is used as a database to

store data [13].

J. Firebase Auth

Firebase Auth supports social sign-in features such

as Facebook, Google, GitHub, and Twitter. It is a

service that can authenticate users by using client-side

code and is a paid service. Firebase Auth also includes

a user management system where developers can

enable user authentication with email and password

logins stored with Firebase [13].

K. Firestore

Firestore is a flexible and scalable mobile, web, and

server development database from Firebase and

Google Cloud Platform. Like Firebase's real-time

databases, Firestore syncs your data across all client

apps via real-time handlers and provides offline

support for mobile and web. This way, you can build

responsive and efficient applications without network

latency or internet connection. Firestore also offers

seamless integration with other Firebase and Google

Cloud products, including Cloud Functions [14].

Firestore is a cloud-hosted NoSQL database that can

be accessed directly by your Apple, Android, and web

apps through native SDKs. Firestore is also available

in the native SDKs of Node.js, Java, Python, Unity,

C++, and Go, in addition to the REST API and RPC

API [14].

III. METHODOLOGY

The steps in this research are carried out in the

following stages:

1. Conduct interviews and surveys to the target

market to get the wants and needs of the target

market. This data retrieval is carried out

intermittently to get an idea of what features need

to be made.

2. Based on the results of interviews and surveys on

the target market and get the features that are

wanted, researchers design UML for each use

case and dissect it into microservices

respectively.

3. After determining the microservice division,

researchers design the use of Google Cloud

Platform services which are made into a diagram,

the services used by researchers like Cloud Build,

Cloud Storage, Cloud Run, Firebase, and

Firestore.

4. Build API endpoints based on predefined use

cases and microservices, at this stage, researchers

build a structure and codebase in a local

environment.

5. Testing the code base in the local environment to

ensure the features in the microservice section

have run well under the system design that has

been made, with the black-box testing method.

6. Deploy code in the local environment to the

Google Cloud Platform infrastructure with

containers. At this stage, researchers directly use

the Google Cloud Platform infrastructure to

deploy code in the GitHub repository and install

the container in the cloud run.

 Load test API endpoints that have been deployed to

the Google Cloud Platform. This stage is necessary to

simulate real traffic and ensure that the system is not

damaged under the specified load

IV. RESULT AND DISCUSSION

A. User Requirement

Based on the results of focus group discussions

with several psychologists related to the use of support

group features and mental health application features

in general by users in building systems in the Circle

application, here are some user needs needed in the

system in the Circle application:

1. Users can search for the desired support group

and enter the group chat

2. Users can order psychologist services in the form

of consultations and pay according to the services

that have been chosen

3. Users can do support group activities in the

available group chat.

4. User can register and log in to the application.

5. User can do screening test.

6. Caregivers can access the results of the user

screening test.

7. Caregivers can create support groups and

moderate chat rooms.

46 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025

ISSN 2085-4552

B. System Requirement

Based on the results of focus group discussions

with several psychologists related to the use of support

group features and mental health application features

in general by users in building systems in the Circle

application, here are some of the system that needs to

be needed in the Circle application:

1. Restful API will be deployed on the Google

Cloud Platform.

2. Restful API has a simple security system in the

form of an API Key.

3. Restful API can be accessed via HTTPS request.

4. The features required in creating a Restful API

are as follows:

• Create a Support Group in the form of a chat

room.

• Search Support Group for Users.

• Create a login token for the GetStream

service.

• Booking Psychologist services.

• User payment handling.

• Create and evaluate screening test results for

Users.

For the specification of each existing docker

container unit to create a restful API, a minimum of the

following specifications are required:

1. 1 Core CPU

2. 512 MB RAM

3. Access Port 8080

Then there is also a software environment that must

be prepared, namely:

1. Python 3.9

2. Python libraries: Tensorflow, Sastrawi,

GetStream-Client, Midtrans, Flask, and Firebase.

C. Use Case Diagram

Use case diagrams to illustrate a graphical display

of the functioning of a system. For an explanation of

the role of each actor performed on the Circle

application can be seen in the following image:

Figure 4. Use Case Diagram

D. Activity Diagram

The following stages of explanation of the role

activities of each actor are contained in Figure 3.D.2

use case diagram:

Figure 5. Activity Diagram: Log in and Register

Figure 6. Activity Diagram: Search Support Group

Figure 7. Activity Diagram: Support Group Creation

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 47

ISSN 2085-4552

Figure 8. Screening: Psychological Tests

Figure 9. Psychologist Consultation

E. Microservices Architecture on Google Cloud

Platform

Referring to user requirements and system

requirements services in the Circle application can be

divided into 4 systems, namely:

1. Chat Service

2. Payment Services

3. Search Service

4. Screening Test Service

With these 4 services can be made a picture of the

system architecture in making it into Google Cloud

Platform, here is an overview of the use of Google

Cloud Platform products and microservices

architecture that will be used:

Figure 10. Microservice Architecture

Figure 11. GCP Usage

In the GCP usage image above, there are several

services that are used for Circle application needs,

namely:

1. Cloud Build

Cloud Build is used to create a Docker image that

matches the contents of the repository on Github,

each service has its repository so that they are

mutually independent from other services

2. Cloud Storage

Cloud Storage is used to store every Docker

image version that Cloud Build has created, so this

can help in storing stable backup versions

3. Cloud Run

Cloud Run is used as a serverless platform which

will be the main server for each of the microservices

mentioned earlier, Cloud Run also has an autoscaler

system so that it can multiply Containers so that it

automatically scales requests received from the

Circle Application, this happens on-demand so if

there are no requests from the application, the

resources from Cloud Run will not be used

4. Cloud API Gateway

Cloud API Gateway allows us to manage URLs

from different Cloud Runs into one URL domain

making it easier for developers to access APIs,

Cloud API Gateway also provides monitoring,

alerts, logging, and tracing for each use

48 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025

ISSN 2085-4552

F. Cloud Run Configuration

Based on the Microservice Architecture in the

previous figure we can utilize Cloud Run to divide the

Services and use Firebase as the Database for each

service, for the specification of the container for each

service in Cloud Run is shown in the next tables

Table 2. Search Services Cloud Run Configuration

Search Service

CPU allocation CPU is only allocated

during request

processing

Startup CPU boost Enabled

Maximum Concurrency

per instance

80

Request timeout 300 seconds

Execution environment Second generation

CPU 1

Memory 2 GiB

Minimum number of

instances

0

Maximum number of

instances

10

Port 8080

Build Cloud Build

Environment Variables Firebase_Key

Table 3. Chat Services Cloud Run Configuration

Chat Service

CPU allocation CPU is only allocated

during request

processing

Startup CPU boost Enabled

Maximum Concurrency

per instance

80

Request timeout 300 seconds

Execution environment Second generation

CPU 2

Memory 512 MiB

Minimum number of

instances

0

Maximum number of

instances

5

Port 8080

Build Cloud Build

Environment Variables Firebase_Key,

GetStream_Key

Table 4. Payment Service Cloud Run Configuration

Payment Service

CPU allocation CPU is only allocated

during request processing

Startup CPU boost Enabled

Maximum Concurrency

per instance

80

Request timeout 300 seconds

Execution environment First generation

CPU 1

Memory 512 MiB

Minimum number of

instances

0

Maximum number of

instances

5

Port 8080

Build Cloud Build

Environment Variables Firebase_Key,

Midtrans_Key

Table 5. Payment Service Cloud Run Configuration

Screening Test Service

CPU allocation CPU is only allocated

during request processing

Startup CPU boost Enabled

Maximum Concurrency

per instance

80

Request timeout 300 seconds

Execution environment First generation

CPU 1

Memory 512 MiB

Minimum number of

instances

0

Maximum number of

instances

30

Port 8080

Build Cloud Build

Environment Variables Firebase_Key

From the tables above, we allocated the CPU and

Memory of the container based on how expensive the

computational power of each service is, from the tables

we can conclude that the Search Service is the most

demanding in terms of Memory which is caused by the

Tensorflow Library.

With Cloud Run when there's a massive spike of

request to the Search Service we can individually scale

the necessary Service without affecting other services.

To save cost, all of the services have a minimum

number of container instances set to zero which

enables a cold start, the number of instances will go up

if and only if there's a request coming to the port of the

container by utilizing the on-demand feature of the

container we can reduce the billing of the cloud

significantly.

G. Containerization

Containerization is a technology that allows you to

package an application and all its dependencies,

libraries, and configurations into a single, isolated unit

called a "container." This container can then be easily

deployed and run consistently on any server that

supports containerization without worrying about

compatibility issues.

To create a container we need a configuration setup

called Dockerfile, This file contains instructions on

how to build your container step-by-step. It specifies

the base image (a minimal operating system with pre-

installed tools), adds your application code, and sets up

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 49

ISSN 2085-4552

the required configurations. For Circle Services we use

the following setup:

From python:3.9.11

COPY src/ src/

COPY requirements.txt.

RUN pip install --upgrade cython

RUN pip install --upgrade pip

RUN pip install --no-cache-dir -r requirements.txt

WORKDIR /src

ENV PORT 8080

CMD exec gunicorn --bind :$PORT --workers 1 --

threads 8 app:app

From the Dockerfiles above we can configure the

directory of the files by first copying the app files to

the Docker directory, and then we can set up the

environment suited to the requirements we need

H. Restful API Design

Based on activity diagrams, use case diagrams and

microservices architecture design, several endpoints

can be made that will be used in Circle Applications,

namely:

Table 6. Restful API

N

o

Fungsi URL Paramete

r

Meth

od

Expect

ation

1 Login

and

Regist

er

/toke

n

User id,

password

GET Return

status

and

Token

2 Gettin

g

Screen

ing

Data

/scre

enin

g

User_id,s

creening

_name

GET Return

data

about

screeni

ng

3 Post

the

Result

of

Screen

ing

/scre

enin

g

User_id,

screening

_name,

jawaban

POST Return

Feature

Recom

mendat

ion

4 Search

Chatro

om

/mat

ch

User_id,

k_value,

text

GET Return

Chatro

om

recom

mendat

ion

5 Create

Chat

Room

/cha

nnel

User_id,

Text,

Title,

Max_use

r

POST Return

Channe

l

informa

tion

6 check /chec Appoint GET Return

out kout ment_id,

user_id

URL

and

transact

ion

token

7 Notifi

cation

Handli

ng

/noti

ficati

on

Transacti

on_id,Tr

ansaction

_status,

Order_id

POST Change

the

order

status

and

return

status

code

I. Blackbox Test

To test the various feature of the API that have been

designed we need some tests to confirm it. Blackbox

test is designed to test the whole infrastructure to check

if the integration between the services is correct:

Table 7. Blackbox Test

URLs Test Case Expected

Result

Tested

results

/token Correct User

ID and

Password

Return Token

Session

Valid

Inccorect User

ID or

Password

Return

incorrect

message

Valid

Missing

parameter

Return

incomplete

parameter

Message

Valid

/screeni

ng

(GET)

Correct User

ID and

Screening

Name

Return

Screening

Question

Details

Valid

Incorrect User

ID and

Screening

Name

Return

Incorrect

message

Valid

Missing

Parameter

Return

incomplete

parameter

Message

Valid

/screeni

ng

(POST)

Correct User

ID, Answer

Screening

Name

Return Feature

Recommendat

ion

Valid

Incorrect User

ID, Answer

and Screening

Name

Return

Incorrect

message

Valid

Missing Return Valid

50 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025

ISSN 2085-4552

Parameter incomplete

parameter

Message

/match Correct user

id, text and

k_value

Return list of

recommended

room id

Valid

K_value is not

in parameter

Return top 3 in

the list of

recommended

room id

Valid

Inccorect User

ID or K_Value

Return

Incorrect

message

Valid

/Chann

el

Correct User

ID,Text, Title,

and Max_user

Return

Channel

Information

Valid

Inccorect User

ID

Return

Incorrect

message

Valid

Missing

Parameter

Return

incomplete

parameter

Message

Valid

/checko

ut

Correct User

ID an

Appointment

ID

Return

Redirect URL

and

transaction

token

Valid

Inccorect User

ID and

Appointment

ID

Return

Incorrect

message

Valid

Missing

Parameter

Return

incomplete

parameter

Message

Valid

/Notific

ation

Correct

Transaction

ID and

Transaction

Status

Return

Received

Status

Message

Valid

Incorrect

Transaction

ID and

Transaction

Status

Return

Incorrect

Message

Valid

Missing

Parameter

J. Load Test

For the Load Test, we use Locust as the Python

framework of choice, the infrastructure of the

microservices will be tested again with 5000 virtual

users in a span of 10 minutes, and the following figures

will describe how many users will be connected to the

server and how many requests have been requested:

Figure 12. Total User Graph

Figure 13. Total Request Graph

From the figures above, there are 5000 virtual

users, which gradually increased from 0 to 5000 within

10 minutes. There’s a total of 115910 requests that are

coming from the virtual users, as you can see from

figure 4.J.2 There is some error that occurs when the

user spike to more than 1000 and the total of the error

is 7284 error, the detail of the error will be explained

in the following table:

Table 8. Total Error Table

URL Error Number of

Occurences

/match HTTPError('429

Client Error: Too

Many Request)

2820

/token HTTPError('500

Server Error:

Internal Server

Error)

3957

/channel HTTPError('429

Client Error: Too

Many Request)

507

From the error table above, we can infer that there

are 2 types of errors that happen during the load test,

which is HTTP Error 429 and HTTP Error 500, the

reason that HTTP Error 429 appear in /match and

/channel is because of too many requests have been

created for their endpoint, and the initial container can't

scale fast enough to keep up with the demands. As for

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 51

ISSN 2085-4552

HTTP error 500 is caused by the limit rate from the

GetStream library that is used for getting the user a

token to chat with other users, the limit rate is caused

by the free-tier plan from the GetStream services.

The load test will also measure the response time of

the entire service and each endpoint, for the parameter

of the response time, we will measure the average

response time and median response time, for the unit

of the response time, we will use milliseconds, for the

detail of the response time of the server will be

illustrated in the following figures:

Figure 14. Response Time Graph

From the response time figures above, we can

conclude that there’s a huge spike when the use count

reaches 5000, but it gradually lower, this is the result

of the Cloud Run Autoscaler that automatically deploy

new containers to serve the new Demands. The average

response time when the server stabilize in 5000 users

is 2817 milliseconds, we can dissect this further by

exploring each endpoint response time as the following

tables:

Table 9. Token URL Response Time

URL /Token

Method GET

Request Count 4999

Median Response Time 10000 ms

Average Response Time 10855 ms

Min Response Time 532 ms

Max Response Time 30011 ms

Average Content Size (Byte) 241 byte

Table 10. GET Screening URL Response Time

URL /Screening

Method GET

Request Count 26200

Median Response Time 260 ms

Average Response Time 384 ms

Min Response Time 219 ms

Max Response Time 5460 ms

Average Content Size (Byte) 4540 byte

Table 11. POST Screening URL Response Time

URL /Screening

Method POST

Request Count 25878

Median Response Time 280 ms

Average Response Time 400 ms

Min Response Time 223 ms

Max Response Time 5574 ms

Average Content Size (Byte) 16 byte

Table 12. Match URL Response Time

URL /Match

Method GET

Request Count 42012

Median Response Time 2700 ms

Average Response Time 4598 ms

Min Response Time 187 ms

Max Response Time 28278 ms

Average Content Size (Byte) 224 byte

Table 13. Channel URL Response Time

URL /Channel

Method POST

Request Count 8228

Median Response Time 5200 ms

Average Response Time 6731 ms

Min Response Time 185 ms

Max Response Time 30011 ms

Average Content Size (Byte) 547 byte

Table 14. Checkout URL Response Time

URL /Checkout

Method GET

Request Count 8526

Median Response Time 270 ms

Average Response Time 368 ms

Min Response Time 235 ms

Max Response Time 5597 ms

Average Content Size (Byte) 156 byte

Table 15. Notification URL Response Time

URL /Notification

Method POST

Request Count 67

Median Response Time 1500 ms

Average Response Time 2333 ms

Min Response Time 585 ms

Max Response Time 10044 ms

Average Content Size (Byte) 877 byte

From the seven tables, we can see a drastic change

in the minimal response time to the max response time,

this is because the warm up session with only 100

virtual user and gradually increase it to 5000 virtual

user, we can use the minimal response time as the

baseline and compare it to the median response time to

get a sense how certain URL behave in this Load Test,

Meanwhile the maximum response time corresponds

to time when the user count spiked to 5000, and the

server is rolling a new container, the time between

finishing rolling the new container and the start of the

request makes the max response time so much high

compared to the average response time. In the previous

52 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025

ISSN 2085-4552

load test we can see /match, /token, and /channel URLs

have massive differences in minimal response time to

average response time, for /match and /channel the

high response time is caused by the resource-intensive

system created by Tensorflow library and to prevent

using too many resources of Cloud Run, limiting the

number of containers is vital, as for /token case many

of the error is caused by internal server error is caused

by the limit rate from the GetStream library that is used

for getting the user a token to chat with other users, the

limit rate is caused by the free-tier plan from the

GetStream services.

We can see how the container of each services

automatically scale when facing a large request in the

following figures:

Figure 15. Screening Services Container Graph

Figure 16. Merchant Services Container Graph

Figure 17. Search Services Container Graph

Figure 18. Chat Services Container Graph

From the figures above we can see how the

Container automatically increases when the demand is

high.

V. CONCLUSIONS

Based on the result of the research “Development

of Restful API Mental Health Application with

Microservices Architecture Using Google Cloud

Platform” that has been carried out, there are several

conclusions:

1. The making of microservices pattern in API for

Circle Application that utilizes Google Cloud

Platform as its cloud provider can be used and

scaled based on the demand of the request from

the application

2. Using a microservices pattern can remove

dependencies from other services and as a result

other services’ load won’t cause any disturbance

to unrelated services, this also makes the scaling

adjustable to only the most used service which

raises the efficiency of the server and lowers the

cost of the cloud computing cost

3. Using Cloud Build makes it easy to deploy a

docker container and make changes to an existing

container

4. Dockerization makes it easy to isolate bugs and

faults within the system, and because we can set

up the environment and virtualize it, it’s easy to

set up the same environment across multiple

instances

There are vital factors that need to be considered

when using Cloud Run in Google Cloud Platform that

is: the computing cost of the services, the service

Resource (CPU, Ram) requirement, how frequently it

will be accessed, and how it handle shared data.

REFERENCES

[1] WHO, Basic documents, 43rd Edition. Geneva: World Health
Organization, 2014.

[2] Indonesia National Adolescent Mental Health Survey (I-
NAMHS), 2023, [Online]. Available:
https://qcmhr.org/~teoqngfi/outputs/reports/12-i-namhs-
report-bahasa-indonesia/file.

https://qcmhr.org/~teoqngfi/outputs/reports/12-i-namhs-report-bahasa-indonesia/file
https://qcmhr.org/~teoqngfi/outputs/reports/12-i-namhs-report-bahasa-indonesia/file

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 53

ISSN 2085-4552

[3] C. Boettiger, “An introduction to Docker for reproducible
research,” in Operating Systems Review (ACM), 2015. doi:
10.1145/2723872.2723882.

[4] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-
of-the-art and research challenges,” Journal of Internet
Services and Applications, vol. 1, no. 1, pp. 7–18, May 2010,
doi: 10.1007/s13174-010-0007-6

[5] S. Singh and N. Singh, “Containers & Docker: Emerging roles
& future of Cloud technology,” in Proceedings of the 2016 2nd
International Conference on Applied and Theoretical
Computing and Communication Technology, iCATccT 2016,
2017. doi: 10.1109/ICATCCT.2016.7912109.

[6] M. Fadlulloh and R. Bik, “IMPLEMENTASI DOCKER
UNTUK PENGELOLAAN BANYAK APLIKASI WEB
(Studi Kasus : Jurusan Teknik Informatika UNESA),” 2017.

[7] K. Relan, Building REST APIs with Flask. 2019. doi:
10.1007/978-1-4842-5022-8.

[8] B. B. Rad, H. J. Bhatti, and M. Ahmadi, “An Introduction to
Docker and Analysis of its Performance,” IJCSNS
International Journal of Computer Science and Network
Security, vol. 17, no. 3, 2017, [Online]. Available:
https://www.researchgate.net/publication/318816158

[9] J. Shah and D. Dubaria, “Building modern clouds: Using
docker, kubernetes google cloud platform,” in 2019 IEEE 9th
Annual Computing and Communication Workshop and
Conference, CCWC 2019, 2019. doi:
10.1109/CCWC.2019.8666479.

[10] Google, “Google Cloud Products.”
https://cloud.google.com/products (accessed Oct. 21, 2022).

[11] Google, “Overview of Cloud Build.”
https://cloud.google.com/build/docs/overview (accessed Oct.
21, 2022).

[12] I. Barokah and A. Asriyanik, “Analisis Perbandingan
Serverless Computing Pada Google Cloud Platform,” Jurnal
Teknologi Informatika dan Komputer, vol. 7, no. 2, 2021, doi:
10.37012/jtik.v7i2.662.

[13] C. Khawas and P. Shah, “Application of Firebase in Android
App Development-A Study,” Int J Comput Appl, vol. 179, no.
46, pp. 49–53, Jun. 2018, doi: 10.5120/ijca2018917200.

[14] Google, “Cloud Firestore Documentation.”
https://firebase.google.com/docs/firestores (accessed Oct. 22,
2022).

https://www.researchgate.net/publication/318816158

