

16 Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 1 | June 2024

ISSN 2085-4552

Comparing Karate Framework with Others for
Automated Regression Testing: A Case Study

of PT Fliptech Lentera Inspirasi Pertiwi

Afina Putri Dayanti1, Tony Tony2

1, 2 Department of Information Systems, Faculty of Information Technology, Tarumanagara University
Jakarta, Indonesia

1afina.825200049@stu.untar.ac.id, 2tony@fti.untar.ac.id

Accepted 10 November 2023
Approved 19 April 2024

Abstract—In the rapidly evolving digital era,
applications, and software systems increasingly rely on
Application Programming Interfaces (APIs) to enable
interaction, integration, and functionality extension.
However, manual testing of APIs is often inefficient and
challenging to reuse when changes occur. To address this,
automation testing has become a more effective choice,
where test scripts can verify and execute tests repeatedly,
easily adapting to API changes. Essentially, automation
testing plays a vital role in software maintenance,
particularly in regression testing, which tests modified or
upgraded software versions to ensure that their core
functions remain unchanged and unaffected. One
approach to automation testing is employing the
Software Testing Life Cycle (STLC), which follows a
systematic series of stages conducted by the testing team
to ensure software product quality. This paper utilizes PT
Fliptech Lentera Inspirasi Pertiwi’s public API to
conduct testing on 25 scenarios from two modules. The
objective is to utilize the Karate Framework to conduct
these automated regression tests, resulting in an
impressively short testing duration, averaging only
42.645 seconds, or approximately 1.706 seconds per
scenario. A comparison with the Behave framework,
using the same scenarios but with differences in steps,
reveals that Behave achieves a duration of 18.762
seconds, or 0.750 seconds per scenario, making it
127.295% faster than Karate. However, in terms of the
number of steps, Behave covers only 188, while Karate
includes 543. This means that Behave requires 0.100
seconds per step, while Karate necessitates 0.079 seconds
per occurrence. Karate provides more detailed results by
188.830% per step or 26.582% in terms of step duration.
The primary goal is to enhance testing efficiency, expedite
issue identification and resolution, provide a clearer
testing process, and potentially improve overall software
quality.

Index Terms—API; automation testing; Karate
framework; regression testing; STLC.

I. INTRODUCTION

In the era of advancing information technology,
software continually undergoes development and
refinement to align with ever-changing needs and the
rapid progression of technology [1]. Each change

applied to the software, whether it involves
improvements, feature additions, or other
modifications, has the potential to influence the overall
performance and stability of the entire system.
Consequently, the significance of regression testing
has increasingly become an essential foundation. This
type of testing ensures that any alterations do not
disrupt the functionality that was previously operating
smoothly. The primary objective of regression testing
is to verify whether these changes have caused
disruptions in pre-existing functions, with the purpose
of mitigating the risk of potential system failures
resulting from these modifications [2].

PT Fliptech Lentera Inspirasi Pertiwi, aka Flip, is
an Indonesian fintech company established in 2015 [3].
As a prominent player in the software development
industry, the company encounters challenges similar to
those faced by its industry peers while managing its
multifaceted operations. The developer team engaged
in various projects and features is tasked with ensuring
the stability of the system. However, manual
regression testing consumes significant time and
resources. In this context, the implementation of an
automation testing tool through an Application
Programming Interface (API) emerges as a practical
solution. APIs find widespread application in the
creation of distributed software systems featuring
interconnected components. Despite their absence of a
visible interface [4], APIs play a pivotal role in
enabling machine-to-machine communication and
serving as a means to foster interaction, integration,
expansion, and data exchange among distinct software
functions or entities [5].

This paper contains the following contributions.
Firstly, it provides insights into the challenges faced by
Flip and the importance of system stability in software
development. Secondly, it sheds light on the resource-
intensive nature of manual regression testing and
advocates for the use of automation testing, which
involves executing tests through specialized tools or
software [6] via APIs, as a solution to these challenges.

Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 1 | June 2024 17

ISSN 2085-4552

Thirdly, it promotes the use of the Karate Framework,
an automation testing tool that utilizes Gherkin syntax
from Cucumber BDD (behavior-driven development).
While Karate is based on Java, it does not always
require advanced programming skills for basic
software testing. Instead, it encourages a deeper
understanding of Cucumber and specific framework
development [7]. Further, this paper conducts a case
study using Flip’s public API, the Flip for Business
Platform, to create a specialized tool for regression
testing. Fourthly, it anticipates reduced time and
resource requirements for issue detection following
system changes. Although automation can accelerate
the testing process, it is essential to ensure that the
benefits outweigh the initial setup and maintenance
expenses. Lastly, it emphasizes the potential
enhancement in testing efficiency, accuracy, and
coverage through an approach of automation testing
for regression.

The rest of this paper is organized as follows.
Section II discusses related works to the research while
Section III presents the research’s results and
discussion. The details of our solution and its
performance are described in Section IV. Finally,
Section V concludes the paper and provides future
research directions.

II. RELATED WORKS

To the best of our knowledge, there has been no
prior work addressing a problem similar to ours, except
for the study conducted by Gidvarowart et al. [8]. In
their work, the authors explored automated API testing
using the Karate Framework and presented a case study
of an online assessment web application demonstrating
reduced testing time per iteration in contrast to manual
testing and comparisons with other frameworks. Our
approach extends to a comparison with the Behave
framework, closely associated with the Python
programming language and commonly identified using
the search terms “bdd” and “behave” [9]. We opted for
this framework because Behave incorporates a concept
similar to Karate, namely BDD, and our aim is to
compare them to identify more efficient regression
testing automation.

When juxtaposing our work with other related
studies, several distinct patterns emerge. Putri [10]
applied regression automation testing using Katalon
Studio for the “Teman Diabetes” mobile app, citing the
perceived limitations of manual regression testing. In
contrast, this work centers on regression testing for
Flip for Business’s API, presenting a different context.
Directed attention, Yutia [11] highlighted automated
functional API testing using the Robot framework for
KALcare.com, emphasizing the efficiency gains
brought about by automation over manual methods. In
this proposed approach, the STLC methodology is
applied to API regression testing, with the Karate
framework harnessed for test execution. Additionally,

automated load and performance testing for DiTenun’s
API were extensively explored by Barus et al. [12],
while this work specifically highlights regression
automation testing executed after system changes.
Lastly, automation testing challenges in the context of
Hospital Management Systems were discussed by
Saputra and Stefanie [13], with this work
predominantly focusing on API testing, where the
Karate framework serves as the primary automation
testing tool, contributing to the growing body of
research on automation testing within various contexts.

III. METHODOLOGY

Testing is a process with its own stages, even
though it’s an integral part of the Software
Development Life Cycle (SDLC) [14], see Fig. 1.
Software Testing Life Cycle (STLC) refers to a
systematic series of stages run by the testing team to
test the software product. In essence, STLC constitutes
the testing phase embedded within the SDLC, running
in parallel but with its distinct cycle [15].

Fig 1. Testing Phase in Software Development Life Cycle [16]

In the design process, STLC approach serves as the
primary methodology. Although the implementation of
testing may vary depending on each SDLC’s specific
approach, the key steps in each software STLC remain
consistent. This STLC approach provides a structured
framework for governing all software testing stages,
much like SDLC, and consists of stages (see Fig. 2)
[16]. Each phase is designed to enhance the quality of
the product [17] and is characterized by well-defined
entry and exit criteria, activities, and associated
deliverables [18].

Fig 2. Stages of the Software Testing Life Cycle [16]

18 Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 1 | June 2024

ISSN 2085-4552

1) Requirements Analysis: This phase involves

identifying the target, goals, scope, and testing
approach to be taken. The plan will provide detailed
explanations of how regression automation testing
will be conducted, including resource allocation
and testing schedules.

2) Test Planning: Analyzing testing requirements in
detail. This includes an analysis of functional, non-
functional features, and relevant testing scenarios
for selected API features.

3) Test Case Development: Designing testing
scenarios and automation testing scripts based on
the requirements analysis results. The testing plan
includes test steps, test data, and the test
environment.

4) Test Execution (defect tracking and fixing):
Involves creating and executing automation testing
scripts according to the plan. Automation testing
tools are developed using API concepts to test
selected features. After obtaining test results, if
defects are found, the next step is to return them to
this phase for further analysis. Every bug and error
in the API will be thoroughly analyzed. Afterward,
corrective actions and updates will be implemented
to address these defects.

5) Test Result Analysis: A post-conditional process
involving data collection from end-users. After
testing execution, the team evaluates the results of
regression testing.

6) Test Cycle Closure: Discussion and evaluation of
testing artifacts to identify strategies to be applied
in the future, using the experience gained from the
completed regression testing cycle. The goal is to
reduce process constraints in subsequent testing
cycles and share best practices for similar projects
in the future.

IV. RESULT AND DISCUSSION

The Institute of Electrical and Electronics
Engineers (IEEE) defines a process as the actions
required to carry out a task or as a written description
of those actions, as in documented testing procedures.
From this perspective, it can be concluded that “the
testing process” is the “actions necessary to carry out
testing” or the “approach used in conducting testing”
[19]. In the design of this process, we refer to the STLC
methodology to create a structured overview of the API
automation process, as shown in Fig. 3, where several
key stages are detailed in the form of a flowchart.
Commencing with “Start”, the process navigates
through stages such as analyzing requirements,
selecting APIs, and conducting manual API
inspections. Subsequently, the automation structure is
aligned with the folder hierarchy, and testing scripts
are created or adjusted. The results of automation
testing are analyzed; if the outcome is “no”, manual
testing is revisited, while “yes” results lead to

presenting the outcomes. System artifact evaluation
ensures a thorough review, and the process loops back
for continuous testing. The cycle concludes with the
“End” phase, marking the conclusion of the API
automation testing workflow.

Fig 3. Flowchart of Automation Testing Process

A. Folder Structure

In the context of designing tests using Karate, it is
different from Java code development that follows
conventions like com.mycompany.foo.bar and results
in nested sub-folders. The Karate documentation
actually suggests having a folder structure with only
one or two levels, where the folder names clearly
identify the resource, entity, or API under test.
However, in this design, we choose to adopt an
automation structure customized to the company’s
needs (see Fig. 4).

Initially, all files are placed in the src-test folder.
The src-test-java folder is used to store all automation
files, including the Karate runner for execution and
HTML report generation. The service folder is
assigned for storing scenarios (.feature), the config
folder for global configuration, the spec folder for
payload requests, and the utils folder for utility data.
Meanwhile, the src-test-resource folder is designated
for application configuration files.

Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 1 | June 2024 19

ISSN 2085-4552

Fig 4. Folder Structure

B. Requirements Analysis

The process commences with the identification and
analysis of the requirements and specifications of Flip
for Business APIs. The required data is acquired
through an interview with one of the Test Engineers
from the Business and Solution Team responsible for
Flip for Business. This data-gathering process involves
collecting information about the relevant API usage,
analyzing the API’s flow, and identifying its
integration with the database.

C. Selection APIs and scenario

The selection of APIs and scenarios involves a
process that encompasses defining use cases,
endpoints, actions, and test scenarios. Within Flip for
Business, there are numerous use cases to choose from.
However, in this study, only two modules will be
selected, i.e., Money Transfer and Special Money
Transfer [20] because these modules are among the
most frequently used and represent the core of Flip’s
business operations, thus significantly contributing to
Flip for Business’ revenue. In each of the selected
modules, there are four endpoints. The Money Transfer
module has a total of 15 scenarios, while the Special
Money Transfer module has a total of 10 scenarios.
Therefore, for this research, the combination of these
two modules results in a total of 25 scenarios. For more
detailed information, the definition of the scope is
based on the chosen use cases, as exemplified in Table
I and Table II.

TABLE I. SCENARIO OF MONEY TRANSFER

No Action Endpoint Scenario

1 POST https://bigf
lip.id/api/v
3/disburse
ment

Should success create
disbursement with one
beneficiary email

Should return error create
disbursement params required

Should return error create
disbursement only number

Should return error create
disbursement amount
minimum

Should return error create
disbursement amount
maximum

Should return error create
disbursement invalid bank
code

Should return error create
disbursement max email

Should return error create
disbursement invalid email

2 GET https://bigf
lip.id/api/v
3/disburse
ment?pagi
nation=pag
ination&pa
ge=page&s
ort=sort&a
ttribute=va
lue

Should success get all
disbursement

Should success get all
disbursement with pagination

Should success get all
disbursement filter by status

Should success get all
disbursement filter by bank

Should success get all
disbursement filter by created
from

3 GET https://bigf
lip.id/api/v
3/get-
disburseme
nt?idempot
ency-
key=idemp
otencykey

Should success get
disbursement by idempotency
key

4 GET https://bigf
lip.id/api/v
3/get-
disburseme
nt?id=id

Should success get
disbursement by id

20 Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 1 | June 2024

ISSN 2085-4552

TABLE II. SCENARIO OF SPECIAL MONEY TRANSFER

No Action Endpoint Scenario

1 POST https://bigf
lip.id/api/v
3/special-
disburseme
nt

Should success create special
disbursement for do mestic
transfer

Should success create special
disbursement for foreign
inbound transfer

Should return error create
special disbursement params
required

Should return error create
special disbursement only
number

Should return error create
special disbursement amount
minimum

Should return error create
special disbursement amount
maximum

Should return error create
disbursement invalid bank
code

2 GET https://bigf
lip.id/api/v
2/disburse
ment/city-
list

Should success get city list

3 GET https://bigf
lip.id/api/v
2/disburse
ment/count
ry-list

Should success get country list

4 GET https://bigf
lip.id/api/v
2/disburse
ment/city-
country-
list

Should success get city and
country list

D. Manual API Inspection

Before delving into the automation testing phase, it
is highly advantageous to initiate the process with a
manual API inspection. This initial step entails using
software tools like Postman, which enable testers to
manually interact with the API. By doing so, testers
gain valuable insights into how the API functions and
communicates. This manual exploration serves as a
foundation for the subsequent phases and ensures a
comprehensive understanding of the API’s behavior.
This phase is illustrated in Fig. 5, showcasing how
manual testing aids in comprehending the intricacies of
API interactions.

Fig 5. Testing Manually with Postman

E. Automation Script Creation or Adjustment

Before proceeding with the creation or
modification of automation scripts, it’s crucial to fulfill
the prerequisites for system implementation, including
software, hardware, personnel, installation procedures,
and user guides. This phase is a pivotal point in the
system’s life cycle as it initiates the solution’s
deployment in the production environment. Proper
software installation on prepared hardware, especially
with the presence of personnel like test engineers, is
vital. The installation process should ensure optimal
system component functionality, meet performance
standards, and provide user manuals for accurate
system utilization.
Once the prerequisites for system implementation have
been satisfied and gaining a comprehensive
understanding of the API’s requests and responses
through manual methods, the next phase involves the
transformation of this knowledge into automated tests.
This step is essential for achieving efficiency and
repeatability in the testing process. Automated tests are
designed to mimic the interactions that were previously
tested manually. The creation or adjustment of
automation scripts allows for the seamless execution of
these tests, as demonstrated in Fig. 6. Essentially, these
scripts function as a comprehensive set of directives
meticulously guiding the testing framework,
effectively streamlining and optimizing the entire
testing process for enhanced accuracy and efficiency.

 Fig 6. Transitioning from Manual Testing to Automation Testing

Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 1 | June 2024 21

ISSN 2085-4552

F. Analyze result of automation testing

In this phase, the focus shifts towards analyzing the
outcomes of the automation testing process. After the
automated tests have been executed as illustrated in
Fig. 7, the results obtained need to be comprehensively
examined and assessed. This entails scrutinizing the
data, logs, and metrics generated during the testing
process. One of the primary goals is to identify any
anomalies, errors, or issues that might have surfaced
during the automation testing. It’s crucial to
thoroughly evaluate the collected data to gain insights
into the performance and behavior of the tested API.
This phase serves as a critical checkpoint for quality
assurance and ensures that the automated tests have
been carried out effectively.

 Fig 7. Automation Testing Execution

G. Present test result

The subsequent phase involves generating an
HTML-formatted report to present the test results in a
structured and informative manner. This
comprehensive report accounts for various aspects of
the testing process, including executed test cases, their
outcomes, identified issues or defects, and
performance metrics. This structured report plays a
crucial role in facilitating in-depth test analysis,
offering stakeholders a clear overview of the API’s
behavior and areas that need attention. Referenced as
Fig. 8, it aids in problem identification and necessary
improvements.

 Fig 8. Automation Testing Execution

In the context of the initial selection of 25
scenarios, covering 8 endpoints across 2 previously
chosen modules, the process of automation script
creation and refinement resulted in a total of 543
occurrences. These scenarios underwent 5 consecutive
trial runs, as seen in the variability of results in Table
III, which are influenced by CPU and memory

resources. The calculated average duration of 42.645
seconds implies that each scenario takes approximately
1.706 seconds to execute, equivalent to 0.079 seconds
per occurrence.

TABLE IV. AUTOMATION TESTING ACROSS 10 TEST RUNS

 Average Duration =
 Total Duration

 Trial Runs

=
426.45

10
≈ 42.645s

 Average Scenario =
 Average Duration

 Total Scenario

=
42.645

25
≈ 1.706s

 Average Occ. =
 Average Duration

 Total Occurrences

=
42.645

543
≈ 0.079s

In addition to reporting test results in the .html
format, there is also the possibility of integration, such
as using the Slack platform. Through this integration,
it becomes feasible to automatically send notifications
when testing failures occur. For example, the
integrated output within Slack, as depicted in Fig. 9,
will provide immediate notifications to the
development team when there are issues that require
immediate attention during testing. Integrations like
this ensure that information regarding testing problems

Execute Duration Result

1 43.580 s

2 42.693 s

3 45.216 s

4 40.311 s

5 43.254 s

6 42.111 s

7 42.918 s

8 41.289 s

9 43.246 s

10 41.832 s

Average 42.645 s

22 Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 1 | June 2024

ISSN 2085-4552

can be rapidly received by developers, allowing for
more effective and timely responses to potential issues
that may arise during the testing process.
Following the presentation of test results, a
comprehensive evaluation of the results or report will
be conducted. If any defects or issues are detected
during this assessment, the testing process might
regress to the manual testing phase to further
investigate and resolve these problems. However, if no
defects are found, the implementation will progress to
the evaluation of system artifacts, ensuring the overall
robustness and quality of the system.

 Fig 9. Automation Testing Report Integration with Slack

H. System artifact evaluation

The discussion and evaluation of testing artifacts
aim to identify strategies that will be applied in the
future, leveraging the experience gained from the on-
going regression testing cycle. The goal is to minimize
process constraints in the next testing cycle and share
best practices for similar projects in the future.

I. Comparison with Other Framework

For the purpose of comparing the duration of test
results, the author employed the behave framework. As
detailed in Table IV, it became apparent that after
conducting 10 test runs using the same 25 scenarios,
encompassing 8 endpoints across 2 previously selected
modules, with a slight difference in the number of steps
(precisely 188 steps, as shown in Fig. 10), Behave
achieved an average duration of 18.762 seconds. This
suggests that each scenario takes roughly 0.750
seconds to execute, which translates to approximately
0.100 seconds per step.

 Fig 10. Execution of Automation Testing Using Behave
Framework

TABLE IV. COMPARING THE DURATION RESULTS OF

AUTOMATION TESTING FRAMEWORKS

 Average Duration =
 Total Duration

 Trial Runs

=
187.617

10
≈ 18.762s

 Average Scenario =
 Average Duration

 Total Scenario

=
18.762

25
≈ 0.750s

 Average Step =
 Average Duration

 Total Occurrences

=
18.762

188
≈ 0.100s

 In evaluating the merits of these two options, we

must consider testing objectives and priorities.
Utilizing formulas to calculate the percentage increase
or decrease can measure the extent of changes in a
value [21]. In this context, it is necessary to identify the
differences between the values of Karate and Behave
first. The resulting difference is then divided by the
value of Karate or Behave, depending on whether we
are looking for a percentage increase or decrease. The
result is then multiplied by 100 to convert it into a
percentage.

Percent decrease (%) =
 Original Value − New Value

 Original Value
× 100%

Percent increase (%) =
 New Value - Original Value

 Original Value
× 100%

Execute Duration Result
Karate

Duration Result
Behave

1 43.580 s 19.215 s

2 42.693 s 18.551 s

3 45.216 s 18.293 s

4 40.311 s 18.176 s

5 43.254 s 19.385 s

6 42.111 s 18.898 s

7 42.918 s 18.972 s

8 41.289 s 17.978 s

9 43.246 s 20.180 s

10 41.832 s 17.969 s

Average 42.645 s 18.762 s

Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 1 | June 2024 23

ISSN 2085-4552

 Behave boasts a faster execution time, completing
tests in 18.762 seconds, compared to Karate’s 42.645
seconds. This results in Behave reducing execution
time by 127.295%, making it more efficient in terms of
time and resource utilization compared to Karate. It’s
important to emphasize that this difference in duration
cannot be attributed to a single factor. Instead, it’s
influenced by various variables, including test
complexity, the testing environment, parallel
execution, hardware and resource disparities,
optimization, tool-specific factors, and more, all of
which collectively contribute to these variations.

Percentage difference between the average duration of
Karate and Behave:

 Percent decrease (%) = Behave - Karate × 100%

 =
18.762 − 42.645

18.762
× 100%

 ≈ −127,294%

Moreover, shifting the focus to the number of steps,
Behave employs 188 steps, whereas Karate uses 543
steps. This implies that utilizes’s per-step duration is
0.100 seconds, while Karate’s per-occurrence duration
is 0.079 seconds. Consequently, Karate holds a
188.830% advantage in providing more detailed and
comprehensive insights into the behavior of the tested
software, particularly when considering step duration,
where Karate outperforms Behave by 26.582%.
Therefore, when deciding between these options, it’s
essential to consider the trade-off between execution
speed and the depth of analysis while considering
specific testing requirements and objectives.

Percentage difference between Karate and Behave steps:

 Percent decrease (%) =
 Behave − Karate

 Behave
× 100%

 =
188 − 543

188
× 100%

 ≈ −188.830%

Percentage difference between the duration of Karate and
Behave steps:

 Percent increase (%) =
 Behave − Karate

 Karate
× 100%

 =
0.100 − 0.079

0.079
× 100%

 ≈ 26.582%

CONCLUSION

This paper utilizes the Karate Framework as an
automation tool for testing to investigate the use of the
public Flip for Business API during the development
process. The execution of 25 scenarios selected from
two modules resulted in an impressively short testing
duration of only 42.645 seconds, which translates to

approximately 1.706 seconds per scenario. This
reduction in testing time is a significant improvement
over manual methods, leading to substantial time
savings of several minutes per test. Additionally, when
compared with the Behave framework using the same
scenarios but with differences in steps, Behave
achieved 18.762 seconds, or 0.750 seconds per
scenario, making it 127.295% faster than Karate.
However, when considering the number of steps,
Behave only covers 188 steps, while Karate includes
543 steps. This means that Behave requires 0.100
seconds per step, while Karate requires 0.079 seconds
per occurrence. Karate provides more detailed results
by 188.830% per step or 26.582% in terms of step
duration. Therefore, the choice between Behave and
Karate depends on your primary testing objectives.
Since the main goal of this paper is efficiency to obtain
results as quickly as possible and in-depth analysis,
Karate will be the preferable choice. This acceleration
in the testing process contributes to faster development
cycles, ensuring consistent API quality with each
modification. Additionally, the quality assurance
report verifies the online assessment system's quality
and deployment readiness. Thorough preparation is
essential for seamless parallel testing, avoiding
conflicts and overlaps in test cases. An immediate area
of future work involves integrating this procedure into
CI/CD (Continuous Deployment or Continuous
Delivery) solutions, to speed up release cycles and
address potential issues during code integration.

ACKNOWLEDGEMENT

We acknowledge the support from Muhamad Rizal
Indrabayu as the Engineering Manager, Henry
Suryawirawan as the Vice President of Engineering,
and Dwina Apriliasari as Corporate Communications
at PT Fliptech Lentera Inspirasi Pertiwi.

REFERENCES
[1] J. A. Gerding, B. W. Brooks, E. Landeen, and more,

“Identifying needs for advancing the profession and
workforce in environmental health,” American Journal of
Public Health. 2020 Mar, 110(3):288-94.

[2] G. Blokdyk, Regression Testing: A Complete Guide - 2019
Edition. Emereo Pty Limited, 2019.

[3] Flip. (2023) Tentang flip. Accessed on August 10, 2023.
[Online]. Available: https://flip.id/tentang-flip

[4] M. Biehl, API Architecture. CreateSpace Independent
Publishing Platform, May 2015.

[5] AWS. (2023) What is an api? Accessed on 7 August 2023.
[Online]. Available: https://aws.amazon.com/id/what-
is/api/

[6] M. Baumgartner, T. Steirer, M.-F. Wendland, S. Gwihs, R.
Seidl, and more, Test Automation Fundamentals: A Study
Guide for the Certified Test Automation Engineer Exam –
Advanced Level Specialist – ISTQB® Compliant.
dpunkt.verlag, August 30 2022.

[7] P. A. Chaubal, Mastering Behavior-Driven Development
Using Cucumber. BPB Publications, August 2021.

[8] S. Gidvarowart, A. Suchato, D. Wanvarie, N.
Pratanwanich, and N. Tuaycharoen, “Automated api testing
with karate framework: A case study of an online assessment

24 Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 1 | June 2024

ISSN 2085-4552

web application,” in 2023 20th International Joint Conference
on Computer Science and Software Engineering (JC- SSE).
Phitsanulok, Thailand: IEEE, June 28 - July 01 2023.

[9] T. Storer and R. Bob, “Behave nicely! automatic generation
of code for behaviour driven development test suites,” in 2019
19th International Working Conference on Source Code
Analysis and Manipulation (SCAM), 2019, pp. 228–237.

[10] Y. F. Putri, “Automation regression testing pada aplikasi
teman diabetes dengan menggunakan metode black box
testing,” Ph.D. dissertation, Universitas Atma Jaya
Yogyakarta, 2020.

[11] S. N. Yutia, “Automated functional testing pada api
menggunakan keyword driven framework,” Journal of
Informatics and Communication Technology (JICT), vol. 3,
no. 1, pp. 65–78, 2021.

[12] A. C. Barus, J. Harungguan, and E. Manulu, “Pengujian api
website untuk perbaikan performansi aplikasi ditenun,”
Journal of Applied Technology and Informatics Indonesia,
vol. 1, no. 2, pp. 14–21, 2021.

[13] B. D. Saputra and A. Stefanie, “Automation testing api,
android, dan website menggunakan serenity bdd pada
software sistem manajemen rumah sakit,” Jurnal Ilmiah
Wahana Pendidikan, vol. 9, no. 10, pp. 114–126, 2023.

[14] S. Desai and A. Srivastava, Software Testing. Phi Learning,
January 30 2016.

[15] G. Singh, “A study on software testing life cycle in software
engineering,” Int. J. Manag. IT, vol, vol. 9.

[16] A. S. Mahfuz, Software Quality Assurance: Integrating
Testing, Security, and Audit. CRC Press, April 27 2016,
ebook.

[17] A. Anand and A. Uddin, “Importance of software testing in
the process of software development,” International Journal
for Scientific Research and Development, vol. 12, no. 6, 2019.

[18] A. Nordeen, Learn Software Testing in 24 Hours: Definitive
Guide to Learn Software Testing for Beginners. Guru99,
October 31 2020.

[19] R. Drabick, Best Practices for the Formal Software Testing
Process: A Menu of Testing Tasks. Pearson Education, July
15 2013.

[20] Flip. (2023) Flip for business. Accessed on August 10, 2023.
[Online]. Available: https://flip.id/business

[21] D. Sharma. (2023) How to calculate percentage increase:
Formula & examples. Updated on August 1, 2023. Accessed
on November 20, 2023. [Online]. Available:
https://www.indeed.com/career-advice/career-
development/percent-increase-formula

