

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 2 | December 2023 129

ISSN 2085-4552

Cloud-Based ERP System Backend Design,
study case: PT Cranium Royal Aditama

Arnoldus Yitzhak Petra Manoppo1, Wirawan Istiono2

1,2 Informatic Dept, Universitas Multimedia Nusantara, Tangerang, Indonesia
1arnoldus.manoppo@student.umn.ac.id, 2wirawan.istiono@umn.ac.id

Accepted 26 January 2024
Approved 31 January 2024

Abstract— An ERP system is a comprehensive software
solution that facilitates the integration of all resources
inside a firm. PT Cranium Royal Aditama is a company
specializing in the development of Enterprise Resource
Planning (ERP) solutions for other businesses. The ERP
system of Cranium was constructed on the .Net
architecture. Nevertheless, the situation remains
unchanged. The Net framework is constrained by its
compatibility exclusively with the Windows operating
system. Cranium developed a cloud-based ERP system
using Java programming language to ensure flexibility
and compatibility with all operating systems. The
backend of the ERP system is constructed utilizing a
monolithic modular architecture, employing Java
Springboot as a framework and PostgreSQL as the
database. The purchasing, inventory control, and
production planning modules are responsible for the
design and development process. The design and
development of the ERP system backend is now
underway, however it is still in the development stage and
is currently confined to a basic CRUD technique.

Index Terms— ERP; Java Springboot; PostgreSQL;
Modular Monoliths

I. INTRODUCTION

An enterprise resource planning (ERP) system is a
comprehensive software solution designed to combine
all of a company's resources. Enterprise Resource
Planning (ERP) facilitates seamless interconnection
across all departments inside the firm [1], [2].
Consequently, numerous firms are inclined to use it due
to its facilitation of departmental management and
planning. Nevertheless, the process of creating an ERP
system is complex and costly[3], [4]. The creation of an
ERP system is fraught with dangers and might span
across several years. Furthermore, the majority of ERP
system developments result in failure [5], [6].

The development of enterprise resource planning
(ERP) systems, both cloud-based and on-premise, is the
area of expertise of PT Cranium Royal Aditama, a
company. For businesses who are interested in
constructing ERP systems that are both complicated
and high-risk, Cranium provides solutions. Cranium's
enterprise resource planning (ERP) system makes use
of the.NET Framework. [7], [8]. The fact that the.NET
framework is only compatible with the Microsoft
Windows operating system, on the other hand, places
limitations on the ways in which it can be utilized. This

results in an ERP system that is less adaptive and has a
lower market potential due to its exclusive
compatibility with the Windows operating system.
Furthermore, the Linux operating system, which
currently occupies a prominent position, is not
supported by the ERP system. The utilization of
Windows servers in cloud services often results in
greater expenses when compared to Linux servers. This
is in addition to the difficulties regarding flexibility as
previously mentioned [9], [10].

When all of these considerations were taken into
account, Cranium came to the conclusion that it would
be beneficial to revamp and reconstruct their system by
utilizing the Java programming language. Java is well-
known for its adaptability, since it can work on multiple
platforms, including Windows, Linux, and Mac. The
scope of design and development encompasses not only
the modification of code but also the introduction of
extra capabilities and modules, depending on the
requirements. It is believed that Cranium's enterprise
resource planning (ERP) system will be able to be
adopted by a larger variety of businesses if this strategy
is used.

II. STUDY LITERATURE

A. Modular Monoliths

Modular monoliths serve as an architectural
solution that combines the characteristics of classic
monolithic programs and the widely embraced micro
services. As software systems expand and develop [11],
[12], there is a fundamental requirement for equilibrium
a balance between the straight forwardness of a
monolith and the adaptability of micro services.
Introducing the modular monolith [13], an architectural
pattern that effectively combines the advantages of two
different approaches. When should one contemplate the
adoption of a modular monolith [14], [15].

1. Initial Project Phase: In the early stages, opting for
a modular monolith helps mitigate the burdens
associated with establishing microservices, while
still considering future scalability.

2. Elaborate Business Logic: If the system you are
constructing contains extensive business logic that

130 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 2 | December 2023

ISSN 2085-4552

are more manageable in a shared-memory system, a
modular architecture can be advantageous.

3. Teams Unfamiliar with Microservices: If your team
lacks familiarity with microservices, opting for a
modular monolith might facilitate the development
of modular thinking without the need for extensive
learning.

B. Enterprise Resource Planning

Enterprise resource planning (ERP) is a software
system that organisations employ to oversee and control
many business functions, including accounting,
procurement, project management, risk management
and compliance, and supply chain operations. An all-
encompassing ERP package comprises enterprise
performance management software, which aids in the
planning, budgeting, forecasting, and reporting of an
organization's financial outcomes [1], [2], [16].

Enterprise Resource Planning (ERP) solutions
integrate several corporate processes and facilitate the
exchange of data between them. ERP systems gather an
organization's shared transactional data from several
sources, eliminating data duplication and ensuring data
integrity by establishing a single authoritative source
[3], [17]. Currently, Enterprise Resource Planning
(ERP) systems play a crucial role in the management of
numerous enterprises across all sectors and scales. For
these companies, ERP is as essential as electricity,
which is necessary for maintaining illumination [2], [5].

III. METHODOLOGY

Develop and construct the backend infrastructure of
the ERP system. The design process commences by
constructing an entity relationship diagram (ERD) and
a database schema, often known as an ER description,
for the ERP module. Next, proceed to clone the module
as a starting template for constructing the backend.
After the process of cloning, proceed with the
development of create, read, update, delete, or CRUD
methods and unit tests for each functionality utilised in
the ERP system. In addition to that, this system was
developed employing a software development life cycle
that is of the Agile type. The subsequent information
outlines the specific activities conducted throughout the
execution of the research project.

1. Collaborated with the team to develop an Entity-
Relationship Diagram (ERD) and provide a detailed
description of the entities and relationships for the
purchasing, inventory control, and production
planning modules.

2. Duplicating the purchasing, inventory control, and
production planning modules. The cloning method
involves the creation of a new Java module within
the project for every ERP module. Cloning is
performed due to the monolithic modular
architecture of the ERP project, which consists of
multiple independent modules inside a single
project.

3. Implementing CRUD operations for the following
features: purchasing order, purchasing bill,
inventory item withdraw reservation, inventory
item transfer, production order, master plant, master
area, master driver, master unit of measurement, and
master activity standard.

The research commenced with the implementation
of the tech stack and architecture employed in the
design and development of ERP systems. The creation
of ERP systems incorporates the utilisation of many
tech stacks and architectures:

 The Springboot framework is utilised for the
development of the backend system of an ERP.
The rationale for utilising this framework lies in the
fact that Springboot is a Java-centric framework,
rendering it highly adaptable and compatible with
all major operating systems. Furthermore,
Springboot is renowned for being a well recognised
framework with comprehensive documentation.

 PostgreSQL Database: PostgreSQL is a relational
database that is open-source. Relational databases
are utilised due to the multitude of interconnections
between tables within the ERP system.

 Monolithic modular architecture refers to a type of
architecture that is both monolithic and modular in
character. This architectural design partitions the
codebase into modules, with each module
exhibiting loose coupling and the ability to function
independently. Modifications made to one module
do not have any impact on the other modules [8].
The decision to adopt a monolithic modular design
was based on its superior scalability and
maintainability compared to a traditional monolithic
architecture. Furthermore, if the microservices
architecture is to be used in the ERP system in the
future, the task of modifying the architecture will be
facilitated due to the codebase being partitioned into
multiple autonomous modules.

During the execution of this research, three modules
are focused on: purchasing, inventory control, and
production planning. Below is the Entity-Relationship
Diagram (ERD) representing the three modules.

A. Purchasing Modul

Figure 1 displays the Entity-Relationship Diagram
(ERD) representing the purchasing module. There is a
grand total of 12 tables, which can be further
categorized into 6 main/header tables and 6 detail
tables. The six primary tables consist of the request,
order, order item receipt, bill, order return, and return
bill. The six tables are interconnected in the following
manner: the request table has a one-to-one relationship
with the order table, the order table has a one-to-one
relationship with the order item receipt table, the order
item receipt table has a one-to-one relationship with the
bill table, the order return table has a one-to-one
relationship with the order table, and the return bill table
has a one-to-one relationship with the order return table.

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 2 | December 2023 131

ISSN 2085-4552

Every primary table is associated with a single
secondary table through a one-to-many relationship.

B. Inventory Control

Figure 2 displays the Entity-Relationship Diagram
(ERD) of the inventory control module. There is a grand
total of 12 tables, which can be further categorised into
6 main/header tables and 6 detail tables. The six
primary tables consist of item withdrawal reservation,

item withdrawal, item transfer reservation, item
transfer, item reception, and stock adjustment. Out of
the six tables, four are primary tables that have
connections with other primary tables. Specifically, the
item withdraw reservation table has a one-to-one
relationship with the item withdraw table, and the item
transfer reservation table has a one-to-one relationship
with the item transfer table. Every primary table is
associated with one detail table through a one-to-many
relationship.

Fig. 1. ERD Purchasing Modul

132 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 2 | December 2023

ISSN 2085-4552

Fig. 2. ERD Inventory Control Modul

C. Production Planning

Figure 3 displays the Entity-Relationship Diagram
(ERD) of the production planning module. There are a
total of seven tables, which include three main/header
tables and four detail tables. The three primary tables
are order, order item receipt, and planned order. The
order table has a one-to-one link with the order item
receipt table. Every primary table is associated with one
detail table, except for the order table which has two
detail tables. Each header table has a one-to-many link
with the detail table.

The Springboot architecture comprises four
hierarchical levels that engage in communication with
one another [9]. The four levels consist of the database
layer, persistence layer, business layer, and API layer.

Figure 4 shows the architectural scheme used by
Springboot. The following are the functions of the four
layers:

1. Database layer: the layer that performs CRUD
operations.

2. Persistence layer: the layer that contains storage
logic and converts objects into database rows or vice
versa.

3. Business layer: the layer that handles business logic,
validation, and authorization.

4. API layer: the layer that handles HTTP requests and
converts JSON into objects or vice versa.

Figure 4 not only illustrates the architectural
framework of Springboot but also elucidates the
process of how Springboot manages requests and
responses. The client will utilise REST API methods
(get, post, patch, delete) to submit queries. When
making a request using the post or patch method, JSON
data will be transformed into a data transfer object
(DTO). A Data Transfer Object (DTO) is an
encapsulated object that contains both the request and
response data [10]. Subsequently, the API layer or
controller will receive the object and subsequently
transmit it to the business layer or service.
Subsequently, the service invokes the persistence layer
or repository. The repository and the database have a
close correlation in executing CRUD operations. Upon
executing a CRUD action, the repository will provide
the service with an entity or object that corresponds to
a single database record. The service will transform the
entity into a DTO and will furthermore manage the
operational rules prior to delivering the DTO to the
controller. The controller will provide the Data Transfer
Object (DTO) and transform it into JSON format,
which will serve as the response received by the client.

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 2 | December 2023 133

ISSN 2085-4552

Fig. 3. ERD Modul Production Planning

Fig. 4. Spingboot Application Architecture

134 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 2 | December 2023

ISSN 2085-4552

IV. RESULT

A. Unit Testing

Unit testing is a form of software testing that
examines individual components of a system [11]. Unit
testing involves the independent testing of each
procedure on the service layer. Unit testing involves
evaluating the procedure being tested in two specific
scenarios: success and failure circumstances. Unit
testing in Springboot involves the use of class assertions
or classes specifically designed to test programmes
based on predefined assumptions [12]. If the assertion
is successful, the project installation can proceed
without any issues. However, if the assertion fails, the
project installation will not be successful.

@Test
voi d testFindOrderById() throws Data Not
Found E xce pt io n {
Long orderId = 1L ;

String document No Expected=” POD0000001 ” ;
Purchasing OrderDto
purchasingOrderDto=purchasingOrderService.findOrder
ById(orderId) ;

assertEquals(purchasingOrderDto.gtoueto().documen

tNoExpected) ;

}

Code 1. Example of a Successful Unit Test

Code snippet 1 demonstrates a unit testing example
where the read one data method is tested for a
successful condition. The unit test utilises the
assertEquals method to compare the documentNo
object (actual value) with the documentNoExpected
object (anticipated value). Unit testing is conducted not
only to assess the success condition but also to evaluate
the failure condition.

@Test
void testFindOrderByIdThrowException()throws
DataNotFoundE xce pt i on {
LongorderId=10L;
Exceptionexception=assertThrows(Data NotFoundEx
ce pt ion.class
,()−>{
 PurchasingOrderDtopurchasingOrderDto=
 purchasingOrderService.findOrderById(orderId);
});
Stringe xpe c t ed Me ssage=”Order dengan id 10 tida

kada”;

StringactualMessage=exception.getMessage ();

assertTrue(actualMessage.contains(e xpe c te dMe ssa g
e));

Code 2. Contoh Unit Test Gagal

Code snippet 2 provides an illustration of unit
testing on a failing condition for the read one data

method. The unit test executes two assertions,
specifically assertThrows and assertTrue. The
assertThrows method is used to make a method call
with specific circumstances that may result in a data not
found exception. The assertTrue method takes the
retrieved exception message (actualMessage) and
checks if it contains the expected message
(expectedMessage).

B. Rest API Testing

REST API testing is conducted to verify the
functionality of the 5 REST API endpoints that have
been developed. Here is an example of testing the create
method on the inventory item withdraw reservation
functionality of the REST API.

Fig. 5. REST API Method Create Endpoint Test Results

Figure 5 displays the outcome of doing tests on the
create method of the REST API. The create method
receives a JSON data as a request body, which includes
headers and metadata. Information can be transmitted
via multiple arrays. Upon a successful request, the
status response will indicate a 201 created status code
and include a JSON data as the response body.

C. Read Satu Data

Figure 6 demonstrates the testing of the REST API
method for retrieving a single data entry in the
inventory item withdraw reservation function.

Figure 6 displays the outcome of doing a test on the
REST API method for retrieving a single data entry.
The "read one data" method requires an id parameter in
order to retrieve the desired data. Upon a successful
request, the response status will indicate "200 OK" and
the response body will be returned as JSON data.

Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 2 | December 2023 135

ISSN 2085-4552

Fig. 6. REST API Endpoint Test Results Method Read One Data

D. Read Paging

Figure 7 demonstrates the testing of the REST API
method for reading paging on the inventory item
withdraw reservation feature.

Fig. 7. REST API Method Read Paging Endpoint Test Results

Figure 7 depicts the outcome obtained from doing
tests on the REST API read paging method. The read
paging method requires two parameters: page and size.
Upon successful completion of the request, the
response status will indicate "200 OK" and the response
body will consist of JSON data.

E. Update

Figure 8 exemplifies the testing of the REST API
method update on the inventory item withdraw
reservation functionality.

Fig. 8. REST API Method Update Endpoint Test Results

Figure 8 depicts the outcome of conducting tests on
the update or patch method of the REST API. The
update method receives an id argument and JSON data
in the request body, which includes headers and
information. Information can be transmitted via
multiple arrays. Upon a successful request, the response
status will indicate "200 OK" and the response body
will be returned as JSON data.

F. Delete

Figure 9 demonstrates the testing of the REST API
method delete on the inventory item withdraw
reservation functionality.

Fig. 9. REST API Method Delete Endpoint Test Results

Figure 9 displays the outcome of doing tests on the
delete method of the REST API. The delete method

136 Ultimatics : Jurnal Teknik Informatika, Vol. 15, No. 2 | December 2023

ISSN 2085-4552

requires the submission of a single id parameter in order
to delete the corresponding data. Upon a successful
request, the response status will indicate "200 OK" and
the response body will be returned as JSON data.

V. CONCLUSION

The backend for the cloud-based ERP system at PT
Cranium Royal Aditama has been designed and
developed, however it is still in the development stage.
The design and development process has currently only
progressed to the point of implementing a basic CRUD
mechanism for each feature in the ERP system. The
prolonged duration required for designing and
constructing the ERP system is attributed to its intricate
intricacy.

The design and development process consists of
three distinct modules: purchasing, inventory
management, and production planning. These modules
encompass several essential aspects such as purchasing
orders, purchasing bills, inventory item withdraw
reservation, inventory item transfer, and production
orders.

ACKNOWLEDGMENT

Thank you to Universitas Multimedia Nusantara in
Indonesia for providing a space for academics to
conduct this journal research. Hopefully, this research
will contribute significantly to the growth of technology
in Indonesia.

REFERENCES
[1] M. Hadidi, M. Al-Rashdan, S. Hadidi, and Y. Soubhi,

“Comparison between cloud ERP and traditional ERP,” J. Crit.
Rev., vol. 7, no. 3, pp. 140–142, 2020, doi:
10.31838/jcr.07.03.26.

[2] A. Razzaq, Siti Azirah Asmai, M. Saad Talib, N. Ibrahim, and
A. A. Mohammed, “Cloud ERP in Malaysia: Benefits,
Challenges, and Opportunities,” Int. J. Adv. Trends Comput. Sci.
Eng., vol. 9, no. 5, pp. 7510–7516, Oct. 2020, doi:
10.30534/ijatcse/2020/85952020.

[3] N. M. Alsharari, M. Al-Shboul, and S. Alteneiji,
“Implementation of cloud ERP in the SME: evidence from
UAE,” J. Small Bus. Enterp. Dev., vol. 27, no. 2, pp. 299–327,
Apr. 2020, doi: 10.1108/JSBED-01-2019-0007.

[4] T. Febrianto, D. Soediantono, S. Staf, K. Tni, and A. Laut,
“Enterprise Resource Planning (ERP) and Implementation
Suggestion to the Defense Industry: A Literature Review,”

2022. [Online]. Available: http://www.jiemar.org

[5] R. Kenge and Z. Khan, “A Research Study on the ERP System
Implementation and Current Trends in ERP,” Shanlax Int. J.
Manag., vol. 8, no. 2, pp. 34–39, Oct. 2020, doi:
10.34293/management.v8i2.3395.

[6] P. Ruivo, B. Johansson, S. Sarker, and T. Oliveira, “The
relationship between ERP capabilities, use, and value,” Comput.
Ind., vol. 117, May 2020, doi: 10.1016/j.compind.2020.103209.

[7] F. Matrone et al., “A BENCHMARK for LARGE-SCALE
HERITAGE POINT CLOUD SEMANTIC
SEGMENTATION,” Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci. - ISPRS Arch., vol. 43, no. B2, pp. 1419–1426,
2020, doi: 10.5194/isprs-archives-XLIII-B2-2020-1419-2020.

[8] W. I. Kevin Hendy, “Efficiency Analysis of Binary Search and
Quadratic Search in Big and Small Data,” Comput. Sci. Tech.,
vol. 7, no. 1, pp. 605–615, 2020, doi: 10.15181/csat.v7i1.2091.

[9] O. Alzakholi, L. Haji, H. Shukur, R. Zebari, S. Abas, and M.
Sadeeq, “Comparison Among Cloud Technologies and Cloud
Performance,” J. Appl. Sci. Technol. Trends, vol. 1, no. 2, pp.
40–47, 2020, doi: 10.38094/jastt1219.

[10] W. Philips and W. Istiono, “Analysis of MinFinder Algorithm
on Large Data Amounts,” Int. J. Emerg. Trends Eng. Res., vol.
9, no. 6, pp. 627–632, 2021, doi:
10.30534/ijeter/2021/04962021.

[11] A. J. Clair, J. A. Gabor, K. S. Patel, S. Friedlander, A. J.
Deshmukh, and R. Schwarzkopf, “Subsidence Following
Revision Total Hip Arthroplasty Using Modular and Monolithic
Components,” J. Arthroplasty, vol. 35, no. 6, pp. S299–S303,
2020, doi: 10.1016/j.arth.2020.03.008.

[12] R. M. da Ponte et al., “Monolithic integration of a smart
temperature sensor on a modular silicon-based organ-on-a-chip
device,” Sensors Actuators, A Phys., vol. 317, p. 112439, 2021,
doi: 10.1016/j.sna.2020.112439.

[13] S. Djeljadini et al., “Porous PVDF Monoliths with Templated
Geometry,” Adv. Mater. Technol., vol. 6, no. 11, 2021, doi:
10.1002/admt.202100325.

[14] A. Agarwala et al., “One Network Fits All? Modular Versus
Monolithic Task Formulations in Neural Networks,” ICLR 2021
- 9th Int. Conf. Learn. Represent., pp. 1–30, 2021.

[15] S. Mittal, Y. Bengio, and G. Lajoie, “Is a Modular Architecture
Enough?,” Adv. Neural Inf. Process. Syst., vol. 35, no. NeurIPS,
pp. 1–14, 2022.

[16] E. S. Kappenman, J. L. Farrens, W. Zhang, A. X. Stewart, and
S. J. Luck, “ERP CORE: An open resource for human event-
related potential research,” Neuroimage, vol. 225, no. October
2020, p. 117465, 2021, doi:
10.1016/j.neuroimage.2020.117465.

[17] V. Christiansen, M. Haddara, and M. Langseth, “Factors
Affecting Cloud ERP Adoption Decisions in Organizations,”
Procedia Comput. Sci., vol. 196, no. 2021, pp. 255–262, 2021,
doi: 10.1016/j.procs.2021.12.012.

