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Abstract— The background of this study stems from the 

need for a recommendation system to assist users in 

finding games that match their interests. With the rapid 

growth of the gaming market, an increasing number of 

people engage in gaming activities. In 2022, the personal 

computer (PC) gaming market accounted for 37.9% of all 

gamers worldwide. One of the largest PC gaming 

platforms is Steam, developed by Valve Corporation, 

which boasts over 184 million active users. However, the 

overwhelming number of options can lead users to lose 

interest in purchasing games. Therefore, a 

recommendation system is required to help users find 

games that align with their preferences. The 

methods/theories employed in this study include data 

from the Steam Web API, SteamSpy API, and local JSON 

files. The Content-Based Filtering method, using the 

Cosine Similarity algorithm, was implemented to 

determine the similarity index between games and user 

preferences. Flutter was used for application 

development and to display the recommendation results 

to users. The results of this study show that the 

application was successfully developed, and the Content-

Based Filtering method provided recommendations that 

met expectations. The highest cosine similarity factor 

achieved was 0.6454972244, indicating a fairly good level 

of accuracy. Application evaluation using the Technology 

Acceptance Model revealed positive reception, with a 

"Perceived Usefulness" score of 82.6% and a "Perceived 

Ease of Use" score of 86.2%, indicating that users found 

the application both useful and easy to use. 

Index Terms— Terms—Content-Based Filtering; 

Cosine Similarity; Flutter; similarity; Steam; SteamSpy 

API; Steam Web API. 

I. INTRODUCTION 

One of the most popular activities in the digital era 
is gaming. With services like Steam, users can easily 
access a variety of games. Video games are a form of 
digital media-based activity where players aim to 
achieve predetermined objectives within the game [1]. 
According to Statista, the total revenue from the video 
game market is projected to reach 625.64 trillion USD 
by 2028 [2]. Additionally, data from 2022 reveals that 

the market for personal computer (PC) games is the 
second largest, following mobile games, accounting for 
37.9% of all video game players worldwide [3]. 

One of the largest marketplaces for PC gaming is 
Steam, a game distribution platform developed by 
Valve Corporation, a U.S.-based company. Steam 
offers over 8,000 available games and boasts more than 
184 million active users [4]. However, the abundance 
of game options presents a significant challenge for 
users, as too many choices can lead to decision fatigue. 
Research by Chernev, Böckenholt, and Goodman 
demonstrates that an excessive number of options can 
reduce consumer interest in making purchases [5]. This 
phenomenon highlights the need for an effective 
recommendation system to assist users in navigating 
Steam's extensive library and identifying games that 
align with their preferences. 

Steam was chosen as the research object for several 
compelling reasons. As one of the largest and most 
influential game distribution platforms globally, its 
significant user base and vast library of games make it 
a prime candidate for studying recommendation 
systems. Additionally, Steam’s robust Steamworks 
Web API and supplementary services like SteamSpy 
API provide access to valuable data on user activity and 
game information, enabling the development and 
testing of advanced algorithms. By addressing the issue 
of decision fatigue on a platform as prominent as Steam, 
the findings of this study have practical relevance and 
the potential to improve user satisfaction and 
engagement while supporting game developers in 
reaching their target audience. 

Previously, several recommendation systems have 
been proposed to tackle similar challenges, including 
those based on Deep Learning [6], the K-Nearest 
Neighbor (KNN) algorithm [7], and matrix 
factorization techniques [8]. Each method has its 
strengths and limitations: Deep Learning achieves high 
accuracy but requires extensive user data for 
implementation, the KNN algorithm performs well 
with existing input, and matrix factorization can 
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identify personal preferences for approximately 33% of 
Steam users. 

Among the various approaches, Content-Based 
Filtering has emerged as a widely used method for 
building recommendation systems. This technique has 
been successfully applied in other domains, such as 
movie recommendation systems based on genres [9] 
and property recommendation systems [10]. In the 
context of game recommendation systems, Content-
Based Filtering utilizes user activity to generate 
personalized suggestions. A comparative study by the 
State University of Feira de Santana [11] indicates that 
this method is particularly effective with large and 
dense datasets, such as Steam’s extensive game library 
and user base. 

For these reasons, this study adopts Content-Based 
Filtering to develop a recommendation system that 
mitigates decision fatigue and assists users in finding 
games that match their preferences. By leveraging this 
approach, the study aims to address the challenges 
posed by Steam’s vast game selection and improve the 
overall user experience on the platform. 

II. THEORY 

A. Flutter 

Flutter is a cross-platform framework used to 

develop high-performance mobile applications. It was 

launched by Google in 2016 [12]. Flutter enables the 

creation of high-performance applications akin to 

native apps, thanks to its high-performance rendering 

engine. In Flutter's architecture, C/C++ code is 

compiled using the NDK on Android and LLVM on 

iOS, while Dart code is compiled Ahead Of Time 

(AOT) [13]. 

B. Dart 

Dart is a programming language designed with 

principles of ease of use, familiarity for most 

programmers, and scalability. Dart was created to 

provide tools specifically tailored to meet the needs of 

modern software and hardware [14]. It is an Object-

Oriented Programming (OOP) language developed and 

maintained by Google. Dart has also been utilized to 

develop large-scale web applications [15]. 

C. Content-Based Filtering 

The Content-Based Filtering (CBF) algorithm is one of 

the most successful recommendation algorithms, using 

correlations between content as its foundation. CBF 

relies on an item's information, represented by 

attributes, which are compared with other items to 

calculate similarity [16]. An example of its 

implementation is a recommendation system that 

compares a user profile with the content of each 

document in a collection. The content of a document 

can be represented by several keywords that reflect the 

user's profile [17]. One of the methods to calculate 

similarity between textual data is through Cosine 

Similarity. 

D. Cosine Similarity 

Cosine Similarity is a commonly used metric to 

measure the degree of similarity between two vectors, 

calculated based on the cosine of the angle between 

them [18]. This method is also useful for measuring the 

similarity between two documents based on matching 

terms [19]. The formula for Cosine Similarity is as 

follows: 

 

cosine_similarity (𝐚, 𝐛) =
𝐚⋅𝐛

‖𝐚‖‖𝐛‖
          (1) 

 

Explanation: 

- a: Represents vector a 

- b: Represents vector b 

- Cosine Similarity (a,b): The similarity value 

between vectors a and b, calculated based on 

the cosine of the angle between them. 

E. Technology Acceptance Model 

With the growing technological demands in the 

1970s and increasing system adoption failures across 

various organizations, predicting system usability 

became a popular field among researchers. In 1985, 

Fred Davis proposed the Technology Acceptance 

Model (TAM), based on the Theory of Reasoned 

Action (TRA), to explain individual behavior in 

adopting technology [20]. 

 
The Technology Acceptance Model suggests that 

Perceived Ease of Use and Perceived Usefulness are 
significant predictors of application usage, which play 
a major role in evaluating the effectiveness and 
usability of a technological system [21]. 

III. METHOD 

A. Problem Identification 

Before designing and developing the application, 

the primary step is identifying existing problems. This 

process was conducted through market research and by 

gathering information from previous studies on game 

recommendation systems. 

B. Literature Review 

The literature review involved collecting and 

analyzing related studies from various written sources, 

such as journals, articles, and research reports that 

address similar topics. 

C. Application UI Prototyping 

The initial stage of mobile application development 

involved creating a user interface (UI) prototype. The 

prototype was designed using Figma and served as the 

foundation for the UI of the developed application. 



 

 

 

 

Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 2 | December 2024 151 

 

ISSN 2085-4552 

D. Integration of Steamworks API 

In this phase, the Steamworks Web API was 

integrated into the application. This included 

implementing the login system via Steam using the 

OpenID service and extracting user data through the 

API's GET function. The Uri.parse() method was used 

to retrieve specific user data, which was utilized for the 

recommendation system. 

E. Development of Core Application Functions 

At this stage, the core functions designed during the 

prototyping phase were developed and implemented 

into the application. These functions were built using 

the tools and components provided by the Flutter 

framework. 

F. Integration of Content-Based Filtering 

The Content-Based Filtering algorithm was 

implemented to generate personalized 

recommendations by comparing the similarity between 

games previously played and other available games on 

the Steam platform. The tag data from the Steamworks 

Web API was utilized for this purpose. The integration 

process followed these steps (Figure 1): 

 

 

Fig. 1. Content-Based Filtering Process 

1) Data Collection: The application retrieved data 

from Steam Web API, SteamSpy API, and a 

JSON dataset containing information on 55,000 

Steam games. 

2) Data Preprocessing: Symbols were removed 

from the data, and all tags were converted to 

lowercase for uniformity. 

3) Vectorization: The preprocessed tags were 

vectorized into binary vectors, which were used 

for cosine similarity calculations. 

4) Cosine Similarity Calculation: The dot product 

was calculated between Vector A: Representing 

the user profile, containing tags from the games 

played by the user, and Vector B: Representing 

tags from a specific game being compared. 

5) Magnitude Calculation: The magnitudes of both 

vectors were calculated by summing the 

squared values of their components. 

6) Final Cosine Similarity: The cosine similarity 

value was computed by dividing the dot product 

by the square root of the magnitudes of both 

vectors. 

7) Sorting and Displaying Results: The system 

iterated through steps 4 to 6 for all games in the 

dataset, sorted the results based on the cosine 

similarity values, and displayed the top 10 

games with the highest similarity scores. 

G. Testing and Debuging 

Once development was completed, the application 

underwent comprehensive testing to ensure its 

functionality met expectations. Testing focused on 

evaluating functionality, reliability, performance, and 

security. Any identified bugs were addressed through 

debugging processes to ensure smooth application 

performance. 

H. Evaluation using Technology Acceptance Model 

(TAM) 

The developed application was distributed to 

research participants, who evaluated it using a survey 

based on the Technology Acceptance Model (TAM). 

The survey included questions addressing two key 

factors, which are Perceived Ease of Use, and Perceived 

Usefulness. The TAM framework, proposed by Fred 

Davis and Richard Bagozzi [20], was used to measure 

technology acceptance. The collected results were 

analyzed to determine the application's acceptance level 

among users 

IV. RESULTS AND DISCUSSIONS 

I. Application Interface 

Figure 2 shows the application’s login interface, 

where users log in using Steam to extract their gaming 

data. 

 

Fig. 2. Login Page Interface 
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Figure 3 shows the main page of the application, 

where users can choose to request game 

recommendations or view their profiles. 

 

Fig. 3. Home Page Interface 

 

Figure 4 illustrates the recommendation page, 

where users can request recommendations based on 

games they own or have played in the past two weeks. 

 

Fig. 4. Recommender Page Interface 

 

Figure 5 displays the results page, where the system 

shows recommended games along with their cosine 

similarity scores. 

 

Fig. 5. Recommendation Result Interface 

J. Implementation of Steam Web API 

The Steam Web API was implemented to support 

the login system and retrieve user data. The login 

system utilized the WebView plugin, which redirected 

users to the Steam login page via OpenID. Once the 

Steam account was linked, users were directed to the 

main application interface. 

The Steam Web API was also used to extract 

critical user data, including UserID, the user's Steam 

Library, and general game data from Steam. This data 

was obtained through the GET function, returning a 

JSON file. 

K. Data Acquisition 

Before providing game recommendations, 

necessary data was collected: 

1) App ID Data: Retrieved via the Steamworks Web 

API for detailed game information. 

2) Alternative Data Source: Due to limitations of the 

Steam Web API, the SteamSpy API was used to 

supplement the required game data. 

3) Game Dataset: A JSON file containing data for 

55,000 Steam games sourced from Kaggle was 

utilized to overcome API rate limitations. 

 

L. Content-Based Filtering Implementation 

After gathering the necessary data, the 

recommendation process commenced. The first step 

was pre-processing, which involved filtering games 

based on playtime, removing symbols and special 

characters, converting tags to lowercase, and 

preventing duplicates by converting the data into Sets. 

This ensured uniformity and efficiency in subsequent 

processes. 
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Next, the tags were vectorized into binary vectors, 

enabling the system to perform similarity calculations. 

The Cosine Similarity metric was then used to measure 

the similarity between the User Profile Vector (A), 

representing tags derived from the user’s game library, 

and the Game Vector (B), which contained tags for 

each game in the dataset. 

After calculating the cosine similarity for all games 
in the dataset, the system sorted the results based on the 
highest similarity values. The top 10 games with the 
highest cosine similarity scores were then displayed to 
the user as recommendations. 

The system was tested using the researcher’s Steam 
account, where the highest cosine similarity score of 
0.6454972244 was obtained for the game “Judgment”. 
Tags associated with Judgment, such as Action, 
Adventure, Beat’em Up, Hack and Slash, closely 
aligned with the tags in the user profile, demonstrating 
the accuracy of the recommendation system. 

M. Application Evaluation 

The application evaluation was conducted using the 

Technology Acceptance Model (TAM). Upon 

completion of the application, it was distributed to 

participants along with a survey created using Google 

Forms. The survey included questions designed in 

accordance with TAM principles (Table 1). 

TABLE I.  SURVEY QUESTIONS BASED ON TECHNOLOGY 

ACCEPTANCE MODEL (TAM) 

No. Question Response Scale 

1 Name (Initials allowed) Text input 

2 Is the application useful to you? 1 (Not Useful) - 5 
(Very Useful) 

3 Does the application simplify 

finding games you want to play? 

1 (Strongly 

Disagree) - 5 
(Strongly Agree) 

4 Can you easily obtain useful 

information from the application? 

1 (Strongly 

Disagree) - 5 

(Strongly Agree) 

5 Does the application help you 

better understand recommendation 

systems? 

1 (Strongly 

Disagree) - 5 

(Strongly Agree) 

6 Does the app interface facilitate 
your interaction with the 

recommendation system? 

1 (Strongly 
Disagree) - 5 

(Strongly Agree) 

7 Does interacting with the app 
make using recommendation 

systems easier? 

1 (Strongly 
Disagree) - 5 

(Strongly Agree) 

 

Questions 2 to 4 focused on the perceived 

usefulness of the application, assessing how beneficial 

the application was for users. Meanwhile, questions 5 

to 7 measured the perceived ease of use, evaluating 

how easy it was for users to interact with and utilize the 

application. The survey received responses from 30 

participants, adhering to the sampling method 

suggested by Sugiyono [22]. 

 

TABLE II.  PERCEIVED USEFULNESS 

Perceived Usefulness 1 2 3 4 5 

Question 2 0 0 3 15 12 

Question 3 0 0 8 12 10 

Question 4 0 1 6 14 9 

The results of the survey are presented in Table II 

for the "perceived usefulness" aspect and Table III for 

the "perceived ease of use" aspect. These tables 

summarize participants' responses on a scale of 1 

(Strongly Disagree/Not Useful) to 5 (Strongly 

Agree/Very Useful). 

TABLE III.  PERCEIVED EASE OF USE 

Perceived Usefulness 1 2 3 4 5 

Question 5 0 0 5 11 14 

Question 6 0 0 5 12 13 

Question 7 0 0 3 13 14 

The survey results provided insights into the 

participants' opinions on the application. To calculate 

the percentage of perceived usefulness and perceived 

ease of use, the following formula was applied: 

∑  
𝑝
𝑖=1

(𝑥𝑖×𝑦𝑖)

(𝑝×𝑠×𝑗)
× 100%             (2) 

Explanation: 

- i: Scale value of the question. 

- p: Total number of scale points in the 

question. 

- xi: Specific scale value for a given question. 

- yi: Total number of responses corresponding 

to the scale value xi 

- s: Total number of survey participants 

(sample size). 

- j: Total number of questions related to the 

evaluation factor being measured. 

Based on the results, Formula 3 was used to 

calculate the percentage for perceived usefulness, 

while Formula 4 was applied to compute the 

percentage for perceived ease of use. The evaluation 

demonstrated the application’s effectiveness and 

usability from the perspective of the participants. 

perceived usefulness = 
(0×1)+(1×2)+(17×3)+(41×4)+(31×5)

5×30×3
× 100% = 82.6%  (3) 

 

perceived ease of use =
(0×1)+(1×2)+(17×3)+(41×4)+(31×5)

5×30×3
× 100% = 86.2%   (4). 

V. CONSLUSION 

The study concluded that the design and 

development of the application were successfully 

completed, with the application running smoothly on 

nearly all devices used during testing. The 

recommendation system, which employed the 

Content-Based Filtering method, delivered satisfactory 

results, achieving the highest Cosine Similarity score 

of 0.6454972244. Additionally, the evaluation using 
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the Technology Acceptance Model (TAM) 

demonstrated positive reception from users, with a 

perceived usefulness score of 82.6% and a perceived 

ease of use score of 86.2%, indicating that the majority 

of participants found the application effective and user-

friendly. 

For future research, it is recommended to explore 
alternative methods to access dynamic data without 
being constrained by API call limitations, enabling the 
use of more accurate and comprehensive data from 
Steam services. Additionally, the recommendation 
process could be expedited by optimizing the algorithm 
further or adopting alternative methods that can deliver 
equivalent or superior results with reduced processing 
time. 
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