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Abstract— Prevention and detection of plagiarism are 

crucial. There are several algorithms that can be used to 

detect plagiarism in documents, including the Cosine 

Similarity, Rabin-Karp, Levenshtein Distance, Hamming 

Distance, Euclidean Distance, Edit Distance, Jaccard 

Similarity, Ratcliff/Obershelp, Winnowing, Brute Force, 

Boyer-Moore, and Knuth Morris Pratt algorithms. Based 

on the literature review from previous research, three 

best algorithms were identified: Cosine Similarity, 

Rabin-Karp, and Levenshtein Distance. However, there 

has been no study analyzing the comparison of these three 

algorithms. Therefore, this study will compare the 

performance of each algorithm and determine the best 

algorithm for plagiarism detection in documents based on 

similarity scores and execution time. The research objects 

use a sample of documents consisting of titles and 

abstracts from Indonesian-language informatics 

journals. Cosine Similarity is superior to others for 

plagiarism detection in documents, as it produces the 

highest average similarity score with a relatively fast 

execution time. The similarity values obtained using 

Cosine Similarity, Rabin-Karp 4-grams, and Levenshtein 

Distance were found to be 48.80%, 47.13%, and 20.61%, 

respectively.  The average execution time of Cosine 

Similarity, Rabin-Karp with 4-grams, and Levenshtein 

Distance are 0.22 s, 0.45 s, and 39.15 s, respectively. 

Index Terms— comparison; cosine similarity; rabin-

karp; levenshtein distance; plagiarism; similarity. 

I. INTRODUCTION 

Plagiarism constitutes a substantial issue within 

academic and professional contexts, as it compromises 

the authenticity and credibility of scholarly endeavors. 

Plagiarism refers to the practice of taking, utilizing, or 

copying the work, concepts, or discoveries of another 

individual, either in full or in part, without sufficient 

attribution or appropriate referencing, thereby 

misrepresenting it as one’s own intellectual product or 

achievement [1], [2]. Prevention and detection of 

plagiarism are crucial, especially in the academic world 

[2], [3]. With the ease of information exchange through 

the internet, academic community comprising students 

and lecturers can engage in copy-paste practices that 

may lead to plagiarism.  

According to Regulation of the Minister of 

Education, Culture, Research, and Technology Number 

39 of 2021 regarding Academic Integrity in Producing 

Scientific Works, article 10 paragraph (3), Plagiarism is 

the act of taking and rewriting part or all of someone 

else's work without using one's own language, even if 

the source is cited correctly [2],[5]. Furthermore, in the 

Tridharma of Higher Education, academic community 

members are also obligated to conduct research and 

produce scientific works [5]. Therefore, it is crucial to 

prevent and identify acts of plagiarism [2],[3]. 

TABLE I.  LITERATURE REVIEW 

Researcher Year Algorithms 

Alvi, F. et al. 2017 Hamming Distance 

Hartanto, A. D., et 
al. 

2019 
Rabin-Karp 

Süzen, N., et al. 2020 
Euclidean distance, 

Needleman-Wunsch Distance 

Wahyuningsih, T., 
et. al. 

2021 
Cosine Similarity, Jaccard 
Similarity 

Alobed, M., et al. 2021 
Cosine Similarity, Jaccard 

Similarity 

Nalawati, R.E., & 
Yuntari, A.D. 

2021 
Ratcliff/Obershelp 

Astuti, Y., & 

Wulandari, I., 
2022 

Rabin-Karp 

Hidayat, W., et al. 2022 Rabin-Karp 

Al-Hagree, S., & Al-

Gaphari, G. 
2022 

Levenshtein Distance 

Nandurkar, D. A.,et 

al. 
2023 

Levenshtein Distance 

Amalia, E.L., et al. 2023 Winnowing 

Alfat, L., et al. 2023 Knuth Morris Pratt 

Barut, Z. & 

Altuntas, V. 
2023 

Boyer-Moore 

Setu, D.M., et al. 2025 Cosine Similarity 

Madhan, N., et al. 2025 Manhattan Distance 
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One way to detect plagiarism is by using the concept 

of string matching to calculate the similarity between 

documents [1],[3],[6],[7]. To achieve the best results, 

the use of the best algorithm is essential for detecting 

plagiarism in documents. There are several algorithms 

that can be used for plagiarism detection in document, 

including Cosine Similarity [8]-[10], Jaccard Similarity 

[8],[9], Rabin-Karp [11]-[13], Levenshtein Distance 

[14],[15], Hamming Distance [16], Euclidean distance 

[17], Winnowing [18], Knuth Morris Pratt [19], 

Ratcliff/Obershelp [20], Needleman-Wunsch Distance 

[17], Boyer-Moore [21], Manhattan Distance [22], and 

others. Several previous studies have been conducted 

using those algorithms. A literature review of research 

relevant to those algorithms is presented in Table I. 

Among those methods, three were selected based on 

their consistent superiority in various aspects of 

plagiarism detection, as explained in the literature 

review. 

Cosine Similarity with pre-processing is superior to 

Jaccard Similarity in measuring similarity because it 

produces the highest correlation values [8]. Cosine 

Similarity has a better accuracy rate compared to the 

Euclidean Distance algorithm for calculating similarity 

[9]. Although the Rabin-Karp algorithm exhibits 

limitations in accurately distinguishing between similar 

words, it demonstrates superior performance in 

plagiarism detection when compared to the Brute Force 

and Boyer-Moore algorithms [23]. Specifically, while 

the Brute Force algorithm excels in single-pattern 

searches, it remains less effective for multiple-pattern 

searches. Additionally, the Boyer-Moore algorithm 

performs efficiently by shifting the last two characters 

but is less effective with earlier shifts. In contrast, the 

Rabin-Karp algorithm effectively addresses these 

limitations [24].  

The Rabin-Karp algorithm can be used for 

searching long pattern strings but has a longer execution 

time compared to Ratcliff/Obershelp. Similarity values 

are highly influenced by the sentence structure in 

Rabin-Karp, whereas it has no impact at all on 

Ratcliff/Obershelp [11]. From the testing of Rabin-

Karp with k-grams ranging from 2 to 10, the one with 

the highest accuracy is 3-gram [13]. The Rabin-Karp 

algorithm is better than the Winnowing for detecting 

plagiarism because it produces higher similarity scores. 

Therefore, for this research, the Rabin-Karp algorithm 

is proposed for detecting plagiarism. 

The Levenshtein Distance algorithm, which checks 

each character one by one, produces perfect results on 

simple short sentences but does not perform well on 

long documents with irregular positions [25]. The 

Levenshtein Distance algorithm is better than the Knuth 

Morris Pratt algorithm because it has higher speed and 

accuracy and can minimize errors when searching for 

data [26]. The Levenshtein Distance algorithm is 

superior and more efficient compared to 

Ratcliff/Obershelp for detecting plagiarism [27]. 

Based on the literature review, there are three best 
algorithms: Cosine Similarity, Rabin-Karp, and 
Levenshtein Distance. These algorithms have their 
respective strengths and weaknesses, but there has been 
no research analyzing the comparison of these three 
algorithms for detecting plagiarism in documents. 
Therefore, a comparative analysis among these 
algorithms is needed to determine the best algorithm by 
measuring the level of similarity for detecting 
plagiarism in documents and execution time as a 
parameter to assess the speed of each algorithm. 

Therefore, the purpose of this research is to compare 
the similarity scores and execution times to know the 
performance of each algorithm and determine the best 
algorithm for plagiarism detection in documents based 
on similarity scores and execution times. This study is 
a novelty compared to previous research, as there has 
been no study comparing the Cosine Similarity, Rabin-
Karp, and Levenshtein Distance algorithms for 
plagiarism detection in documents. 

II. METHODOLOGY 

The research method used is a comparative analysis, 

where this study will compare performance of Cosine 

Similarity, Rabin-Karp, and Levenshtein Distance 

algorithms for detecting plagiarism in documents. The 

research begins with data collections, followed by 

comparison document collections processing. After 

that, testing is conducted using the Cosine Similarity, 

Rabin-Karp, and Levenshtein Distance algorithms. 

Once the testing is completed, an analysis will be 

performed to determine the best algorithm based on 

similarity scores and execution time. The block 

diagram of this research can be seen in Fig. 1. 

 

Fig. 1. Block diagram system 

A. Data Collections Technique 

The data collections technique used for testing in 
this research is by sampling documents consisting of 
titles and abstracts from Indonesian-language journals. 
The chosen journals are in the field of informatics, 
particularly those with high citation numbers and 



 

 

 

 

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 65 

 

ISSN 2085-4552 

publication years ranging from 2018 to 2023. This is to 
obtain data that is relevant to the research objectives and 
of good quality. The process of collecting sample 
documents is conducted through Google Scholar using 
the keywords {"Information Technology," "Artificial 
Intelligence," "Machine Learning," "K-Means 
Clustering," and "Naive Bayes"}. Then, the titles and 
abstracts from each journal will be extracted and saved 
in .txt file format to facilitate data pre-processing.  

The total sample documents in this research amount 

to 440 documents. The 440 documents were then 

divided into two groups: 400 documents were used as 

the comparison document collections (reference 

corpus) without specific labeling, which serve as the 

base dataset for similarity comparison, while 40 

documents were designated as test documents. The test 

documents were selected randomly from the collected 

sample to evaluate the performance of the plagiarism 

detection algorithms. Since all documents are from the 

same domain and collected via the same keywords, this 

setup simulates real-world scenarios of document 

similarity detection without explicit labeling of 

plagiarism cases. 

B. Data Pre-processing 

Pre-processing is performed as part of data 
cleansing to simplify and standardize the text, allowing 
it to be processed more effectively in the main process 
[28]. The pre-processing conducted in this research 
consists of only two stages, namely Case Folding and 
Filtering. 

The case folding stage is performed to eliminate 
differences in letter case, thus converting the entire text 
to lowercase. The filtering stage is carried out to 
enhance accuracy and speed by focusing on more 
significant words. In this study, the filtering process 
does not remove stop words because, based on the 
adopted definition of plagiarism, paraphrasing is 
considered important. Therefore, only punctuation 
marks and special characters will be removed. The 
flowchart of the data pre-processing can be seen in Fig. 
2. 

 

Fig. 2. Flowchart of data pre-processing 

C. Comparison Document Collections Processing 

In the testing process, the test documents will be 
compared with the collections of comparison 
documents, while the text content in each document 
must undergo parsing or text segmentation based on 
sentences and pre-processing. The purpose of 
processing the collections of comparison documents is 
to avoid repetitive parsing and pre-processing of the 
document collections every time a test is conducted.  

 

Fig. 3. Flowchart of comparison document collections processing 

The system will read the folder containing the 
collections of comparison documents. Each document 
will undergo parsing to separate the text based on 
sentences, and each sentence will undergo pre-
processing. Then, the processed sentences will be 
stored in the variable "comparisonDocuments" with the 
document index and its corresponding sentence. Once 
all the sentences in the first document are processed, the 
system will proceed to the next document until all 
documents in the folder are processed. After that, the 
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results of the comparison document collections 
processing will be stored in the comparison sentence 
database, allowing access for each testing session. The 
flowchart of the comparison document collections 
processing can be seen in Fig. 3. 

D. Algorithm Testing Technique 

The purpose of this testing is to obtain the similarity 
scores for each test sentence with all the sentences in 
the comparison document collections. Then, the highest 
similarity score for each test sentence will be 
determined to identify which comparison document 
sentence it is most similar to and at which sentence 
position. The average similarity score for each test 
sentence will be calculated to determine the similarity 
value between the test document and the entire 
collections of comparison documents.  

 

Fig. 4. Flowchart of algorithm testing 

The similarity scores between the test documents 
generated by each algorithm will be compared to 
determine which algorithm produces the highest 
similarity score. Additionally, the execution time of 
each algorithm will also be measured to determine 
which algorithm is the fastest in its usage. The testing 
phase will be conducted using 40 test documents. Each 
algorithm will be applied to the same test documents. 
Analyze each of the results. Comparing the 
performance of each algorithm in detecting plagiarism.  

In this study, testing will be conducted one by one 
in sequential order for each algorithm, namely: (1) 
Cosine Similarity, (2) Levenshtein Distance, (3) Rabin-
Karp 2-gram, (4) Rabin-Karp 4-gram, and (5) Rabin-

Karp 6-gram. The selection of these k-gram values is 
based on previous studies that have also used similar k-
gram values [13], to observe the impact of k-gram size 
on Rabin-Karp algorithm performance. Therefore, one 
document will not be tested using all algorithms 
simultaneously. This means that one test document will 
be repeatedly used in five different tests. As a result, out 
of 40 test documents, a total of 200 tests will be 
conducted. The testing flowcharts can be seen in Fig. 4 
to Fig. 6. 

 

Fig. 5. Flowchart of algorithm testing (continued) 

The testing begins by uploading the test documents. 
First, the system will load the comparison sentence 
collections from the database. Then, the test document 
will be parsed based on sentences, and each test 
sentence will undergo pre-processing and will be saved 
in the variable "testSentences". This is done to facilitate 
the execution time calculation, as the time will be 
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measured only during the algorithm testing process. 
Once all test sentences have completed pre-processing, 
the next stage will proceed to the main testing process. 
The flowchart of the main testing process can be seen 
in Fig. 5. 

At this stage, the execution time calculation begins. 
Each test sentence will be compared with all the 
comparison sentences. The first test sentence will be 
compared with the first comparison sentence to 
calculate the similarity. As the testing is conducted one 
by one for each algorithm, at this stage of similarity 
calculation, one algorithm function will be called based 
on the selected algorithm testing.  

The similarity calculation results will be stored in 
the "sentencesSimilarity" variable along with the index 
of the test sentence, the comparison document, and the 
comparison sentence. This stage will be repeated 
continuously until the first test sentence is compared 
with all the comparison sentences. After that, the 
highest similarity of the first test sentence will be 
determined and saved in the variable 
"maxSentencesSimilarity". This is intended to 
determine which test sentence has the highest similarity 
with which comparison sentence in which comparison 
document. If the first test sentence has been compared 
with all the comparison sentences and the index with 
the highest similarity value is obtained, the process will 
be repeated for the second test sentence until all the test 
sentences are compared with all the comparison 
sentences.  

 

Fig. 6. Flowchart of algorithm testing (continued) 

Afterward, the similarity score for the test document 
will be determined by calculating the average of the 
highest similarity scores from all test sentences. This 
stage is the end of the main testing, thus the execution 
time calculation is completed at this stage. The process 
proceeds to the final stage, which can be seen in Fig. 6. 

The final stage is the execution time calculation, 
which is obtained by subtracting the end execution time 
from the start execution time. After that, all test results 
will be saved to the test result database. These tests are 
conducted on each algorithm. 

E. Cosine Similarity Algorithm 

The working principle of the Cosine Similarity 
algorithm is to measure the proximity between two 
vectors by calculating their dot product and then 
dividing it by the Euclidean distance between the two 
vectors for normalization. Equation (1) represents the 
formula for Cosine Similarity used to calculate the 
similarity score [9],[29].  

𝑆(𝐴,𝐵) =
𝐴∙𝐵

‖𝐴‖‖𝐵‖
=

∑  𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑  𝐴𝑖
2𝑛

𝑖=1 √∑  𝐵𝑖
2𝑛

𝑖=1

× 100          (1) 

S represents the similarity score, A and B are vector 
representations of two documents being compared, 
where each vector represents the term frequency (TF) 
values of words in the documents, n is the number of 
vectors, and the i is the vector order. 

F. Rabin-Karp Algorithm 

The working principle of the Rabin-Karp algorithm 
is string searching based on patterns (substrings) and 
comparing the hash values of each pattern [23]. First, 
the text will be divided into grams based on the value 
of k to obtain substrings. Then, the substrings will be 
converted into hash values, and the hash values between 
two texts will be compared. If both hash values are the 
same, the comparison will be done once again on the 
characters of the substring to ensure that the hash value 
represents the same substring. If they are not the same, 
the substring will be shifted to the right [13]. Afterward, 
the similarity score is calculated using the Dice 
Similarity Coefficient equation. Equation (2) represents 
the formula used in the Rabin-Karp algorithm to 
calculate the hash value. 

𝐻(𝑝) = ∑ 𝑎𝑠𝑐𝑖𝑖(𝑝𝑖)
𝑘
𝑖=1  𝑏(𝑘−1)            (2) 

H represents the hash value, p is the pattern, k is the 
value of k-gram, b is the base or radix value (a prime 
number), and i is the character order in the pattern. 
Equation (3) is the Dice Similarity Coefficient formula 
used for calculating the similarity in the Rabin-Karp 
algorithm [12]. 

𝑆(𝐴,𝐵) =  
2 ×|𝐻𝐴∩𝐻𝐵|

|𝐻𝐴|+|𝐻𝐵|
            (3) 

S represents the similarity score, A and B are the 
texts being compared, and H is the hash. Example 
calculations using the Rabin-Karp algorithm can be 
found in [11],[23]. 

G. Levenshtein Distance Algorithm 

The working principle of the Levenshtein Distance 
algorithm is by creating a matrix to calculate the 
number of operations required to change one character 
using addition, deletion, or substitution operations. This 
calculation is done by comparing each character [14].  

However, based on the research conducted [18], 
distance calculations can be done by directly 
calculating the word differences without creating a 
matrix, making the steps in the distance calculation 
simpler and can improve execution time. Equation (4) 
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represents the formula used for calculating the 
Levenshtein distance value [15]. 

𝐷(𝐴,𝐵) = ∑ 𝑑(𝐴𝑖, 𝐵𝑖)𝑛
𝑖=1             (4) 

D is the Levenshtein distance, A and B are the texts 
being compared, d is the comparison value (if equal = 
0, if different = 1), n is the maximum number of texts 
between A and B, and the i is the word order in the text. 
Equation (5) represents the Levenshtein Distance 
formula for calculating the similarity. 

𝑆(𝐴,𝐵) = (1 −
𝐷(𝐴,𝐵)

𝑛
) × 100           (5) 

S is the similarity value, D is the Levenshtein 
distance, A and B are the texts being compared, and n 
is the maximum number of texts between A and B. 
Examples of calculations using the Levenshtein 
Distance algorithm can be found in [18]. 

H. Test Result Analysis Technique 

The data analysis technique used in this study is a 

comparative analysis, where the test results of each 

algorithm will be presented in the same table, allowing 

the performance of each algorithm to be directly 

compared. Additionally, the average similarity values 

and execution times of each algorithm will be presented 

in the form of bar charts. 

III. RESULT AND DISCUSSION 

A. Experimental Result 

After comparison document collections processing is 

completed, out of the 400 documents used, a total of 

3,471 comparison sentences were obtained. Therefore, 

in this study, each test sentence will be compared and 

its similarity calculated with the 3,471 comparison 

sentences. Table II shows the test results on the same 

10 test documents using Cosine Similarity, Levenshtein 

Distance, and Rabin-Karp algorithms 

TABLE II.  EXPERIMENTAL RESULT 

No Document 

Cosine Similarity Levenshtein Distance Rabin-Karp 

Similarity 

(%) 

Time 

(s) 

Similarity 

(%) 

Time 

(s) 
k 

Similarity 

(%) 

Time 

(s) 

1 2020-403 TI 49.63 0.50 15.29 0.23 

2 

4 

6 

89.71 

45.69 

29.28 

24.74 

51.95 

62.37 

2 2021-10 ML 53.81 0.36 22.88 0.17 

2 

4 

6 

89.77 

52.12 

33.16 

19.00 

40.07 

48.06 

3 2021-14 KM 47.09 0.23 14.94 0.12 
2 
4 

6 

89.00 
47.33 

29.52 

13.07 
26.15 

32.10 

4 2021-84 NB 53.01 0.52 18.76 0.22 
2 
4 

6 

86.14 
44.63 

30.72 

22.66 
41.39 

49.02 

5 2021-86 TI 41.86 0.40 17.82 0.18 
2 
4 

6 

84.90 
42.28 

27.04 

17.47 
31.98 

38.40 

6 2021-105 NB 45.77 0.54 18.34 0.26 

2 

4 
6 

84.46 

41.80 
27.40 

24.42 

44.66 
52.56 

7 2021-145 NB 53.18 0.46 25.23 0.22 

2 

4 
6 

84.06 

46.41 
31.79 

19.40 

35.35 
42.10 

8 2021-155 NB 48.89 0.50 21.47 0.24 

2 

4 

6 

83.82 

45.07 

28.40 

20.72 

38.51 

45.63 

9 2021-170 NB 48.30 0.53 26.33 0.24 

2 

4 

6 

83.36 

48.50 

33.97 

22.41 

40.35 

48.68 

10 2021-198 TI 38.53 0.61 10.61 0.29 
2 
4 

6 

82.96 
39.44 

20.03 

29.48 
56.42 

68.06 

The test result using the Cosine Similarity algorithm 
resulted in an average similarity of 48.80% and an 
execution time of 0.45 seconds. The test result using the 
Levenshtein Distance algorithm resulted in an average 
similarity of 20.61% and an execution time of 0.22 
seconds. The test result using the Rabin-Karp algorithm 

with 2-grams resulted in an average similarity of 
83.76% and an execution time of 19.83 seconds. With 
4-grams, the average similarity was 45.96% and the 
execution time was 37.71 seconds. Meanwhile, with 6-
grams, the average similarity was 30.76% and the 
execution time was 45.70 seconds. The comparison of 
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average similarity values and execution times of each 
algorithm is presented in Table III. 

TABLE III.  COMPARISON OF SIMILARITY AND EXECUTION 

TIME 

Cosine 

Similarity 

Levenshtein 

Distance 

Rabin-Karp 

2 4 6 

48.80 % 20.61 % 86.21 % 47.13 % 31.40 % 

  0.45 s   0.22 s 20.74 s 39.15 s 47.52 s 

 

 

Fig. 7. Comparison diagram of similarity 

To facilitate the analysis process, the test results are 
also presented in the form of diagrams. The diagram 
comparing the average similarity values can be seen in 
Fig. 7, and the diagram comparing the average 
execution time can be seen in Fig. 8. Based on the test 
results conducted on the same test document, it shows 
that the Rabin-Karp method with 2-grams has a greater 
similarity. This is because the test document used is an 
abstract document that has a word length of between 
150 and 350 words. When compared to the time 
requirements, Rabin-Karp with 2-grams is faster than 3-
grams and 4-grams. This is because Rabin-Karp 2-
grams only has 2 characters, resulting in the time 
required to calculate each hash much faster than 3-
grams and 4-grams. 

 

Fig. 8. Comparison diagram of execution time 

Cosine Similarity demonstrated the second-best 
performance following Rabin-Karp 2-gram, with lower 
computational time. Although the time required for 
Cosine Similarity is less than that of Rabin-Karp 2-

gram—attributable to Cosine Similarity’s use of vector 
space models for computing document similarity rather 
than substring rolling hash—the time requirement for 
Cosine Similarity is greater than that of Levenshtein 
Distance. This is due to the fact that Levenshtein 
Distance compares two relatively short strings, whereas 
Cosine Similarity involves comparing two high-
dimensional vectors representing entire documents. 

B. Discussion 

In Cosine Similarity algorithm, the text is 
represented as a vector, and the difference between 
words is represented as angles. This approach only 
considers the frequency of same words, without taking 
into account the order of these words. Therefore, the 
similarity score is only influenced by the frequency of 
shared words, while the word arrangement does not 
affect the similarity score at all. 

In the Rabin-Karp algorithm, this approach involves 
comparing patterns (substrings). The pattern will be 
formed based on the value of k-gram, which is 
influenced by the word order. Therefore, the similarity 
score is influenced by k-gram and word arrangement. 
The smaller the value of k-gram, the more patterns will 
be formed, potentially resulting in higher similarity.  

This study adds to the previous research [11] that 
besides sentence arrangement, the similarity score in 
the Rabin-Karp algorithm is also influenced by the 
word arrangement. Responding to the study [12], it is 
observed that the same sentence with different word 
order can yield different similarity scores. Thus, if the 
order is altered during comparison, the similarity score 
may also change. 

In the Levenshtein Distance algorithm, the distance 
calculation is performed by comparing characters. 
However, in this study, it has been successfully 
implemented by computing the distance based on word 
comparisons. This research addresses the issues in the 
previous study [26] since the Levenshtein Distance 
algorithm can perform well on long documents with 
unstructured sentence positions. This approach 
compares words at the same position, so even if two 
sentences have all the same words, the resulting 
similarity score will be 0% if all their positions are 
different. Therefore, the similarity score is highly 
influenced by word order. The more same words are 
found in the same order, the higher the resulting 
similarity score will be. 

In each algorithm, the execution time is influenced 
by the number of steps each algorithm has to perform. 
The more steps that need to be performed, the longer 
the execution time required. In the Rabin-Karp 
algorithm, the execution time is also influenced by the 
value of k-gram, the larger the value of k-gram, the 
more steps need to be performed. 

In the Levenshtein Distance algorithm, the distance 
calculation method used [25], which directly calculates 
the word differences using Equation (4), can improve 
the execution time compared to creating a matrix. This 
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also makes the Levenshtein Distance algorithm faster 
than Cosine Similarity. 

The test results indicate that the Rabin-Karp 
algorithm with 2-grams produces the highest similarity 
score with an average of 83.76%. However, based on 
the research conducted by [11], [13] on testing the 
Rabin-Karp algorithm with k-grams from 1 to 10, it was 
found that k-gram 3 achieved the highest accuracy 
because it produced very close similarity scores on each 
test data compared to other k-grams. Hence, 4-gram is 
more suitable for plagiarism detection. Therefore, in 
this study, to compare the performance of the Rabin-
Karp algorithm with other algorithms, the data used will 
be the test results with 4-gram. Therefore, the Cosine 
Similarity algorithm is superior in detecting similarity 
with an average similarity score of 48.80%, followed by 
the Rabin-Karp Algorithm with 4-grams at an average 
of 47.13%, and the Levenshtein Distance algorithm 
with an average of 20.61%. In terms of execution time, 
the Levenshtein Distance algorithm is superior as it 
shows the fastest performance with an average 
execution time of 0.22 seconds, followed by the Cosine 
Similarity algorithm with an average of 0.45 seconds, 
and the Rabin-Karp algorithm with 4-grams with an 
average of 39.15 seconds. 

The same test sentence can yield the highest 
similarity score with different sentences in the 
comparison document, depending on the algorithm 
used in the testing. Thus, out of the 40 test documents, 
the Cosine Similarity algorithm produces the highest 
average similarity score in 26 documents, while the 
Rabin-Karp algorithm with 4-grams yields the highest 
average similarity score in 14 documents. Conversely, 
the Levenshtein Distance algorithm consistently 
produces lower average similarity scores compared to 
the other algorithms in all test documents. 

Based on the performance of each algorithm, the 

selection of an algorithm for detecting plagiarism in 

documents can be based on the specific needs and 

objectives of the application. The Cosine Similarity 

algorithm is superior if the main priority is the similarity 

level of documents, without considering the word 

arrangement, and with relatively fast execution time. 

The Levenshtein Distance algorithm may be a more 

suitable choice if the application requires faster 

execution time while considering the word order. 

Meanwhile, the Rabin-Karp algorithm with 4-grams 

could be a better option for applications that emphasize 

high similarity levels while considering the word 

arrangement, despite longer execution time 

considerations. 

IV. CONCLUSIONS 

Based on the experimental results conducted, it was 
obtained that the best performance for detecting 
plagiarism was Cosine Similarity, followed by Rabin-
Karp 4-gram and Levenshtein Distance. The plagiarism 
detection performance of Cosine Similarity, Rabin-
Karp 4-gram, and Levenshtein Distance are 48.80%, 
47.13%, and 20.61%, respectively. In contrast, the best 

time requirements are Levenshtein Distance, Cosine 
Similarity, and Rabin-Karp 4-gram, with time 
requirements of 0.22s, 0.45s, and 39.15s, respectively.  

Plagiarism detection performance can be affected 
by the length of the words in the document, the 
arrangement of the words, and the number of the same 
words tested. Cosine Similarity in calculating the 
similarity between documents uses a vector space, 
while Rabin-Karp uses a substring rolling hash 
influenced by k-grams. Levenshtein compares two 
strings with a relatively short length while Cosine 
Similarity compares two vectors with a length that 
represents the entire document. 

The selection of an algorithm for detecting 

plagiarism in documents should be guided by the 

specific requirements and objectives of the application. 

The Cosine Similarity algorithm is preferable when the 

primary focus is on the overall similarity between 

documents, regardless of word order, and when a 

relatively fast execution time is desired. In contrast, the 

Levenshtein Distance algorithm may be more 

appropriate for applications that prioritize both 

execution speed and consideration of word order. 

Meanwhile, the Rabin-Karp algorithm using may be the 

optimal choice for applications that emphasize 

achieving high similarity detection with attention to 

word order, even though it generally requires longer 

processing time. 

REFERENCES 

[1] Chowdhury, H.A., & Bhattacharyya, D. K. (2018). Plagiarism: 
Taxonomy, Tools and Detection Techniques. 
arXiv:1801.06323, Information Retrieval, doi: 
10.48550/arXiv.1801.06323 

[2] Velmurugan, V.S. (2024). Types and Definitions of 
Plagiarism: An Overview. Global Research Journal of  Social 
Sciences and Management, vol. 2 (1), ISSN: 2583-858X, doi: 
10.55306/GRJSSM.2024.2102. 

[3] Bhavana, M., Rao, K. S., Koduru, G. K., Vatsal, K. V. K., 
Parvathi, S., & Sravani, M. (2024). Plagiarism Detection and 
Similarity Checking Program using Machine Learning and 
String Matching Algorithm. 2024 9th International Conference 
on Communication and Electronics Systems (ICCES), 
Coimbatore, India, 2024, pp. 2032-2036, doi: 
10.1109/ICCES63552.2024.10859471 

[4] Perkins, M., Gezgin, U.B. & Roe, J. (2020). Reducing 
plagiarism through academic misconduct education. Int J Educ 
Integr, vol. 16 (3), doi: 10.1007/s40979-020-00052-8 

[5] Republic of Indonesia, “Regulation of the Minister of 
Education, Culture, Research, and Technology of the Republic 
of Indonesia Number 39 of 2021 concerning Academic 
Integrity in Producing Scientific Works.” Jakarta, 2021. 

[6] Kumar, P., Gupta, M. K., Rao, C. R. S., Bhavsingh, M., & 
Srilakshmi, M. (2023). A Comparative Analysis of 
Collaborative Filtering Similarity Measurements for 
Recommendation Systems. International Journal on Recent 
and Innovation Trends in Computing and Communication, 
11(3s), 184–192, doi: 10.17762/ijritcc.v11i3s.6180. 

[7] Swathi, M., & Selvi, C. (2022). An Improved Similarity 
Measure Based on Collaborative Filtering for Sparsity Problem 
in Recommender Systems. In: Bhateja, V., Khin Wee, L., Lin, 
J.CW., Satapathy, S.C., Rajesh, T.M. (eds) Data Engineering 
and Intelligent Computing. Lecture Notes in Networks and 
Systems, vol 446. Springer, Singapore, doi: 10.1007/978-981-
19-1559-8_5. 



 

 

 

 

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 71 

 

ISSN 2085-4552 

[8] Wahyuningsih, T., Henderi, H., & Winarno, W. (2021). Text 
Mining an Automatic Short Answer Grading (ASAG), 
Comparison of Three Methods of Cosine Similarity, Jaccard 
Similarity and Dice's Coefficient. Journal of Applied Data 
Sciences, 2(2), doi: 10.47738/jads.v2i2.31. 

[9] Alobed, M., Altrad, A. M. M., & Bakar, Z. B. A. (2021). A 
Comparative Analysis of Euclidean, Jaccard and Cosine 
Similarity Measure and Arabic Wordnet for Automated Arabic 
Essay Scoring," 2021 Fifth International Conference on 
Information Retrieval and Knowledge Management (CAMP), 
Kuala Lumpur, Malaysia, 2021, pp. 70-74, doi: 
10.1109/CAMP51653.2021.9498119.  

[10] Setu, D.M., Islam, T., Erfan, M., Dey, S.K., Asif, M.R.A., & 
Samsuddoha, M. (2025). A comprehensive strategy for 
identifying plagiarism in academic submissions. J. Umm Al-
Qura Univ. Eng. Archit. 16, 310–325, doi: 10.1007/s43995-
025-00108-1. 

[11] Hartanto, A. D., Syaputra, A., & Pristyanto, Y. (2019). Best 
Parameter Selection Of Rabin-Karp Algorithm In Detecting 
Document Similarity. 2019 International Conference on 
Information and Communications Technology (ICOIACT), 
Yogyakarta, Indonesia, 2019, pp. 457-461, doi: 
10.1109/ICOIACT46704.2019.8938458.  

[12] Astuti, Y., & Wulandari, I., . (2022). An arrangement of the 
number of K-grams in the performance of Rabin Karp 
algorithm in text adjustment. Indonesian Journal of Electrical 
Engineering and Computer Science (IJEECS), p-ISSN: 2502-
4752, vol. 26 (3), pp. 1388-1394, doi: 
10.11591/ijeecs.v26.i3.pp1388-1394. 

[13] Hidayat, W., Utami, E., & Sunyoto, A. (2022). Selection of the 
Best K-Gram Value on Modified Rabin Karp Algorithm. 
IJCCS (Indonesian Journal of Computing and Cybernetics 
Systems), vol. 16 (1), ISSN: 2460-7258, pp. 11-22, doi: 
10.22146/ijccs.63686. 

[14] Al-Hagree, S., & Al-Gaphari, G. (2022). Arabic Sentiment 
Analysis on Mobile Applications Using Levenshtein Distance 
Algorithm and Naive Bayes. 2022 2nd International 
Conference on Emerging Smart Technologies and 
Applications (eSmarTA), Ibb, Yemen, 2022, pp. 1-6, doi: 
10.1109/eSmarTA56775.2022.9935492.  

[15] Nandurkar, D. A., Ujjainkar, P., Miglani, B., & Kanojiya, A. 
(2023). Plagiarism Checker & Link Advisor using concepts of 
Levenshtein Distance Algorithm with Google Query Search - 
An Approach. 2023 1st International Conference on Advanced 
Innovations in Smart Cities (ICAISC), Jeddah, Saudi Arabia, 
2023, pp. 1-6, doi: 10.1109/ICAISC56366.2023.10085404. 

[16] Alvi, F., Stevenson, M., & Clough, P. (2017). Plagiarism 
Detection in Texts Obfuscated with Homoglyphs. ECIR 2017: 
Advances in Information Retrieval. 39th European Conference 
on Information Retrieval, 08-13 Apr 2017, Aberdeen, 
Scotland. Lecture Notes in Computer Science. Springer, Cham 
, pp. 669-675. ISBN 978-3-319-56608-5. 

[17] Süzen, N., Gorban, A.N.,  Levesley, J.,  & Mirkes, E.M. (2020). 
Automatic short answer grading and feedback using text 
mining methods. Procedia Computer Science, vol 169, 2020, 
pp. 726-743,ISSN 1877-0509, doi: 
10.1016/j.procs.2020.02.171 

[18] Amalia, E.L., Lestari, V. A., Wijayaningrum, V.N., & Ridla, 
A. A. (2023). Automatic essay assessment in e-learning using 
winnowing algorithm. Indonesian Journal of Electrical 
Engineering and Computer Science, vol. 29 (1), pp. 572-582, 
ISSN: 2502-4752, doi: 10.11591/ijeecs.v29.i1.pp572-582. 

[19] Alfat, L., Faisal, F. M., Negara, K. P. S., Munggaran, M. R.,  & 
Ihsan. (2023). Implementing Knuth-Morris-Pratt Algorithm in 
Detecting The Plagiarism of Document. 2023 10th 
International Conference on Information Technology, 
Computer, and Electrical Engineering (ICITACEE), 
Semarang, Indonesia, 2023, pp. 54-58, doi: 
10.1109/ICITACEE58587.2023.10276453. 

[20] Nalawati, R.E., & Yuntari, A.D. (2021). Ratcliff/Obershelp 
Algorithm as An Automatic Assessment on E-Learning. 2021 
4th International Conference of Computer and Informatics 
Engineering (IC2IE), Depok, Indonesia, 2021, pp. 244-248, 
doi: 10.1109/IC2IE53219.2021.9649217. 

[21] Barut, Z. & Altuntas, V. (2023). Applied Comparison of String 
Matching Algorithms. Gaziosmanpasa Journal of Scientific 
Research, vol. 12 (1), ISSN: 2146-8168. 

[22] Madhan, N., Dheva Rajan, S., Jain, M. (2025). Directing 
Natural Language Processing Text Similarity Challenges in 
Social Media with AI Techniques. In: Goar, V., Kuri, M., 
Kumar, R., Senjyu, T. (eds) Advances in Information 
Communication Technology and Computing. AICTC 2024. 
Lecture Notes in Networks and Systems, vol 1075. Springer, 
Singapore, doi: 10.1007/978-981-97-6106-7_26. 

[23] Leonardo, B. & Hansun, S. (2017). Text Documents Plagiarism 
Detection using Rabin-Karp and Jaro-Winkler Distance 
Algorithms. Indonesian Journal of Electrical Engineering and 
Computer Science, vol. 5 (2), pp. 462- 471, doi: 
10.11591/ijeecs.v5.i2.pp462-471 

[24] Khan, Z.A. & Pateriya, R.K. (2012). Multiple Pattern String 
Matching Methodologies: A Comparative Analysis. 
International Journal of Scientific and Research Publications, 
vol. 2 (7), ISSN 2250-3153. 

[25] Coates, P. & Breitinger, F. (2023). Identifying document 
similarity using a fast estimation of the Levenshtein Distance 
based on compression and signatures. arXiv: Information 
Retrieval, doi: 10.48550/arXiv.2307.11496. 

[26] Rao, P.J., Rao, K.N., Gokuruboyina, S., & Neeraja, K.N. 
(2024). An Efficient Methodology for Identifying the 
Similarity Between Languages with Levenshtein Distance. In: 
Kumar, A., Mozar, S. (eds) Proceedings of the 6th International 
Conference on Communications and Cyber Physical 
Engineering. ICCCE 2024. Lecture Notes in Electrical 
Engineering, vol. 1096. Springer, Singapore, doi: 10.1007/978-
981-99-7137-4_15. 

[27] Kalbaliyev, E., Rustamov, S. (2021). Text Similarity Detection 
Using Machine Learning Algorithms with Character-Based 
Similarity Measures. In: Biele, C., Kacprzyk, J., Owsiński, 
J.W., Romanowski, A., Sikorski, M. (eds) Digital Interaction 
and Machine Intelligence. MIDI 2020. Advances in Intelligent 
Systems and Computing, vol 1376. Springer, Cham, doi: 
10.1007/978-3-030-74728-2_2. 

[28] Finansyah, A. Y. W., Afiahayati, & Sutanto, V.M. (2022). 
Performance Comparison of Similarity Measure Algorithm as 
Data Preprocessing Stage: Text Normalization in Bahasa 
Indonesia. Scientific Journal of Informatics, vol. 9 (1), ISSN 
2407-7658, pp. 1-7, doi: 10.15294/sji.v9i1.30052. 

[29] Usino, W., Prabuwono, A.S.,  Allehaibi, K.H.S., Bramantoro, 
A., Hasniaty A, & Amaldi, W. (2019). Document Similarity 
Detection using K-Means and Cosine Distance. (IJACSA) 
International Journal of Advanced Computer Science and 
Applications, vol. 10 (2), pp. 165-170, doi: 
10.14569/IJACSA.2019.0100222 

 

 

 

 

 


