

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 63

ISSN 2085-4552

Comparison of Cosine Similarity, Rabin-Karp,

and Levenshtein Distance Algorithms for

Plagiarism Detection in Document

Jasman Pardede1, Agil Yudistira2

1,2 Deparment of Informatics, Intitut Teknologi Nasional (Itenas), Bandung, Indonesia
1jasman@itenas.ac.id, 2agil.yudistira@outlook.com

Accepted 13 June 2025

Approved 24 June 2025

Abstract— Prevention and detection of plagiarism are

crucial. There are several algorithms that can be used to

detect plagiarism in documents, including the Cosine

Similarity, Rabin-Karp, Levenshtein Distance, Hamming

Distance, Euclidean Distance, Edit Distance, Jaccard

Similarity, Ratcliff/Obershelp, Winnowing, Brute Force,

Boyer-Moore, and Knuth Morris Pratt algorithms. Based

on the literature review from previous research, three

best algorithms were identified: Cosine Similarity,

Rabin-Karp, and Levenshtein Distance. However, there

has been no study analyzing the comparison of these three

algorithms. Therefore, this study will compare the

performance of each algorithm and determine the best

algorithm for plagiarism detection in documents based on

similarity scores and execution time. The research objects

use a sample of documents consisting of titles and

abstracts from Indonesian-language informatics

journals. Cosine Similarity is superior to others for

plagiarism detection in documents, as it produces the

highest average similarity score with a relatively fast

execution time. The similarity values obtained using

Cosine Similarity, Rabin-Karp 4-grams, and Levenshtein

Distance were found to be 48.80%, 47.13%, and 20.61%,

respectively. The average execution time of Cosine

Similarity, Rabin-Karp with 4-grams, and Levenshtein

Distance are 0.22 s, 0.45 s, and 39.15 s, respectively.

Index Terms— comparison; cosine similarity; rabin-

karp; levenshtein distance; plagiarism; similarity.

I. INTRODUCTION

Plagiarism constitutes a substantial issue within

academic and professional contexts, as it compromises

the authenticity and credibility of scholarly endeavors.

Plagiarism refers to the practice of taking, utilizing, or

copying the work, concepts, or discoveries of another

individual, either in full or in part, without sufficient

attribution or appropriate referencing, thereby

misrepresenting it as one’s own intellectual product or

achievement [1], [2]. Prevention and detection of

plagiarism are crucial, especially in the academic world

[2], [3]. With the ease of information exchange through

the internet, academic community comprising students

and lecturers can engage in copy-paste practices that

may lead to plagiarism.

According to Regulation of the Minister of

Education, Culture, Research, and Technology Number

39 of 2021 regarding Academic Integrity in Producing

Scientific Works, article 10 paragraph (3), Plagiarism is

the act of taking and rewriting part or all of someone

else's work without using one's own language, even if

the source is cited correctly [2],[5]. Furthermore, in the

Tridharma of Higher Education, academic community

members are also obligated to conduct research and

produce scientific works [5]. Therefore, it is crucial to

prevent and identify acts of plagiarism [2],[3].

TABLE I. LITERATURE REVIEW

Researcher Year Algorithms

Alvi, F. et al. 2017 Hamming Distance

Hartanto, A. D., et
al.

2019
Rabin-Karp

Süzen, N., et al. 2020
Euclidean distance,

Needleman-Wunsch Distance

Wahyuningsih, T.,
et. al.

2021
Cosine Similarity, Jaccard
Similarity

Alobed, M., et al. 2021
Cosine Similarity, Jaccard

Similarity

Nalawati, R.E., &
Yuntari, A.D.

2021
Ratcliff/Obershelp

Astuti, Y., &

Wulandari, I.,
2022

Rabin-Karp

Hidayat, W., et al. 2022 Rabin-Karp

Al-Hagree, S., & Al-

Gaphari, G.
2022

Levenshtein Distance

Nandurkar, D. A.,et

al.
2023

Levenshtein Distance

Amalia, E.L., et al. 2023 Winnowing

Alfat, L., et al. 2023 Knuth Morris Pratt

Barut, Z. &

Altuntas, V.
2023

Boyer-Moore

Setu, D.M., et al. 2025 Cosine Similarity

Madhan, N., et al. 2025 Manhattan Distance

mailto:1jasman@itenas.ac.id

64 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025

ISSN 2085-4552

One way to detect plagiarism is by using the concept

of string matching to calculate the similarity between

documents [1],[3],[6],[7]. To achieve the best results,

the use of the best algorithm is essential for detecting

plagiarism in documents. There are several algorithms

that can be used for plagiarism detection in document,

including Cosine Similarity [8]-[10], Jaccard Similarity

[8],[9], Rabin-Karp [11]-[13], Levenshtein Distance

[14],[15], Hamming Distance [16], Euclidean distance

[17], Winnowing [18], Knuth Morris Pratt [19],

Ratcliff/Obershelp [20], Needleman-Wunsch Distance

[17], Boyer-Moore [21], Manhattan Distance [22], and

others. Several previous studies have been conducted

using those algorithms. A literature review of research

relevant to those algorithms is presented in Table I.

Among those methods, three were selected based on

their consistent superiority in various aspects of

plagiarism detection, as explained in the literature

review.

Cosine Similarity with pre-processing is superior to

Jaccard Similarity in measuring similarity because it

produces the highest correlation values [8]. Cosine

Similarity has a better accuracy rate compared to the

Euclidean Distance algorithm for calculating similarity

[9]. Although the Rabin-Karp algorithm exhibits

limitations in accurately distinguishing between similar

words, it demonstrates superior performance in

plagiarism detection when compared to the Brute Force

and Boyer-Moore algorithms [23]. Specifically, while

the Brute Force algorithm excels in single-pattern

searches, it remains less effective for multiple-pattern

searches. Additionally, the Boyer-Moore algorithm

performs efficiently by shifting the last two characters

but is less effective with earlier shifts. In contrast, the

Rabin-Karp algorithm effectively addresses these

limitations [24].

The Rabin-Karp algorithm can be used for

searching long pattern strings but has a longer execution

time compared to Ratcliff/Obershelp. Similarity values

are highly influenced by the sentence structure in

Rabin-Karp, whereas it has no impact at all on

Ratcliff/Obershelp [11]. From the testing of Rabin-

Karp with k-grams ranging from 2 to 10, the one with

the highest accuracy is 3-gram [13]. The Rabin-Karp

algorithm is better than the Winnowing for detecting

plagiarism because it produces higher similarity scores.

Therefore, for this research, the Rabin-Karp algorithm

is proposed for detecting plagiarism.

The Levenshtein Distance algorithm, which checks

each character one by one, produces perfect results on

simple short sentences but does not perform well on

long documents with irregular positions [25]. The

Levenshtein Distance algorithm is better than the Knuth

Morris Pratt algorithm because it has higher speed and

accuracy and can minimize errors when searching for

data [26]. The Levenshtein Distance algorithm is

superior and more efficient compared to

Ratcliff/Obershelp for detecting plagiarism [27].

Based on the literature review, there are three best
algorithms: Cosine Similarity, Rabin-Karp, and
Levenshtein Distance. These algorithms have their
respective strengths and weaknesses, but there has been
no research analyzing the comparison of these three
algorithms for detecting plagiarism in documents.
Therefore, a comparative analysis among these
algorithms is needed to determine the best algorithm by
measuring the level of similarity for detecting
plagiarism in documents and execution time as a
parameter to assess the speed of each algorithm.

Therefore, the purpose of this research is to compare
the similarity scores and execution times to know the
performance of each algorithm and determine the best
algorithm for plagiarism detection in documents based
on similarity scores and execution times. This study is
a novelty compared to previous research, as there has
been no study comparing the Cosine Similarity, Rabin-
Karp, and Levenshtein Distance algorithms for
plagiarism detection in documents.

II. METHODOLOGY

The research method used is a comparative analysis,

where this study will compare performance of Cosine

Similarity, Rabin-Karp, and Levenshtein Distance

algorithms for detecting plagiarism in documents. The

research begins with data collections, followed by

comparison document collections processing. After

that, testing is conducted using the Cosine Similarity,

Rabin-Karp, and Levenshtein Distance algorithms.

Once the testing is completed, an analysis will be

performed to determine the best algorithm based on

similarity scores and execution time. The block

diagram of this research can be seen in Fig. 1.

Fig. 1. Block diagram system

A. Data Collections Technique

The data collections technique used for testing in
this research is by sampling documents consisting of
titles and abstracts from Indonesian-language journals.
The chosen journals are in the field of informatics,
particularly those with high citation numbers and

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 65

ISSN 2085-4552

publication years ranging from 2018 to 2023. This is to
obtain data that is relevant to the research objectives and
of good quality. The process of collecting sample
documents is conducted through Google Scholar using
the keywords {"Information Technology," "Artificial
Intelligence," "Machine Learning," "K-Means
Clustering," and "Naive Bayes"}. Then, the titles and
abstracts from each journal will be extracted and saved
in .txt file format to facilitate data pre-processing.

The total sample documents in this research amount

to 440 documents. The 440 documents were then

divided into two groups: 400 documents were used as

the comparison document collections (reference

corpus) without specific labeling, which serve as the

base dataset for similarity comparison, while 40

documents were designated as test documents. The test

documents were selected randomly from the collected

sample to evaluate the performance of the plagiarism

detection algorithms. Since all documents are from the

same domain and collected via the same keywords, this

setup simulates real-world scenarios of document

similarity detection without explicit labeling of

plagiarism cases.

B. Data Pre-processing

Pre-processing is performed as part of data
cleansing to simplify and standardize the text, allowing
it to be processed more effectively in the main process
[28]. The pre-processing conducted in this research
consists of only two stages, namely Case Folding and
Filtering.

The case folding stage is performed to eliminate
differences in letter case, thus converting the entire text
to lowercase. The filtering stage is carried out to
enhance accuracy and speed by focusing on more
significant words. In this study, the filtering process
does not remove stop words because, based on the
adopted definition of plagiarism, paraphrasing is
considered important. Therefore, only punctuation
marks and special characters will be removed. The
flowchart of the data pre-processing can be seen in Fig.
2.

Fig. 2. Flowchart of data pre-processing

C. Comparison Document Collections Processing

In the testing process, the test documents will be
compared with the collections of comparison
documents, while the text content in each document
must undergo parsing or text segmentation based on
sentences and pre-processing. The purpose of
processing the collections of comparison documents is
to avoid repetitive parsing and pre-processing of the
document collections every time a test is conducted.

Fig. 3. Flowchart of comparison document collections processing

The system will read the folder containing the
collections of comparison documents. Each document
will undergo parsing to separate the text based on
sentences, and each sentence will undergo pre-
processing. Then, the processed sentences will be
stored in the variable "comparisonDocuments" with the
document index and its corresponding sentence. Once
all the sentences in the first document are processed, the
system will proceed to the next document until all
documents in the folder are processed. After that, the

66 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025

ISSN 2085-4552

results of the comparison document collections
processing will be stored in the comparison sentence
database, allowing access for each testing session. The
flowchart of the comparison document collections
processing can be seen in Fig. 3.

D. Algorithm Testing Technique

The purpose of this testing is to obtain the similarity
scores for each test sentence with all the sentences in
the comparison document collections. Then, the highest
similarity score for each test sentence will be
determined to identify which comparison document
sentence it is most similar to and at which sentence
position. The average similarity score for each test
sentence will be calculated to determine the similarity
value between the test document and the entire
collections of comparison documents.

Fig. 4. Flowchart of algorithm testing

The similarity scores between the test documents
generated by each algorithm will be compared to
determine which algorithm produces the highest
similarity score. Additionally, the execution time of
each algorithm will also be measured to determine
which algorithm is the fastest in its usage. The testing
phase will be conducted using 40 test documents. Each
algorithm will be applied to the same test documents.
Analyze each of the results. Comparing the
performance of each algorithm in detecting plagiarism.

In this study, testing will be conducted one by one
in sequential order for each algorithm, namely: (1)
Cosine Similarity, (2) Levenshtein Distance, (3) Rabin-
Karp 2-gram, (4) Rabin-Karp 4-gram, and (5) Rabin-

Karp 6-gram. The selection of these k-gram values is
based on previous studies that have also used similar k-
gram values [13], to observe the impact of k-gram size
on Rabin-Karp algorithm performance. Therefore, one
document will not be tested using all algorithms
simultaneously. This means that one test document will
be repeatedly used in five different tests. As a result, out
of 40 test documents, a total of 200 tests will be
conducted. The testing flowcharts can be seen in Fig. 4
to Fig. 6.

Fig. 5. Flowchart of algorithm testing (continued)

The testing begins by uploading the test documents.
First, the system will load the comparison sentence
collections from the database. Then, the test document
will be parsed based on sentences, and each test
sentence will undergo pre-processing and will be saved
in the variable "testSentences". This is done to facilitate
the execution time calculation, as the time will be

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 67

ISSN 2085-4552

measured only during the algorithm testing process.
Once all test sentences have completed pre-processing,
the next stage will proceed to the main testing process.
The flowchart of the main testing process can be seen
in Fig. 5.

At this stage, the execution time calculation begins.
Each test sentence will be compared with all the
comparison sentences. The first test sentence will be
compared with the first comparison sentence to
calculate the similarity. As the testing is conducted one
by one for each algorithm, at this stage of similarity
calculation, one algorithm function will be called based
on the selected algorithm testing.

The similarity calculation results will be stored in
the "sentencesSimilarity" variable along with the index
of the test sentence, the comparison document, and the
comparison sentence. This stage will be repeated
continuously until the first test sentence is compared
with all the comparison sentences. After that, the
highest similarity of the first test sentence will be
determined and saved in the variable
"maxSentencesSimilarity". This is intended to
determine which test sentence has the highest similarity
with which comparison sentence in which comparison
document. If the first test sentence has been compared
with all the comparison sentences and the index with
the highest similarity value is obtained, the process will
be repeated for the second test sentence until all the test
sentences are compared with all the comparison
sentences.

Fig. 6. Flowchart of algorithm testing (continued)

Afterward, the similarity score for the test document
will be determined by calculating the average of the
highest similarity scores from all test sentences. This
stage is the end of the main testing, thus the execution
time calculation is completed at this stage. The process
proceeds to the final stage, which can be seen in Fig. 6.

The final stage is the execution time calculation,
which is obtained by subtracting the end execution time
from the start execution time. After that, all test results
will be saved to the test result database. These tests are
conducted on each algorithm.

E. Cosine Similarity Algorithm

The working principle of the Cosine Similarity
algorithm is to measure the proximity between two
vectors by calculating their dot product and then
dividing it by the Euclidean distance between the two
vectors for normalization. Equation (1) represents the
formula for Cosine Similarity used to calculate the
similarity score [9],[29].

𝑆(𝐴,𝐵) =
𝐴∙𝐵

‖𝐴‖‖𝐵‖
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

× 100 (1)

S represents the similarity score, A and B are vector
representations of two documents being compared,
where each vector represents the term frequency (TF)
values of words in the documents, n is the number of
vectors, and the i is the vector order.

F. Rabin-Karp Algorithm

The working principle of the Rabin-Karp algorithm
is string searching based on patterns (substrings) and
comparing the hash values of each pattern [23]. First,
the text will be divided into grams based on the value
of k to obtain substrings. Then, the substrings will be
converted into hash values, and the hash values between
two texts will be compared. If both hash values are the
same, the comparison will be done once again on the
characters of the substring to ensure that the hash value
represents the same substring. If they are not the same,
the substring will be shifted to the right [13]. Afterward,
the similarity score is calculated using the Dice
Similarity Coefficient equation. Equation (2) represents
the formula used in the Rabin-Karp algorithm to
calculate the hash value.

𝐻(𝑝) = ∑ 𝑎𝑠𝑐𝑖𝑖(𝑝𝑖)
𝑘
𝑖=1 𝑏(𝑘−1) (2)

H represents the hash value, p is the pattern, k is the
value of k-gram, b is the base or radix value (a prime
number), and i is the character order in the pattern.
Equation (3) is the Dice Similarity Coefficient formula
used for calculating the similarity in the Rabin-Karp
algorithm [12].

𝑆(𝐴,𝐵) =
2 ×|𝐻𝐴∩𝐻𝐵|

|𝐻𝐴|+|𝐻𝐵|
 (3)

S represents the similarity score, A and B are the
texts being compared, and H is the hash. Example
calculations using the Rabin-Karp algorithm can be
found in [11],[23].

G. Levenshtein Distance Algorithm

The working principle of the Levenshtein Distance
algorithm is by creating a matrix to calculate the
number of operations required to change one character
using addition, deletion, or substitution operations. This
calculation is done by comparing each character [14].

However, based on the research conducted [18],
distance calculations can be done by directly
calculating the word differences without creating a
matrix, making the steps in the distance calculation
simpler and can improve execution time. Equation (4)

68 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025

ISSN 2085-4552

represents the formula used for calculating the
Levenshtein distance value [15].

𝐷(𝐴,𝐵) = ∑ 𝑑(𝐴𝑖, 𝐵𝑖)𝑛
𝑖=1 (4)

D is the Levenshtein distance, A and B are the texts
being compared, d is the comparison value (if equal =
0, if different = 1), n is the maximum number of texts
between A and B, and the i is the word order in the text.
Equation (5) represents the Levenshtein Distance
formula for calculating the similarity.

𝑆(𝐴,𝐵) = (1 −
𝐷(𝐴,𝐵)

𝑛
) × 100 (5)

S is the similarity value, D is the Levenshtein
distance, A and B are the texts being compared, and n
is the maximum number of texts between A and B.
Examples of calculations using the Levenshtein
Distance algorithm can be found in [18].

H. Test Result Analysis Technique

The data analysis technique used in this study is a

comparative analysis, where the test results of each

algorithm will be presented in the same table, allowing

the performance of each algorithm to be directly

compared. Additionally, the average similarity values

and execution times of each algorithm will be presented

in the form of bar charts.

III. RESULT AND DISCUSSION

A. Experimental Result

After comparison document collections processing is

completed, out of the 400 documents used, a total of

3,471 comparison sentences were obtained. Therefore,

in this study, each test sentence will be compared and

its similarity calculated with the 3,471 comparison

sentences. Table II shows the test results on the same

10 test documents using Cosine Similarity, Levenshtein

Distance, and Rabin-Karp algorithms

TABLE II. EXPERIMENTAL RESULT

No Document

Cosine Similarity Levenshtein Distance Rabin-Karp

Similarity

(%)

Time

(s)

Similarity

(%)

Time

(s)
k

Similarity

(%)

Time

(s)

1 2020-403 TI 49.63 0.50 15.29 0.23

2

4

6

89.71

45.69

29.28

24.74

51.95

62.37

2 2021-10 ML 53.81 0.36 22.88 0.17

2

4

6

89.77

52.12

33.16

19.00

40.07

48.06

3 2021-14 KM 47.09 0.23 14.94 0.12
2
4

6

89.00
47.33

29.52

13.07
26.15

32.10

4 2021-84 NB 53.01 0.52 18.76 0.22
2
4

6

86.14
44.63

30.72

22.66
41.39

49.02

5 2021-86 TI 41.86 0.40 17.82 0.18
2
4

6

84.90
42.28

27.04

17.47
31.98

38.40

6 2021-105 NB 45.77 0.54 18.34 0.26

2

4
6

84.46

41.80
27.40

24.42

44.66
52.56

7 2021-145 NB 53.18 0.46 25.23 0.22

2

4
6

84.06

46.41
31.79

19.40

35.35
42.10

8 2021-155 NB 48.89 0.50 21.47 0.24

2

4

6

83.82

45.07

28.40

20.72

38.51

45.63

9 2021-170 NB 48.30 0.53 26.33 0.24

2

4

6

83.36

48.50

33.97

22.41

40.35

48.68

10 2021-198 TI 38.53 0.61 10.61 0.29
2
4

6

82.96
39.44

20.03

29.48
56.42

68.06

The test result using the Cosine Similarity algorithm
resulted in an average similarity of 48.80% and an
execution time of 0.45 seconds. The test result using the
Levenshtein Distance algorithm resulted in an average
similarity of 20.61% and an execution time of 0.22
seconds. The test result using the Rabin-Karp algorithm

with 2-grams resulted in an average similarity of
83.76% and an execution time of 19.83 seconds. With
4-grams, the average similarity was 45.96% and the
execution time was 37.71 seconds. Meanwhile, with 6-
grams, the average similarity was 30.76% and the
execution time was 45.70 seconds. The comparison of

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 69

ISSN 2085-4552

average similarity values and execution times of each
algorithm is presented in Table III.

TABLE III. COMPARISON OF SIMILARITY AND EXECUTION

TIME

Cosine

Similarity

Levenshtein

Distance

Rabin-Karp

2 4 6

48.80 % 20.61 % 86.21 % 47.13 % 31.40 %

 0.45 s 0.22 s 20.74 s 39.15 s 47.52 s

Fig. 7. Comparison diagram of similarity

To facilitate the analysis process, the test results are
also presented in the form of diagrams. The diagram
comparing the average similarity values can be seen in
Fig. 7, and the diagram comparing the average
execution time can be seen in Fig. 8. Based on the test
results conducted on the same test document, it shows
that the Rabin-Karp method with 2-grams has a greater
similarity. This is because the test document used is an
abstract document that has a word length of between
150 and 350 words. When compared to the time
requirements, Rabin-Karp with 2-grams is faster than 3-
grams and 4-grams. This is because Rabin-Karp 2-
grams only has 2 characters, resulting in the time
required to calculate each hash much faster than 3-
grams and 4-grams.

Fig. 8. Comparison diagram of execution time

Cosine Similarity demonstrated the second-best
performance following Rabin-Karp 2-gram, with lower
computational time. Although the time required for
Cosine Similarity is less than that of Rabin-Karp 2-

gram—attributable to Cosine Similarity’s use of vector
space models for computing document similarity rather
than substring rolling hash—the time requirement for
Cosine Similarity is greater than that of Levenshtein
Distance. This is due to the fact that Levenshtein
Distance compares two relatively short strings, whereas
Cosine Similarity involves comparing two high-
dimensional vectors representing entire documents.

B. Discussion

In Cosine Similarity algorithm, the text is
represented as a vector, and the difference between
words is represented as angles. This approach only
considers the frequency of same words, without taking
into account the order of these words. Therefore, the
similarity score is only influenced by the frequency of
shared words, while the word arrangement does not
affect the similarity score at all.

In the Rabin-Karp algorithm, this approach involves
comparing patterns (substrings). The pattern will be
formed based on the value of k-gram, which is
influenced by the word order. Therefore, the similarity
score is influenced by k-gram and word arrangement.
The smaller the value of k-gram, the more patterns will
be formed, potentially resulting in higher similarity.

This study adds to the previous research [11] that
besides sentence arrangement, the similarity score in
the Rabin-Karp algorithm is also influenced by the
word arrangement. Responding to the study [12], it is
observed that the same sentence with different word
order can yield different similarity scores. Thus, if the
order is altered during comparison, the similarity score
may also change.

In the Levenshtein Distance algorithm, the distance
calculation is performed by comparing characters.
However, in this study, it has been successfully
implemented by computing the distance based on word
comparisons. This research addresses the issues in the
previous study [26] since the Levenshtein Distance
algorithm can perform well on long documents with
unstructured sentence positions. This approach
compares words at the same position, so even if two
sentences have all the same words, the resulting
similarity score will be 0% if all their positions are
different. Therefore, the similarity score is highly
influenced by word order. The more same words are
found in the same order, the higher the resulting
similarity score will be.

In each algorithm, the execution time is influenced
by the number of steps each algorithm has to perform.
The more steps that need to be performed, the longer
the execution time required. In the Rabin-Karp
algorithm, the execution time is also influenced by the
value of k-gram, the larger the value of k-gram, the
more steps need to be performed.

In the Levenshtein Distance algorithm, the distance
calculation method used [25], which directly calculates
the word differences using Equation (4), can improve
the execution time compared to creating a matrix. This

70 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025

ISSN 2085-4552

also makes the Levenshtein Distance algorithm faster
than Cosine Similarity.

The test results indicate that the Rabin-Karp
algorithm with 2-grams produces the highest similarity
score with an average of 83.76%. However, based on
the research conducted by [11], [13] on testing the
Rabin-Karp algorithm with k-grams from 1 to 10, it was
found that k-gram 3 achieved the highest accuracy
because it produced very close similarity scores on each
test data compared to other k-grams. Hence, 4-gram is
more suitable for plagiarism detection. Therefore, in
this study, to compare the performance of the Rabin-
Karp algorithm with other algorithms, the data used will
be the test results with 4-gram. Therefore, the Cosine
Similarity algorithm is superior in detecting similarity
with an average similarity score of 48.80%, followed by
the Rabin-Karp Algorithm with 4-grams at an average
of 47.13%, and the Levenshtein Distance algorithm
with an average of 20.61%. In terms of execution time,
the Levenshtein Distance algorithm is superior as it
shows the fastest performance with an average
execution time of 0.22 seconds, followed by the Cosine
Similarity algorithm with an average of 0.45 seconds,
and the Rabin-Karp algorithm with 4-grams with an
average of 39.15 seconds.

The same test sentence can yield the highest
similarity score with different sentences in the
comparison document, depending on the algorithm
used in the testing. Thus, out of the 40 test documents,
the Cosine Similarity algorithm produces the highest
average similarity score in 26 documents, while the
Rabin-Karp algorithm with 4-grams yields the highest
average similarity score in 14 documents. Conversely,
the Levenshtein Distance algorithm consistently
produces lower average similarity scores compared to
the other algorithms in all test documents.

Based on the performance of each algorithm, the

selection of an algorithm for detecting plagiarism in

documents can be based on the specific needs and

objectives of the application. The Cosine Similarity

algorithm is superior if the main priority is the similarity

level of documents, without considering the word

arrangement, and with relatively fast execution time.

The Levenshtein Distance algorithm may be a more

suitable choice if the application requires faster

execution time while considering the word order.

Meanwhile, the Rabin-Karp algorithm with 4-grams

could be a better option for applications that emphasize

high similarity levels while considering the word

arrangement, despite longer execution time

considerations.

IV. CONCLUSIONS

Based on the experimental results conducted, it was
obtained that the best performance for detecting
plagiarism was Cosine Similarity, followed by Rabin-
Karp 4-gram and Levenshtein Distance. The plagiarism
detection performance of Cosine Similarity, Rabin-
Karp 4-gram, and Levenshtein Distance are 48.80%,
47.13%, and 20.61%, respectively. In contrast, the best

time requirements are Levenshtein Distance, Cosine
Similarity, and Rabin-Karp 4-gram, with time
requirements of 0.22s, 0.45s, and 39.15s, respectively.

Plagiarism detection performance can be affected
by the length of the words in the document, the
arrangement of the words, and the number of the same
words tested. Cosine Similarity in calculating the
similarity between documents uses a vector space,
while Rabin-Karp uses a substring rolling hash
influenced by k-grams. Levenshtein compares two
strings with a relatively short length while Cosine
Similarity compares two vectors with a length that
represents the entire document.

The selection of an algorithm for detecting

plagiarism in documents should be guided by the

specific requirements and objectives of the application.

The Cosine Similarity algorithm is preferable when the

primary focus is on the overall similarity between

documents, regardless of word order, and when a

relatively fast execution time is desired. In contrast, the

Levenshtein Distance algorithm may be more

appropriate for applications that prioritize both

execution speed and consideration of word order.

Meanwhile, the Rabin-Karp algorithm using may be the

optimal choice for applications that emphasize

achieving high similarity detection with attention to

word order, even though it generally requires longer

processing time.

REFERENCES

[1] Chowdhury, H.A., & Bhattacharyya, D. K. (2018). Plagiarism:
Taxonomy, Tools and Detection Techniques.
arXiv:1801.06323, Information Retrieval, doi:
10.48550/arXiv.1801.06323

[2] Velmurugan, V.S. (2024). Types and Definitions of
Plagiarism: An Overview. Global Research Journal of Social
Sciences and Management, vol. 2 (1), ISSN: 2583-858X, doi:
10.55306/GRJSSM.2024.2102.

[3] Bhavana, M., Rao, K. S., Koduru, G. K., Vatsal, K. V. K.,
Parvathi, S., & Sravani, M. (2024). Plagiarism Detection and
Similarity Checking Program using Machine Learning and
String Matching Algorithm. 2024 9th International Conference
on Communication and Electronics Systems (ICCES),
Coimbatore, India, 2024, pp. 2032-2036, doi:
10.1109/ICCES63552.2024.10859471

[4] Perkins, M., Gezgin, U.B. & Roe, J. (2020). Reducing
plagiarism through academic misconduct education. Int J Educ
Integr, vol. 16 (3), doi: 10.1007/s40979-020-00052-8

[5] Republic of Indonesia, “Regulation of the Minister of
Education, Culture, Research, and Technology of the Republic
of Indonesia Number 39 of 2021 concerning Academic
Integrity in Producing Scientific Works.” Jakarta, 2021.

[6] Kumar, P., Gupta, M. K., Rao, C. R. S., Bhavsingh, M., &
Srilakshmi, M. (2023). A Comparative Analysis of
Collaborative Filtering Similarity Measurements for
Recommendation Systems. International Journal on Recent
and Innovation Trends in Computing and Communication,
11(3s), 184–192, doi: 10.17762/ijritcc.v11i3s.6180.

[7] Swathi, M., & Selvi, C. (2022). An Improved Similarity
Measure Based on Collaborative Filtering for Sparsity Problem
in Recommender Systems. In: Bhateja, V., Khin Wee, L., Lin,
J.CW., Satapathy, S.C., Rajesh, T.M. (eds) Data Engineering
and Intelligent Computing. Lecture Notes in Networks and
Systems, vol 446. Springer, Singapore, doi: 10.1007/978-981-
19-1559-8_5.

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 1 | June 2025 71

ISSN 2085-4552

[8] Wahyuningsih, T., Henderi, H., & Winarno, W. (2021). Text
Mining an Automatic Short Answer Grading (ASAG),
Comparison of Three Methods of Cosine Similarity, Jaccard
Similarity and Dice's Coefficient. Journal of Applied Data
Sciences, 2(2), doi: 10.47738/jads.v2i2.31.

[9] Alobed, M., Altrad, A. M. M., & Bakar, Z. B. A. (2021). A
Comparative Analysis of Euclidean, Jaccard and Cosine
Similarity Measure and Arabic Wordnet for Automated Arabic
Essay Scoring," 2021 Fifth International Conference on
Information Retrieval and Knowledge Management (CAMP),
Kuala Lumpur, Malaysia, 2021, pp. 70-74, doi:
10.1109/CAMP51653.2021.9498119.

[10] Setu, D.M., Islam, T., Erfan, M., Dey, S.K., Asif, M.R.A., &
Samsuddoha, M. (2025). A comprehensive strategy for
identifying plagiarism in academic submissions. J. Umm Al-
Qura Univ. Eng. Archit. 16, 310–325, doi: 10.1007/s43995-
025-00108-1.

[11] Hartanto, A. D., Syaputra, A., & Pristyanto, Y. (2019). Best
Parameter Selection Of Rabin-Karp Algorithm In Detecting
Document Similarity. 2019 International Conference on
Information and Communications Technology (ICOIACT),
Yogyakarta, Indonesia, 2019, pp. 457-461, doi:
10.1109/ICOIACT46704.2019.8938458.

[12] Astuti, Y., & Wulandari, I., . (2022). An arrangement of the
number of K-grams in the performance of Rabin Karp
algorithm in text adjustment. Indonesian Journal of Electrical
Engineering and Computer Science (IJEECS), p-ISSN: 2502-
4752, vol. 26 (3), pp. 1388-1394, doi:
10.11591/ijeecs.v26.i3.pp1388-1394.

[13] Hidayat, W., Utami, E., & Sunyoto, A. (2022). Selection of the
Best K-Gram Value on Modified Rabin Karp Algorithm.
IJCCS (Indonesian Journal of Computing and Cybernetics
Systems), vol. 16 (1), ISSN: 2460-7258, pp. 11-22, doi:
10.22146/ijccs.63686.

[14] Al-Hagree, S., & Al-Gaphari, G. (2022). Arabic Sentiment
Analysis on Mobile Applications Using Levenshtein Distance
Algorithm and Naive Bayes. 2022 2nd International
Conference on Emerging Smart Technologies and
Applications (eSmarTA), Ibb, Yemen, 2022, pp. 1-6, doi:
10.1109/eSmarTA56775.2022.9935492.

[15] Nandurkar, D. A., Ujjainkar, P., Miglani, B., & Kanojiya, A.
(2023). Plagiarism Checker & Link Advisor using concepts of
Levenshtein Distance Algorithm with Google Query Search -
An Approach. 2023 1st International Conference on Advanced
Innovations in Smart Cities (ICAISC), Jeddah, Saudi Arabia,
2023, pp. 1-6, doi: 10.1109/ICAISC56366.2023.10085404.

[16] Alvi, F., Stevenson, M., & Clough, P. (2017). Plagiarism
Detection in Texts Obfuscated with Homoglyphs. ECIR 2017:
Advances in Information Retrieval. 39th European Conference
on Information Retrieval, 08-13 Apr 2017, Aberdeen,
Scotland. Lecture Notes in Computer Science. Springer, Cham
, pp. 669-675. ISBN 978-3-319-56608-5.

[17] Süzen, N., Gorban, A.N., Levesley, J., & Mirkes, E.M. (2020).
Automatic short answer grading and feedback using text
mining methods. Procedia Computer Science, vol 169, 2020,
pp. 726-743,ISSN 1877-0509, doi:
10.1016/j.procs.2020.02.171

[18] Amalia, E.L., Lestari, V. A., Wijayaningrum, V.N., & Ridla,
A. A. (2023). Automatic essay assessment in e-learning using
winnowing algorithm. Indonesian Journal of Electrical
Engineering and Computer Science, vol. 29 (1), pp. 572-582,
ISSN: 2502-4752, doi: 10.11591/ijeecs.v29.i1.pp572-582.

[19] Alfat, L., Faisal, F. M., Negara, K. P. S., Munggaran, M. R., &
Ihsan. (2023). Implementing Knuth-Morris-Pratt Algorithm in
Detecting The Plagiarism of Document. 2023 10th
International Conference on Information Technology,
Computer, and Electrical Engineering (ICITACEE),
Semarang, Indonesia, 2023, pp. 54-58, doi:
10.1109/ICITACEE58587.2023.10276453.

[20] Nalawati, R.E., & Yuntari, A.D. (2021). Ratcliff/Obershelp
Algorithm as An Automatic Assessment on E-Learning. 2021
4th International Conference of Computer and Informatics
Engineering (IC2IE), Depok, Indonesia, 2021, pp. 244-248,
doi: 10.1109/IC2IE53219.2021.9649217.

[21] Barut, Z. & Altuntas, V. (2023). Applied Comparison of String
Matching Algorithms. Gaziosmanpasa Journal of Scientific
Research, vol. 12 (1), ISSN: 2146-8168.

[22] Madhan, N., Dheva Rajan, S., Jain, M. (2025). Directing
Natural Language Processing Text Similarity Challenges in
Social Media with AI Techniques. In: Goar, V., Kuri, M.,
Kumar, R., Senjyu, T. (eds) Advances in Information
Communication Technology and Computing. AICTC 2024.
Lecture Notes in Networks and Systems, vol 1075. Springer,
Singapore, doi: 10.1007/978-981-97-6106-7_26.

[23] Leonardo, B. & Hansun, S. (2017). Text Documents Plagiarism
Detection using Rabin-Karp and Jaro-Winkler Distance
Algorithms. Indonesian Journal of Electrical Engineering and
Computer Science, vol. 5 (2), pp. 462- 471, doi:
10.11591/ijeecs.v5.i2.pp462-471

[24] Khan, Z.A. & Pateriya, R.K. (2012). Multiple Pattern String
Matching Methodologies: A Comparative Analysis.
International Journal of Scientific and Research Publications,
vol. 2 (7), ISSN 2250-3153.

[25] Coates, P. & Breitinger, F. (2023). Identifying document
similarity using a fast estimation of the Levenshtein Distance
based on compression and signatures. arXiv: Information
Retrieval, doi: 10.48550/arXiv.2307.11496.

[26] Rao, P.J., Rao, K.N., Gokuruboyina, S., & Neeraja, K.N.
(2024). An Efficient Methodology for Identifying the
Similarity Between Languages with Levenshtein Distance. In:
Kumar, A., Mozar, S. (eds) Proceedings of the 6th International
Conference on Communications and Cyber Physical
Engineering. ICCCE 2024. Lecture Notes in Electrical
Engineering, vol. 1096. Springer, Singapore, doi: 10.1007/978-
981-99-7137-4_15.

[27] Kalbaliyev, E., Rustamov, S. (2021). Text Similarity Detection
Using Machine Learning Algorithms with Character-Based
Similarity Measures. In: Biele, C., Kacprzyk, J., Owsiński,
J.W., Romanowski, A., Sikorski, M. (eds) Digital Interaction
and Machine Intelligence. MIDI 2020. Advances in Intelligent
Systems and Computing, vol 1376. Springer, Cham, doi:
10.1007/978-3-030-74728-2_2.

[28] Finansyah, A. Y. W., Afiahayati, & Sutanto, V.M. (2022).
Performance Comparison of Similarity Measure Algorithm as
Data Preprocessing Stage: Text Normalization in Bahasa
Indonesia. Scientific Journal of Informatics, vol. 9 (1), ISSN
2407-7658, pp. 1-7, doi: 10.15294/sji.v9i1.30052.

[29] Usino, W., Prabuwono, A.S., Allehaibi, K.H.S., Bramantoro,
A., Hasniaty A, & Amaldi, W. (2019). Document Similarity
Detection using K-Means and Cosine Distance. (IJACSA)
International Journal of Advanced Computer Science and
Applications, vol. 10 (2), pp. 165-170, doi:
10.14569/IJACSA.2019.0100222

