
 

 

 

 

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 11 

 

ISSN 2085-4552 

Optimizing CV Matching with Job Vacancies 

Using the Boyer-Moore Algorithm 

Andrew Christofer Hadiwinata 1, Eunike Endariahna Surbakti 2 

1,2 Informatics Department, Faculty of Engineering & Informatics, 

Universitas Multimedia Nusantara Tangerang, Indonesia 
1andrew.hadiwinata@student.umn.ac.id, 2eunike.endariahna@umn.ac.id 

 

 

Accepted 20 Mei 2025  

Approved 28 Mei 2025 

 

 
Abstract— According to a survey conducted by a public 

survey agency, there was a decline in the percentage from 

37% to 20%, indicating that a gap still exists between the 

skills required by the job market and those possessed by 

job seekers. To address this issue, this study aims to assess 

the alignment between data from curriculum vitae (CV) 

and job vacancies. The Boyer-Moore algorithm is 

implemented through a web-based system. The system 

extracts text from a PDF file, which is then used in 

the application of the Boyer-Moore algorithm. The 

system also retrieves selected job vacancy data and 

generates keywords using YAKE (Yet Another Keyword 

Extractor). Before processing with the Boyer-Moore 

algorithm, all data undergoes pre-processing. The 

algorithm’s output is either a “match found” or “no 

match found.” The similarity score is determined by 

dividing the number of matching keywords by the total 

number of keywords. Additionally, the system 

recommends other job options, aiming to suggest 

alternative vacancies that may better match the CV. 

These recommendations are based on the highest 

percentage of keyword matches from all job vacancy data 

stored in the system, which are sorted accordingly. The 

Boyer-Moore algorithm was successfully implemented in 

the job vacancy system, and the system’s performance 

evaluation, using 100 job vacancy data entries, yielded an 

average processing time of 2.84438 seconds. 

Index Terms— Boyer-Moore, curriculum vitae, 

Similarity score. 

I. INTRODUCTION 

According to data from the Central Statistics Agency 

(BPS), 937,176 people registered or applied for jobs in 

Indonesia in 2022. Job seekers’ educational 

backgrounds play a crucial role in the application 

process. Various job vacancies in Indonesia require 

different minimum education levels, ranging from high 

school to bachelor’s degrees. However, the proportion 

of university-educated workers in the labor force is only 

around 9.92%. This discrepancy highlights the gap 

between required job skills and the qualifications 

possessed by job seekers. Notably, a significant 

number of workers (up to 63%) end up in jobs 

unrelated to their field of study. To address this, an 

effective system is needed one that helps job seekers 

identify relevant skills for their desired positions and 

assists recruiters in selecting candidates whose CVs 

align with job criteria. Unlike some other algorithms, 

Boyer-Moore doesn’t require preprocessing, making it 

efficient for large-scale searches [1]. Boyer-Moore 

performs pattern matching by sliding the pattern over 

the text. It starts matching from the last character 

of the pattern, which allows for faster processing. The 

algorithm combines two heuristics: the Bad Character 

Heuristic and the Good Suffix Heuristic. When a 

mismatch occurs, the algorithm identifies the “bad 

character” (a character in the text that doesn’t match 

the current pattern character). It then shifts the pattern 

to align with the last occurrence of the bad character in 

the pattern. This heuristic improves efficiency by 

skipping unnecessary comparisons [2]. The Boyer-

Moore algorithm also considers the context of matching 

characters. If a mismatched character in the text 

occurs somewhere in the pattern, its index is used to 

skip over more characters, further reducing the number 

of comparisons. Boyer-Moore can be applied to strings 

of varying lengths and characters, making it suitable for 

CVs and job vacancy matching [3]. 

The research aims to implement the Boyer-Moore 

algorithm for assessing the suitability of CVs to specific 

job vacancies. It evaluates the efficiency of the 

algorithm based on computation time and focuses on 

English language patterns in PDF files. The goal is to 

assist HR professionals in streamlining the process and 

achieving more precise job candidate matches. 

II. METHODOLOGY 

A. Literature Studies 

Literature studies aim to determine the development 

of knowledge, theories, concepts, methods, and current 

findings related to the problem that you want to 

research. Literature study includes searching, reading, 

analyzing, and evaluate relevant scientific sources about 

mailto:andrew.hadiwinata@student.umn.ac.id
mailto:eunike.endariahna@umn.ac.id


 

 

 

 

12 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 

 

ISSN 2085-4552 

algorithm implementation Boyer-Moore towards a 

system. There are references to pre- vious research 

regarding implementation of the Boyer-Moore 

algorithm taken from a written journal by Sara Nasr. In 

This research, found the best candidates using CV and 

process fuzzy or uncertain information with berth 

algorithm [4]. The Boyer-Moore algorithm is an 

efficient string search method. Discovered by Bob 

Boyer and J. Strother Moore, it has become a standard 

in string search literature [1] [6]. Key characteristics of 

the Boyer-Moore algorithm include right-to- left string 

matching. This approach allows the algorithm to skip 

further when encountering mismatches, avoiding unnec- 

essary character comparisons [6]. 

The Boyer Moore algorithm is a string search 

algorithm that matches characters from right to left, and 

uses two rules to shift the pattern to the right if a 

mismatch occurs, namely the bad character rule and the 

good rule suffix [1]. This algorithm requires two pre-

search tables, namely the bmBc table and the bmGs 
table, which store the distance between each character 

or suffix and the end of the pattern. The mathematical 

formula for the Boyer Moore algorithm is 

s = max{bmBc[text[i]] − m + 1 + j, bmGs[j]} (1) 

B. Dataset 

Data collection involves obtaining relevant data 

from both primary and secondary sources. It must be 

done in a valid, reliable, and ethical manner. In this 

research, a dataset named “Job Dataset” from Kaggle 

is used for job vacancy data [5]. The relevant fields 

include company name, city, country, job title, role, 

salary, description, skills, and requirements. 

C. Requirements 

The system requirements for implementing the 

Boyer- Moore algorithm include allowing users to 

view all job postings. Users can scan their CV’s against 

specific job criteria and match their CV data with job 

descriptions and skills requirements. The matching 

process involves extracting keywords using YAKE 

(Yet Another Keyword Extractor) from job descriptions 

and skills requirements, followed by applying the 

Boyer-Moore algorithm for accurate matching. The 

system should display the match percentage for the 

selected job and provide alternative options with the 

top 5 match percentages. 

D. Planning 

Planning refers to the process of creating a plan or 

sketch for the functions, features, and technologies to be 

used in a system under development. It involves 

creativity, innovation, and alignment with user 

specifications and needs. The design phase encompasses 

system blueprints, user and system requirements, 

sitemaps, flowcharts, and low-fidelity prototypes. Here 

is the flowchart that defines the web-based system 

process. 

 

Fig. 1. System Flowchart 



 

 

 

 

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 13 

 

ISSN 2085-4552 

 
 

Fig. 2. Boyer-Moore Implementation Flowchart 

 

The system design at Figure 1 System flowchart 

and Figure 2 Booyer Moore Implmentation, outlines the 

process for implementing the Boyer-Moore algorithm. 

It begins by requesting user input in the form of a PDF 

file. The text within the PDF is then extracted and 

tokenized, followed by pre- processing (including 

removing non-alphanumeric characters and converting 

to uppercase). Next, the system combines job 

description data with skills data based on the selected 

job. The resulting combined text is tokenized and 

preprocessed as well. 

For string matching using the Boyer-Moore 

algorithm, both the text and pattern are needed. The text 

comes from the extracted and preprocessed data from 

the PDF, while the pattern is derived from the combined 

job description and skills text. To obtain the pattern, 

keyword extraction using YAKE is performed [8]. The 

Boyer-Moore string matching process begins, adding 

match percentages when a pattern is found. If no 

match occurs, a query right-side shift is applied. This 

process continues until the entire pattern is exhausted. 

After Boyer-Moore completes, the match percentage is 

displayed. For example, if 20 keywords were extracted, 

but only 15 matched, the system shows a 75% match. 

These percentages are stored in an array. 

In the recommendation system, sorting is crucial to 

display the most relevant results to users. The system 

proceeds to obtain the top 5 recommendations. Sorting 

involves taking the match percentages generated by 

Boyer-Moore and arranging them from highest to 

lowest. The same process is applied to all job postings, 

resulting in 5 additional recommendations. These top 5 

matches are also stored in an array. Once all steps are 

completed, the system displays the array results. 

III. RESULT 

A. Implementation 

The implementation of the Boyer-Moore algorithm 

within a Python-based web system requires the Flask 

library. Flask handles user input from the website, 

processes data using the algorithm, and returns the 

results to display on the website. The system follows 

the flowchart design outlined in Figure 1, involving 

steps such as selecting job postings, uploading 

documents, processing data, and displaying results 

along with recommendations. 

Fig. 3. Job Listings Page 

 

Figure 2 Job Lisitings Page is the job listing page 

allows users to view all available job postings. It 

displays job titles, roles, and locations. When a specific 

job is selected, detailed information including job 

descriptions and skills requirements is shown on the 

right side of the page. Below this information, a ”SCAN 

MY CV” button redirects users to the document upload 

page. 

 

Fig. 4. Upload Document Page 

The “Upload Document” page, as depicted in 

Figure 4, allows users to upload PDF files related to job 

applications. It displays job titles, roles, and locations. 

After selecting a file, users can press the “Scan Now” 

button to initiate the process. To extract text from a 

PDF, libraries like PyPDF2 are com- monly used [7]. 

Preprocessing involves tokenization (splitting text into 



 

 

 

 

14 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 

 

ISSN 2085-4552 

individual words) and removing stop words (common 

words with little meaning). The extracted text is 

combined and then processed further. YAKE (Yet 

Another Keyword Extractor) is used for keyword 

extraction [8]. 

The Boyer-Moore algorithm, an efficient string 

search method, doesn’t require extensive 

preprocessing, making it suitable for large-scale 

searches. It compares text and pattern from right to 

left. Two key heuristics are employed: the bad 

character rule (adjusting the pattern based on the last 

mismatched character) and the good suffix rule 

(shifting the pattern if the mismatched character doesn’t 

appear elsewhere in the pattern). By combining these 

heuristics, Boyer-Moore achieves efficient pattern 

matching. 

Fig. 5. Boyer-Moore Algorithm 

 

BoyerMooreSearch(text, word) : This is the creation 

of a BoyerMooreSearch object with the text and words 

(pattern) you want to search for. bad character

heuristic(): This func- tion is an implementation of the 

bad character heuristic in the Boyer-Moore algorithm. 

This function returns the position where the word 

(pattern) is found in the text.  init (self, text, pattern): 

This is the class constructor. This function takes two 

arguments, text and pattern, which are respectively the 

text on which the search is performed and the pattern to 

search for. This function also initializes some variables 

used in the algorithm. bad character heuristic(self): 

This is a method that implements the bad character 

heuristic of the Boyer-Moore algorithm. This heuristic 

speeds up the search by skipping characters that do not 

match in the pattern. The first loop (while i ¡= self.n - 

self.m:) moves the search window through the text. The 

second loop (while j ¿= 0 and self.pattern[j] == 

self.text[i + j]:) compares the characters in the pattern 

and text from right to left. If a pattern is found (if j ¡ 0:), 

the starting index of the pattern in the text is returned. If 

a non-matching character is found, the search window 

advances a maximum distance between 1 and j - 

self.skip[ord(self.text[i + j])]. 

The results of string matching using the Boyer-

Moore algorithm display job titles, positions, company 

names, lo- cations, and match percentages. After 

completing the Boy- erMooreSearch process, the 

results are available only for the selected job. To obtain 

job recommendations with the highest match 

percentages, testing is performed across all job data 

stored in the database. The process is similar to before, 

but without using a unique ID since the query aims to 

select all data. Iterating through all data, job 

descriptions and skills requirements are combined and 

pre-processed. Keyword ex- traction is then applied, 

followed by matching using the Boyer- Moore 

algorithm, resulting in the same format. Additional job 

recommendations are displayed to provide alternative 

options that may have higher match percentages than 

the selected job. Sorting with a Sortation Algorithm 

which is Timsorts determines the highest match 

percentage recommendations [9] [10]. 

Fig. 6. Result Page 

Once the top recommendations are obtained, the 

results are stored in an array and sent to the page 

depicted in Figure 6, the “Results Page,” using the 

render template function in Flask. The “Results Page” 

displays job titles, roles, locations, and match 

percentages. The top result corresponds to the selected 

job, while the lower section shows additional 

recommenda- tions with the highest match percentages. 

B. Testing 

The testing process for the Boyer-Moore 

algorithm applied to CV data matching with job 

vacancies. The testing process involves several 

steps: 

1) File Upload: Begin by uploading a simple CV in 

PDF format. 

2) Processing: Extract the text from the file and 

convert it into string tokens. 

3) Text Pre-processing: Perform pre-processing on 

the ex- tracted text. 

4) Select Job Vacancy Data: Choose a specific job 

vacancy to match against. 

5) Combine Job Description and Skills 



 

 

 

 

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 15 

 

ISSN 2085-4552 

Requirements: Pre- process the text from the job 

description and skills requirements, combining 

them into a single text. 

6) Keyword Extraction with YAKE: Use the 

YAKE algo- rithm to extract keywords. Set 

the parameter ‘n’ to 1 to ensure that the 

generated keywords consist of single words. 

7) String Matching with Boyer-Moore: Apply the 

Boyer- Moore algorithm to search for the 

extracted keywords. The algorithm provides 

accurate outputs for both “match found” and “no 

match found” cases. 

8) Calculate Matching Score: Based on manual 

testing, there was an 8 out of 20 keyword 

match, resulting in a 40% match percentage. 

Additionally, processing one CV against one 

job vacancy took less than 1 second. 
 

Overall, the system is categorized as fast in displaying 

results 

C. Evaluation 
Evaluating an algorithm multiple times is crucial to 

obtain accurate results. Various factors, such as 

operating system conditions and processor load, can 

affect execution time. Therefore, conducting multiple 

tests ensures consistent and reliable outcomes. While 

there is no strict rule about the exact number of 

evaluations, averaging results over multiple runs 

reduces variability and provides a more accurate 

performance assessment. 

The primary reason for measuring computational 

time dur- ing algorithm evaluation, especially for the 

efficient Boyer- Moore string search algorithm, is to 

assess its reliability and speed in real-world 

applications. In unsupervised learning contexts, where 

algorithms work with unlabeled data, speed and 

reliability are critical. Algorithms must identify 

patterns or structures in data without external 

assistance. 

Computational time measurement is crucial for 

systems dealing with large or real-time data 

processing. Reliable and fast algorithms enable 

accurate recommendations or results within short 

timeframes. This is valuable in practical applica- tions 

like job matching, text analysis, and recommendation 

systems. Therefore, evaluating the Boyer-Moore 

algorithm considers both accuracy and speed. 

The following are the table of average evaluation 

results.  

TABLE I 
AVERAGE EVALUATION TIME RESULT 

Data CV AndrewChristofer 
(Time Taken) 

CV Lydia (Time 
Taken) 

100 3.05692 s 2.84438 s 
200 5.78710 s 5.36939 s 
500 15.19051 s 12.92706 s 

1000 28.64033 s 26.95702 s 

 

The increase in processing from 100 data to 200 data 

nearly doubles the required time. From the data, we can 

infer that processing 100 data takes approximately 3 

seconds. Below is the graph generated based on the 

average evaluation results from Table 1. 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Average Evaluation Time Result Graph 

The graph illustrates the average evaluation 

results for these two CVs. The x-axis represents the 

processed data volume, while the y-axis shows the 

time required for processing. As expected, 

processing time increases with larger data volumes 

a common occurrence in computing. 

 For CV AndrewChristofer (indicated by the blue 

line), the processing time was approximately: 

1) 100 data: 3.06 seconds 

2) 200 data: 5.79 seconds 

3) 500 data: 15.19 seconds 

4) 1000 data: 28.64 seconds 

Similarly, for CV Lydia (indicated by the red 

line), the processing time was approximately: 

1) 100 data: 2.84 seconds 

2) 200 data: 5.37 seconds 

3) 500 data: 12.93 seconds 

4) 1000 data: 26.96 seconds 

The difference in processing time between the two 

CVs diminishes as the data volume increases. This 

suggests that both CVs perform similarly for large-scale 

data processing. In summary, while the number of 

words and characters does not significantly impact 

computational time, the data volume does affect 

processing time 

IV. CONCLUSIONS 

Implementation of the Boyer-Moore algorithm 

within a website-based system for checking the 

compatibility of cur- riculum vitae (CV) with job 

vacancies is successful. The implementation process 

involved several key steps. Literature Study, prior to 

implementation, thorough literature research was 

conducted to ensure that the chosen approach addressed 

the problem statement effectively. Data Collection and 

Anal- ysis, a dataset of job vacancies served as a 

 
30 

 

  

 
20 

 
15 

 

10 

 

5 

0 
100 200 500 

 

1,000 

T
im

e
 T

a
ke

n
 (

s)
 



 

 

 

 

16 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 

 

ISSN 2085-4552 

reference for eval- uating CV compatibility. 

Additionally, requirements analysis and system design 

formed the foundation for the website-based system. 

Algorithm Integration the Boyer-Moore algorithm was 

integrated into the system, aiming to assess the 

suitability between CV documents and job vacancy 

data. Additional algorithms, such as YAKE for keyword 

extraction and Timsort for sorting, were also utilized. 

Manual Testing and Evaluation, manual testing 

verified whether the system’s processed data matched 

the expected output. Finally, performance evaluation 

measured the time required to process a PDF CV 

against job vacancy data and provide recommendations 

based on the highest match percentage. 

The evaluation revealed that while word count and 

character length had minimal impact on computational 

time, the data volume significantly affected processing 

time. 

REFERENCES 

[1]  R. S. Boyer and J. S. Moore, ““A Fast String Searching Algo- 
rithm”,”Communications of the ACM, vol. 20, no. 10, pp. 
762–772, 10 1977 

[2] W. Rytter, ““Correctness of the Boyer-Moore Algorithm”,” 
Information Processing Letters, vol. 9, no. 5, pp. 232–234, 12 
1979 

[3] OpenCV. (2024, 2) “Feature Matching”. [Online; accessed 
17-Feb-2024]. 

[4] S. Nasr and O. German, “Resume searching to decide best 
candidate based on relief method,” Open Science Journal, vol. 
5, no. 2, 2020 

[5] R.  S.  RANA,  “A  Comprehensive  Job  Dataset  for  
Data Science, Research, and Analysis.” [Online].
 Available: 

https://www.kaggle.com/datasets/ravindrasinghrana/job-
description- dataset 

[6] Fitriyah, “The Implementation of Boyer-Moore Algorithm in 
WEB Based Computer and Informatic Terms Dictionary,” in 
2020 4th Inter- national Conference on Vocational Education 
and Training (ICOVET), 9 2020 

[7] T. Aggarwal, “Pypdf2: A comprehensive guide to mastering 
pdf manip- ulation with python,” 2023 

[8] A. M. J. A. J. Ricardo Campos, Ga el Dias, “YAKE: Yet 
Another Keyword Extractor” 

[9] S. Valdarrama, “Sorting Algorithms in Python” 

[10] GeeksforGeeks, “TimSort - Data Structures and Algorithms 
Tutorials.” 

[11] S. I. Hakak, A. Kamsin, S. Palaiahnakote, and G. A. Gilkar, 
“Exact String Matching Algorithms: Survey, Issues, and 
Future Research Di- rections,” ResearchGate, 2019 

[12] A. K. Singh, A. K. Singh, and A. K. Singh, ““A String 
Matching Algorithm for Job Searching and Skill Analysis”,” 
International Journal of Computer Applications, vol. 117, no. 
16, pp. 10–14, 5 2015 

[13] R. S. Patil and S. S. Sherekar, ““A Novel Approach for Skill 
Matching in Job Recruitment System Using String Matching 
Algorithm”,” Interna- tional Journal of Computer Science and 
Information Technologies, vol. 5, no. 3, pp. 3627–3630, 2014 

[14] A. K. Singh, A. K. Singh, and A. K. Singh, ““A Novel 
Approach for Word Search Puzzle Game Using String 
Matching Algorithm”,” International Journal of Computer 
Applications, vol. 120, no. 19, pp. 1–4, 6 2015. 

[15] OpenCV. (2024, 2) “Feature Matching”. 

[16] CodeCrucks. (2024, 2) “String Matching Algorithms - 
CodeCrucks” 

[17] D. Gusfield, Algorithms on Strings, Trees, and Sequences: 
Computer Science and Computational Biology. Cambridge, 
UK: Cambridge Uni- versity Press, 1997. 

[18] A. P. A. M. J. C. N. A. J. Ricardo Campos, Vitor Mangaravite, 
“Unsupervised Multiword Extraction for Keyword 
Generation.” 

 

 

 

 

 

http://www.kaggle.com/datasets/ravindrasinghrana/job-description-
http://www.kaggle.com/datasets/ravindrasinghrana/job-description-

