

Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 2 | December 2024 149

ISSN 2085-4552

Leveraging Content-Based Filtering for

Personalized Game Recommendations: A

Flutter-Based Mobile Application

Development

Bryan Rezki Nugraha1, Alexander Waworuntu2

1,2 Department of Informatics, Universitas Multimedia Nusantara, Tangerang, Indonesia
1bryan.nugraha@student.umn.ac.id, 2alex.wawo@umn.ac.id

Accepted 06 January 2025

Approved 16 January 2025

Abstract— The background of this study stems from the

need for a recommendation system to assist users in

finding games that match their interests. With the rapid

growth of the gaming market, an increasing number of

people engage in gaming activities. In 2022, the personal

computer (PC) gaming market accounted for 37.9% of all

gamers worldwide. One of the largest PC gaming

platforms is Steam, developed by Valve Corporation,

which boasts over 184 million active users. However, the

overwhelming number of options can lead users to lose

interest in purchasing games. Therefore, a

recommendation system is required to help users find

games that align with their preferences. The

methods/theories employed in this study include data

from the Steam Web API, SteamSpy API, and local JSON

files. The Content-Based Filtering method, using the

Cosine Similarity algorithm, was implemented to

determine the similarity index between games and user

preferences. Flutter was used for application

development and to display the recommendation results

to users. The results of this study show that the

application was successfully developed, and the Content-

Based Filtering method provided recommendations that

met expectations. The highest cosine similarity factor

achieved was 0.6454972244, indicating a fairly good level

of accuracy. Application evaluation using the Technology

Acceptance Model revealed positive reception, with a

"Perceived Usefulness" score of 82.6% and a "Perceived

Ease of Use" score of 86.2%, indicating that users found

the application both useful and easy to use.

Index Terms— Terms—Content-Based Filtering;

Cosine Similarity; Flutter; similarity; Steam; SteamSpy

API; Steam Web API.

I. INTRODUCTION

One of the most popular activities in the digital era
is gaming. With services like Steam, users can easily
access a variety of games. Video games are a form of
digital media-based activity where players aim to
achieve predetermined objectives within the game [1].
According to Statista, the total revenue from the video
game market is projected to reach 625.64 trillion USD
by 2028 [2]. Additionally, data from 2022 reveals that

the market for personal computer (PC) games is the
second largest, following mobile games, accounting for
37.9% of all video game players worldwide [3].

One of the largest marketplaces for PC gaming is
Steam, a game distribution platform developed by
Valve Corporation, a U.S.-based company. Steam
offers over 8,000 available games and boasts more than
184 million active users [4]. However, the abundance
of game options presents a significant challenge for
users, as too many choices can lead to decision fatigue.
Research by Chernev, Böckenholt, and Goodman
demonstrates that an excessive number of options can
reduce consumer interest in making purchases [5]. This
phenomenon highlights the need for an effective
recommendation system to assist users in navigating
Steam's extensive library and identifying games that
align with their preferences.

Steam was chosen as the research object for several
compelling reasons. As one of the largest and most
influential game distribution platforms globally, its
significant user base and vast library of games make it
a prime candidate for studying recommendation
systems. Additionally, Steam’s robust Steamworks
Web API and supplementary services like SteamSpy
API provide access to valuable data on user activity and
game information, enabling the development and
testing of advanced algorithms. By addressing the issue
of decision fatigue on a platform as prominent as Steam,
the findings of this study have practical relevance and
the potential to improve user satisfaction and
engagement while supporting game developers in
reaching their target audience.

Previously, several recommendation systems have
been proposed to tackle similar challenges, including
those based on Deep Learning [6], the K-Nearest
Neighbor (KNN) algorithm [7], and matrix
factorization techniques [8]. Each method has its
strengths and limitations: Deep Learning achieves high
accuracy but requires extensive user data for
implementation, the KNN algorithm performs well
with existing input, and matrix factorization can

150 Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 2 | December 2024

ISSN 2085-4552

identify personal preferences for approximately 33% of
Steam users.

Among the various approaches, Content-Based
Filtering has emerged as a widely used method for
building recommendation systems. This technique has
been successfully applied in other domains, such as
movie recommendation systems based on genres [9]
and property recommendation systems [10]. In the
context of game recommendation systems, Content-
Based Filtering utilizes user activity to generate
personalized suggestions. A comparative study by the
State University of Feira de Santana [11] indicates that
this method is particularly effective with large and
dense datasets, such as Steam’s extensive game library
and user base.

For these reasons, this study adopts Content-Based
Filtering to develop a recommendation system that
mitigates decision fatigue and assists users in finding
games that match their preferences. By leveraging this
approach, the study aims to address the challenges
posed by Steam’s vast game selection and improve the
overall user experience on the platform.

II. THEORY

A. Flutter

Flutter is a cross-platform framework used to

develop high-performance mobile applications. It was

launched by Google in 2016 [12]. Flutter enables the

creation of high-performance applications akin to

native apps, thanks to its high-performance rendering

engine. In Flutter's architecture, C/C++ code is

compiled using the NDK on Android and LLVM on

iOS, while Dart code is compiled Ahead Of Time

(AOT) [13].

B. Dart

Dart is a programming language designed with

principles of ease of use, familiarity for most

programmers, and scalability. Dart was created to

provide tools specifically tailored to meet the needs of

modern software and hardware [14]. It is an Object-

Oriented Programming (OOP) language developed and

maintained by Google. Dart has also been utilized to

develop large-scale web applications [15].

C. Content-Based Filtering

The Content-Based Filtering (CBF) algorithm is one of

the most successful recommendation algorithms, using

correlations between content as its foundation. CBF

relies on an item's information, represented by

attributes, which are compared with other items to

calculate similarity [16]. An example of its

implementation is a recommendation system that

compares a user profile with the content of each

document in a collection. The content of a document

can be represented by several keywords that reflect the

user's profile [17]. One of the methods to calculate

similarity between textual data is through Cosine

Similarity.

D. Cosine Similarity

Cosine Similarity is a commonly used metric to

measure the degree of similarity between two vectors,

calculated based on the cosine of the angle between

them [18]. This method is also useful for measuring the

similarity between two documents based on matching

terms [19]. The formula for Cosine Similarity is as

follows:

cosine_similarity (𝐚, 𝐛) =
𝐚⋅𝐛

‖𝐚‖‖𝐛‖
  (1)

Explanation:

- a: Represents vector a

- b: Represents vector b

- Cosine Similarity (a,b): The similarity value

between vectors a and b, calculated based on

the cosine of the angle between them.

E. Technology Acceptance Model

With the growing technological demands in the

1970s and increasing system adoption failures across

various organizations, predicting system usability

became a popular field among researchers. In 1985,

Fred Davis proposed the Technology Acceptance

Model (TAM), based on the Theory of Reasoned

Action (TRA), to explain individual behavior in

adopting technology [20].

The Technology Acceptance Model suggests that

Perceived Ease of Use and Perceived Usefulness are
significant predictors of application usage, which play
a major role in evaluating the effectiveness and
usability of a technological system [21].

III. METHOD

A. Problem Identification

Before designing and developing the application,

the primary step is identifying existing problems. This

process was conducted through market research and by

gathering information from previous studies on game

recommendation systems.

B. Literature Review

The literature review involved collecting and

analyzing related studies from various written sources,

such as journals, articles, and research reports that

address similar topics.

C. Application UI Prototyping

The initial stage of mobile application development

involved creating a user interface (UI) prototype. The

prototype was designed using Figma and served as the

foundation for the UI of the developed application.

Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 2 | December 2024 151

ISSN 2085-4552

D. Integration of Steamworks API

In this phase, the Steamworks Web API was

integrated into the application. This included

implementing the login system via Steam using the

OpenID service and extracting user data through the

API's GET function. The Uri.parse() method was used

to retrieve specific user data, which was utilized for the

recommendation system.

E. Development of Core Application Functions

At this stage, the core functions designed during the

prototyping phase were developed and implemented

into the application. These functions were built using

the tools and components provided by the Flutter

framework.

F. Integration of Content-Based Filtering

The Content-Based Filtering algorithm was

implemented to generate personalized

recommendations by comparing the similarity between

games previously played and other available games on

the Steam platform. The tag data from the Steamworks

Web API was utilized for this purpose. The integration

process followed these steps (Figure 1):

Fig. 1. Content-Based Filtering Process

1) Data Collection: The application retrieved data

from Steam Web API, SteamSpy API, and a

JSON dataset containing information on 55,000

Steam games.

2) Data Preprocessing: Symbols were removed

from the data, and all tags were converted to

lowercase for uniformity.

3) Vectorization: The preprocessed tags were

vectorized into binary vectors, which were used

for cosine similarity calculations.

4) Cosine Similarity Calculation: The dot product

was calculated between Vector A: Representing

the user profile, containing tags from the games

played by the user, and Vector B: Representing

tags from a specific game being compared.

5) Magnitude Calculation: The magnitudes of both

vectors were calculated by summing the

squared values of their components.

6) Final Cosine Similarity: The cosine similarity

value was computed by dividing the dot product

by the square root of the magnitudes of both

vectors.

7) Sorting and Displaying Results: The system

iterated through steps 4 to 6 for all games in the

dataset, sorted the results based on the cosine

similarity values, and displayed the top 10

games with the highest similarity scores.

G. Testing and Debuging

Once development was completed, the application

underwent comprehensive testing to ensure its

functionality met expectations. Testing focused on

evaluating functionality, reliability, performance, and

security. Any identified bugs were addressed through

debugging processes to ensure smooth application

performance.

H. Evaluation using Technology Acceptance Model

(TAM)

The developed application was distributed to

research participants, who evaluated it using a survey

based on the Technology Acceptance Model (TAM).

The survey included questions addressing two key

factors, which are Perceived Ease of Use, and Perceived

Usefulness. The TAM framework, proposed by Fred

Davis and Richard Bagozzi [20], was used to measure

technology acceptance. The collected results were

analyzed to determine the application's acceptance level

among users

IV. RESULTS AND DISCUSSIONS

I. Application Interface

Figure 2 shows the application’s login interface,

where users log in using Steam to extract their gaming

data.

Fig. 2. Login Page Interface

152 Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 2 | December 2024

ISSN 2085-4552

Figure 3 shows the main page of the application,

where users can choose to request game

recommendations or view their profiles.

Fig. 3. Home Page Interface

Figure 4 illustrates the recommendation page,

where users can request recommendations based on

games they own or have played in the past two weeks.

Fig. 4. Recommender Page Interface

Figure 5 displays the results page, where the system

shows recommended games along with their cosine

similarity scores.

Fig. 5. Recommendation Result Interface

J. Implementation of Steam Web API

The Steam Web API was implemented to support

the login system and retrieve user data. The login

system utilized the WebView plugin, which redirected

users to the Steam login page via OpenID. Once the

Steam account was linked, users were directed to the

main application interface.

The Steam Web API was also used to extract

critical user data, including UserID, the user's Steam

Library, and general game data from Steam. This data

was obtained through the GET function, returning a

JSON file.

K. Data Acquisition

Before providing game recommendations,

necessary data was collected:

1) App ID Data: Retrieved via the Steamworks Web

API for detailed game information.

2) Alternative Data Source: Due to limitations of the

Steam Web API, the SteamSpy API was used to

supplement the required game data.

3) Game Dataset: A JSON file containing data for

55,000 Steam games sourced from Kaggle was

utilized to overcome API rate limitations.

L. Content-Based Filtering Implementation

After gathering the necessary data, the

recommendation process commenced. The first step

was pre-processing, which involved filtering games

based on playtime, removing symbols and special

characters, converting tags to lowercase, and

preventing duplicates by converting the data into Sets.

This ensured uniformity and efficiency in subsequent

processes.

Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 2 | December 2024 153

ISSN 2085-4552

Next, the tags were vectorized into binary vectors,

enabling the system to perform similarity calculations.

The Cosine Similarity metric was then used to measure

the similarity between the User Profile Vector (A),

representing tags derived from the user’s game library,

and the Game Vector (B), which contained tags for

each game in the dataset.

After calculating the cosine similarity for all games
in the dataset, the system sorted the results based on the
highest similarity values. The top 10 games with the
highest cosine similarity scores were then displayed to
the user as recommendations.

The system was tested using the researcher’s Steam
account, where the highest cosine similarity score of
0.6454972244 was obtained for the game “Judgment”.
Tags associated with Judgment, such as Action,
Adventure, Beat’em Up, Hack and Slash, closely
aligned with the tags in the user profile, demonstrating
the accuracy of the recommendation system.

M. Application Evaluation

The application evaluation was conducted using the

Technology Acceptance Model (TAM). Upon

completion of the application, it was distributed to

participants along with a survey created using Google

Forms. The survey included questions designed in

accordance with TAM principles (Table 1).

TABLE I. SURVEY QUESTIONS BASED ON TECHNOLOGY

ACCEPTANCE MODEL (TAM)

No. Question Response Scale

1 Name (Initials allowed) Text input

2 Is the application useful to you? 1 (Not Useful) - 5
(Very Useful)

3 Does the application simplify

finding games you want to play?

1 (Strongly

Disagree) - 5
(Strongly Agree)

4 Can you easily obtain useful

information from the application?

1 (Strongly

Disagree) - 5

(Strongly Agree)

5 Does the application help you

better understand recommendation

systems?

1 (Strongly

Disagree) - 5

(Strongly Agree)

6 Does the app interface facilitate
your interaction with the

recommendation system?

1 (Strongly
Disagree) - 5

(Strongly Agree)

7 Does interacting with the app
make using recommendation

systems easier?

1 (Strongly
Disagree) - 5

(Strongly Agree)

Questions 2 to 4 focused on the perceived

usefulness of the application, assessing how beneficial

the application was for users. Meanwhile, questions 5

to 7 measured the perceived ease of use, evaluating

how easy it was for users to interact with and utilize the

application. The survey received responses from 30

participants, adhering to the sampling method

suggested by Sugiyono [22].

TABLE II. PERCEIVED USEFULNESS

Perceived Usefulness 1 2 3 4 5

Question 2 0 0 3 15 12

Question 3 0 0 8 12 10

Question 4 0 1 6 14 9

The results of the survey are presented in Table II

for the "perceived usefulness" aspect and Table III for

the "perceived ease of use" aspect. These tables

summarize participants' responses on a scale of 1

(Strongly Disagree/Not Useful) to 5 (Strongly

Agree/Very Useful).

TABLE III. PERCEIVED EASE OF USE

Perceived Usefulness 1 2 3 4 5

Question 5 0 0 5 11 14

Question 6 0 0 5 12 13

Question 7 0 0 3 13 14

The survey results provided insights into the

participants' opinions on the application. To calculate

the percentage of perceived usefulness and perceived

ease of use, the following formula was applied:

∑  
𝑝
𝑖=1

(𝑥𝑖×𝑦𝑖)

(𝑝×𝑠×𝑗)
× 100%  (2)

Explanation:

- i: Scale value of the question.

- p: Total number of scale points in the

question.

- xi: Specific scale value for a given question.

- yi: Total number of responses corresponding

to the scale value xi

- s: Total number of survey participants

(sample size).

- j: Total number of questions related to the

evaluation factor being measured.

Based on the results, Formula 3 was used to

calculate the percentage for perceived usefulness,

while Formula 4 was applied to compute the

percentage for perceived ease of use. The evaluation

demonstrated the application’s effectiveness and

usability from the perspective of the participants.

perceived usefulness =
(0×1)+(1×2)+(17×3)+(41×4)+(31×5)

5×30×3
× 100% = 82.6%  (3)

perceived ease of use =
(0×1)+(1×2)+(17×3)+(41×4)+(31×5)

5×30×3
× 100% = 86.2%  (4).

V. CONSLUSION

The study concluded that the design and

development of the application were successfully

completed, with the application running smoothly on

nearly all devices used during testing. The

recommendation system, which employed the

Content-Based Filtering method, delivered satisfactory

results, achieving the highest Cosine Similarity score

of 0.6454972244. Additionally, the evaluation using

154 Ultimatics : Jurnal Teknik Informatika, Vol. 16, No. 2 | December 2024

ISSN 2085-4552

the Technology Acceptance Model (TAM)

demonstrated positive reception from users, with a

perceived usefulness score of 82.6% and a perceived

ease of use score of 86.2%, indicating that the majority

of participants found the application effective and user-

friendly.

For future research, it is recommended to explore
alternative methods to access dynamic data without
being constrained by API call limitations, enabling the
use of more accurate and comprehensive data from
Steam services. Additionally, the recommendation
process could be expedited by optimizing the algorithm
further or adopting alternative methods that can deliver
equivalent or superior results with reduced processing
time.

REFERENCES

[1] R. Ramadan and Y. Widyani, “Game development life cycle
guidelines,” in *2013 International Conference on Advanced
Computer Science and Information Systems (ICACSIS)*.
IEEE, 2013, pp. 95–100.

[2] J. Clement, “Video game market revenue worldwide from
2018 to 2028,” Dec. 2023. [Online]. Available:
https://www.statista.com/statistics/1344668/revenue-video-
game-worldwide/

[3] ——, “Leading devices used to play games worldwide 2022,”
Jan. 2023. [Online]. Available:
https://www.statista.com/statistics/533047/leading-devices-
play-games/

[4] G. Sergey, “All the data and stats about steam games,” 2016.
[Online]. Available: http://steamspy.com/

[5] A. Chernev, U. Bockenholt, and J. Goodman, “Choice
overload: A conceptual review and meta-analysis,” *Journal of
Consumer Psychology*, vol. 25, no. 2, pp. 333–358, 2015.

[6] D. Wang, M. Moh, and T.-S. Moh, “Using deep learning and
steam user data for better video game recommendations:
Proceedings of the 2020 ACM southeast conference,” Apr.
2020. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/3374135.3385283

[7] G. Cheuque, I. P. U. Catolica Santiago, J. Guzmán, D. Parra,
G. Tech, and O. Metrics, “Recommender systems for online
video game platforms: The case of steam: Companion
proceedings of the 2019 world wide web conference,” May
2019. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/3308560.3316457

[8] S. Bayram, “Game recommendation system for steam
platform,” Jan. 1970. [Online]. Available:
https://openaccess.mef.edu.tr/xmlui/handle/20.500.11779/172
1

[9] S. Reddy, S. Nalluri, S. Kunisetti, S. Ashok, and B. Venkatesh,
“Content-based movie recommendation system using genre
correlation,” Jan. 1970. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-981-13-1927-
3_42

[10] T. Badriyah, S. Azvy, W. Yuwono, and I. Syarif,
“Recommendation system for property search using content-
based filtering method,” Mar. 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8350801

[11] R. Glauber and A. Loula, “Collaborative filtering vs. content-
based filtering: Differences and similarities,” Dec. 2019.
[Online]. Available: https://arxiv.org/abs/1912.08932

[12] A. Tashildar, N. Shah, R. Gala, T. Giri, and P. Chavhan,
“Application development using flutter,” *International
Research Journal of Modernization in Engineering Technology
and Science*, vol. 2, no. 8, pp. 1262–1266, 2020.

[13] W. Wu, “React native vs flutter, cross-platforms mobile
application frameworks,” 2018.

[14] A. Hassan, “Java and dart programming languages: Conceptual
comparison,” *Indonesian Journal of Electrical Engineering
and Computer Science*, vol. 17, no. 2, pp. 845–849, 2020.

[15] G. I. Arb and K. Al-Majdi, “A freights status management
system based on dart and flutter programming language,” in
Journal of Physics: Conference Series, vol. 1530, no. 1. IOP
Publishing, 2020, p. 012020.

[16] M. Al-Shamri, B. Amiri, A. Biswas, W. Carrer-Neto, F.
Colace, S. Choi, M. Everett, L. Freeman, O. Kwon, Y. Li, et
al., “Content-based filtering for recommendation systems
using multiattribute networks,” Aug. 2017. [Online].
Available:
https://www.sciencedirect.com/science/article/abs/pii/S09574
17417305468

[17] R. van Meteren and M. van Someren, “Using content-based
filtering for ... - ics-forth.” [Online]. Available:
http://users.ics.forth.gr/~potamias/mlnia/paper_6.pdf

[18] A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan, “Cosine
similarity to determine similarity measure: Study case in online
essay assessment,” Sep. 2016. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7577578/

[19] D. Gunawan, C. A. Sembiring, and M. A. Budiman, “The
implementation of cosine similarity to calculate text relevance
between two documents,” Mar. 2018. [Online]. Available:
https://iopscience.iop.org/article/10.1088/1742-
6596/978/1/012120/meta

[20] M. Chuttur, “Overview of the technology acceptance model:
Origins, developments and future directions,” Jun. 2013.
[Online]. Available: https://aisel.aisnet.org/sprouts_all/290

[21] M. Masrom, “Technology acceptance model and E-learning,”
May 2007. [Online]. Available:
https://www.researchgate.net/publication/228851659_Techno
logy_acceptance_model_and_E-learning

[22] Sugiyono, *Metode penelitian pendidikan: pendekatan
kuantitatif, kualitatif, dan RD*, revised edition ed. Bandung:
Alfabeta, 2016.

