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Abstract— Stress is a major determinant of mental health
and productivity, motivating growing interest in
continuous and unobtrusive stress detection using
wearable sensors and machine-learning (ML) techniques.
This study presents a Systematic Literature Review
(SLR) of 19 peer-reviewed articles published between
2021 and 2025, selected from an initial pool of 36 studies
using structured inclusion and exclusion criteria. A
combined quantitative and qualitative synthesis was
conducted to analyze five key dimensions: sensing
modalities, ML/DL algorithms, datasets, validation
protocols, and deployment-related feasibility. The review
identifies dominant methodological trends rather than
definitive rankings. Multimodal physiological sensing—
most commonly combining photoplethysmography
(PPG), electrodermal activity (EDA), and accelerometer
data—together with hybrid deep-learning architectures
such as CNN-LSTM, is frequently associated with high
reported performance on benchmark datasets. However,
the analysis also reveals a pronounced lab-to-field gap.
Most studies rely on intra-subject or k-fold cross-
validation, while subject-independent evaluation using
Leave-One-Subject-Out (LOSO) remains rarely adopted,
limiting claims of real-world generalizability. In addition,
fewer than 15% of the reviewed studies explicitly
consider practical deployment constraints, including
computational efficiency, power consumption, and data
privacy. The primary contribution of this review lies in
systematically quantifying the impact of validation
practices and deployment considerations on reported
performance. The findings highlight that, despite
promising accuracy, current stress-detection models
remain insufficiently validated for real-world use and
point toward the need for generalizable, lightweight, and
privacy-aware wearable stress-detection systems.

Index Terms— deep learning; machine learning;
multimodal fusion; physiological sensing; stress detection;
wearable computing.

1. INTRODUCTION

Stress is increasingly recognized as a global health
issue affecting individual well-being and organizational
productivity. Conventional detection methods, such as
clinical interviews, are subjective and episodic; in
contrast, the advent of wearable sensors and machine
learning (ML) has enabled more objective and
continuous stress monitoring [1]. Over the last decade,
researchers have explored multiple physiological
modalities such as heart-rate variability from
ECG/PPG, electrodermal responses (EDA/GSR), brain
activity (EEG), respiration, and facial or speech cues.
These signals, when analyzed by ML or deep-learning
(DL) algorithms, can classify stress with notable
accuracy. This progress is foundational to the field,
offering a promising pathway toward objective and
continuous biomarkers for mental health [2].

Despite this progress, a critical divergence exists
between laboratory results and real-world applicability.
Recent studies employing Deep Learning (DL)
architectures, such as CNN-LSTM hybrids, frequently
report accuracies exceeding 95% on benchmark
datasets [1]. However, the reliability of these results is
often constrained by evaluation methodology. Several
studies rely on intra-subject validation (e.g., k-fold
cross-validation), which can inflate performance by
mixing data from the same individuals across training
and testing sets [3]. Prior work suggests that subject-
independent evaluation protocols, such as Leave-One-
Subject-Out (LOSO) or cross-dataset validation,
provide a more realistic assessment of generalization to
unseen users, yet these approaches remain relatively
uncommon [4]. In addition, practical deployment
introduces barriers related to societal feasibility: models
are often too computationally heavy for wearable
devices, leading to rapid battery drain, while sensor
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comfort dictates user adherence for continuous
monitoring [5][6].

Beyond these technical hurdles, a critical gap exists
in the insufficient consideration of privacy and ethics.
Physiological data is inherently sensitive, and
continuous collection raises significant user concerns
regarding data ownership, misuse, and surveillance.
Integrating these systems into daily life requires
frameworks that ensure user trust, such as on-device
inference (Edge Al) or Federated Learning, yet these
aspects are frequently overlooked in research focused
purely on accuracy.

Several prior surveys have reviewed stress detection
using physiological signals and machine learning,
primarily focusing on traditional ML approaches and
studies published before 2020 (e.g., Can et al [7];
Panicker & Gayathri [8]). While these works establish
important foundations, they do not systematically
address recent developments in deep learning—based
multimodal models, subject-independent validation
practices such as LOSO, or deployment-oriented
constraints such as computational efficiency and data
privacy.

In contrast, this study explicitly addresses these
gaps by systematically reviewing recent (2021-2025)
multimodal ML/DL studies, quantifying validation
practices, and synthesizing technical performance with
deployment-oriented considerations. This positioning
differentiates the present SLR from prior reviews that
primarily emphasize algorithmic accuracy without
assessing real-world readiness.

This review systematically synthesizes published
evidence to address these multifaceted gaps. We answer
four research questions (RQs) designed to map the state
of the art (SOTA): (RQ1) effective sensing modalities,
(RQ2) reliable ML/DL algorithms, (RQ3) common
validation protocols, and (RQ4) specific barriers to
deployment regarding computational efficiency and
data privacy. By unifying quantitative and qualitative
insights, this SLR aims to guide future research toward
stress-detection systems that are not only accurate but
also scalable, generalizable, and ethically compliant.

The remainder of this paper is organized as follows:
Section II presents theoretical foundations; Section III
details the SLR methodology; Section IV discusses
results and trends; and Section V concludes with
research gaps and future directions.

II.  METHOD

This section presents the theoretical foundations
that guided our literature synthesis and the conceptual
analysis framework used to extract and interpret
findings from the reviewed studies.

A. Conceptual analysis framework

To ensure that the review is theory-driven rather
than descriptive, we organize the theoretical discussion
around four interrelated dimensions that form the
analytical lens of this SLR: (1) sensing modalities, (2)
modeling and representation learning, (3) validation
and generalization, and (4) deployment constraints
(computational efficiency and data privacy). These
dimensions directly map to our research questions and
the data extraction fields used in the review. Concretely,
the review extracts and synthesizes evidence about
which modalities are used and why (RQ1), which
algorithmic paradigms prevail and how features are
represented (RQ2), which validation protocols are
adopted and how they affect generalization (RQ3), and
which deployment-oriented considerations (e.g., on-
device inference, federated learning, power/latency
metrics) are addressed (RQ4).

B. Stress and Physiological Signals

Stress triggers the Autonomic Nervous System
(ANS), disrupting the balance between the sympathetic
("fight or flight") and parasympathetic ("rest and
digest") branches. Multimodal sensing is theoretically
grounded on this systemic response [9]. Though it lacks
temporal precision for short-term events, electrodermal
activity (EDA), which directly reflects sympathetic
arousal via sweat gland activation, is generally regarded
as the most reliable indication of emotional stress [1].
At the same time, the intricate interaction between
sympathetic and parasympathetic activity is measured
by Heart Rate Variability (HRV), which is obtained
from ECG or PPG. PPG provides a wearable-friendly
substitute for ECG, however it is prone to motion
artifacts [2]. ECG is still the clinical gold standard.
Beyond these autonomic markers, cortical responses
can be captured via EEG, while physical activity that
often confounds physiological signals is monitored
using  accelerometers  (ACC). Theoretically,
multimodal fusion reduces the uncertainty associated
with unimodal sensing by capturing independent stress
signals, such as merging the sympathetic strength of
EDA with the vagal tone of HRV [10].

C. Feature Engineering to Representation Learning

The transition from classical Machine Learning
(ML) to Deep Learning (DL) represents a fundamental
shift in how stress features are modeled. Traditional ML
approaches relied heavily on Feature Engineering
where domain experts manually extracted statistical
features for classifiers like SVM or Random Forest.
While interpretable, this approach is limited by the
quality of handcrafted features and struggles with raw,
noisy sensor data [11]. Conversely, modern
architectures have shifted toward Deep Representation
Learning. In particular, hybrid models such as CNN-
LSTM automate feature extraction; Convolutional
Neural Networks (CNN) learn spatial or spectral
patterns directly from spectrograms, while Long Short-

2AIZ8 Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 2 | December 2025



Term Memory (LSTM) networks model the long-term
temporal dependencies essential for physiological time-
series analysis [1].

D. The Generalization Gap: Subject Inter-variability

Subject inter-variability is a significant theoretical
difficulty in stress detection.  Stress-related
physiological reactions vary greatly; for example, one
person's baseline heart rate may be a sign of extreme
stress for another [4]. Theoretically, this has significant
ramifications for validation procedures. Conventional
validation techniques, such k-fold cross-validation, are
predicated on the idea that the data is identically
distributed and independent. This assumption is broken,
though, when training and testing segments from the
same subject are combined, leading the model to learn
subject-specific characteristics instead of stress-specific
patterns. Leave-One-Subject-Out (LOSO) validation is
necessary for theoretical rigor in order to close the lab-
to-field gap. In contrast to k-fold, LOSO guarantees that
the model is evaluated on completely unknown users,
requiring the acquisition of generalized stress features a
necessary  condition  for  reliable  real-world
implementation [2].

E. Constraints Efficiency and Privacy

Beyond accuracy, real-world deployment is
theoretically constrained by the trade-off between
model complexity and resource availability. Deep
Learning models, while accurate, impose high
computational costs. Furthermore, the traditional
Centralized Learning paradigm where raw data is
transmitted to a cloud server violates modern privacy
principles. The theoretical alternative is Federated
Learning (FL), a distributed optimization paradigm
where models are trained locally on devices and only
model updates (gradients) are shared [12]. This
approach theoretically decouples learning from data
centralization addressing the privacy concerns inherent
in physiological sensing without compromising the
model's ability to learn from population-level data.

III. RESULT AND DISCUSSIONS

A. Systematic Literature Review

This study adopts a Systematic Literature Review
(SLR) approach to synthesize existing evidence on
stress detection using Machine Learning. To ensure
methodological rigor, transparency, and
reproducibility, the review protocol adheres to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [13]. This
standard framework ensures that the selection of studies
is unbiased and comprehensive, shifting focus from
general descriptions to quantitative performance
analysis of recent multimodal systems.

B. Research Question

The following table contain the research questions
that has been carried out on this paper. Table I showed
four questions that is the main focus of this paper.

TABLE 1. RESEARCH QUESTION

1D Research Question Motivation
Identify
Which physiological or practical and
RQI1 behavioral modalities are most accurate
effective for stress detection? sensing
methods
Which ML/DL models | Determine the
RQ2 demonstrate robust and | current state of
generalizable performance? the art
Evaluate
What datasets and validation | reproducibility
RQ3
protocols are commonly used? and
comparability
What societal, ethical, or Assess real-
RQ4 deployment aspects are

world readiness

considered?

C. Work Procedure

The work procedure involves conducting a
literature  search, selecting relevant  sources,
documenting findings, analyzing the information, and
drawing conclusions as visualized in the PRISMA
flowchart (Fig. 1), following a structured protocol
adapted from established SLR guidelines [14]. This
process consists of these main steps, as detailed below.

First, the authors identified key terms relevant to the
research topic. The main keywords used in the search
were “stress detection,” “machine learning,” “deep
learning,” “wearable sensor,” “physiological signal,”
and “multimodal fusion.” Boolean combinations were
applied across several databases such as IEEE Xplore,
ScienceDirect, SpringerLink, and MDPI to ensure a
broad coverage of recent studies [14].

Second, the authors determined the origin and
source of the literature. Journals were selected from
reputable international publishers that focus on artificial
intelligence, biomedical engineering, and affective
computing [14]. The search was conducted online and
limited to peer-reviewed articles published between
2021 and 2025 to capture the most recent advances.

Third, the collected works were filtered according
to strict criteria. The initial search yielded 36 papers.
After removing 5 duplicates, 31 papers underwent title
and abstract screening. We applied the Inclusion and
Exclusion Criteria presented in Table II to filter these
results. We specifically excluded qualitative surveys
and studies lacking quantitative metrics (e.g.,
Accuracy/F1-Score). This process resulted in a final
selection of 19 articles deemed relevant for detailed
review.

TABLE II. INCLUSION AND EXCLUSION CRITERIA
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Criterion Inclusion Exclusion
Publication . Conference, Thesis,
Type Journal Articel Book Chapters
Timeline 2021-2025 <2021
Quantitative ML/DL Qualitative /
Content Performance Theoretical only
Modality Multimodal Unimodal

Fourth, to ensure technical soundness, a Quality
Assessment was performed on the final 19 articles. We
defined four binary quality criteria focusing on
reproducibility. Each paper was evaluated as Yes (1) or
No (0). Only studies satisfying at least 3 out of 4 criteria
were included in the final data synthesis.

TABLE III. QUALITY ASSESSMENT

D Assessment Criteria (QA) Motivation

Ensures data
reproducibility
(participants,
signals, protocols).

QA1 | Is the dataset clearly described?

Are the feature extraction and Ensures the

QA2 | ML/DL  models explicitly | technical approach
defined? is replicable
Critical for
QA3 Is the validation methodology evaluating
clearly stated? generalizability
claims.
Are quantitative performance | f ]
QA4 . comparative
metrics reported? .
analysis.

Fifth, the extracted data were synthesized using a
two-stage approach. First, a descriptive quantitative
synthesis was conducted to address RQ1-RQ3 by
tabulating key characteristics of the selected studies,
including sensing modalities, algorithms, datasets,
validation protocols, and reported performance metrics.
Descriptive statistics (frequencies and ranges) were
used to identify prevailing trends and state-of-the-art
approaches. A formal meta-analysis was not performed
due to substantial heterogeneity in datasets,
experimental protocols, and evaluation metrics. A
qualitative thematic synthesis was applied to address
RQ4 by analyzing deployment-related considerations
such as computational efficiency, validation rigor, and
data privacy. This analysis also involved a critical
assessment of methodological quality, particularly the
use of subject-independent validation and dataset
characteristics, to identify key gaps affecting real-world
applicability.

|
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2 (n=36)
|

Duplicate records removed

= (n=35)

|

7

Records after duplicates removed
n=31)
|
Records Excluded (n=

= 12)

rPED Feasons: No

=] Quantitative metrics,

Unimodal

|

2 Studies Included in synthesis

=

E (n=19)
|

Fig. 1. PRISMA Flowchart of the Literature Selection Process

IV. RESULT AND DISCUSSIONS

A.  Overview of the Studies

The systematic selection process resulted in 19
studies published between 2021 and 2025. The analysis
reveals a diverse landscape of methodologies, with
dataset sizes ranging from small custom cohorts (n=11)
to large public benchmarks like WESAD (n=15) and
SWELL-KW. Before detailing the performance
metrics, it is crucial to note that direct comparison of
accuracy across studies requires caution. The
heterogeneity in stress-induction protocols (e.g., MIST
vs. Driving Simulators) and label granularity (2-class
vs. 3-class) means that a higher accuracy score does not
always imply a superior model, but may reflect a
simpler classification task or a less rigorous validation
scheme.

Most of the reviewed works focus on physiological-
signal-based stress detection, often combining more
than one sensing modality. The most frequently used
signals are  electrodermal  activity (EDA),
photoplethysmography (PPG), and electrocardiography
(ECQ), followed by studies employing
electroencephalography (EEG) or accelerometer
(ACC) data [15]. These modalities are widely available
in commercial wearables, which explains their
popularity for daily stress-monitoring research.

In terms of methodology, traditional machine-
learning classifiers such as Support Vector Machine
(SVM), Random Forest (RF), and XGBoost remain
common, particularly for smaller or unimodal
datasets[15]. However, a clear shift toward deep
learning architectures, notably Convolutional Neural
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Networks (CNN), Long Short-Term Memory (LSTM)
networks, and hybrid CNN-LSTM models, can be
observed in the most recent papers. These models tend
to achieve the highest accuracy, often above 90 %,
especially when multiple signals are fused [16][17].

Table I'V provides a concise overview of each study,
including its dataset, modality, algorithm, validation
method, and the best reported metric.

Table IV provides a concise overview of each study,
including its dataset, modality, algorithm, validation
The validation methods reported vary across method, and the best reported metric.
studies. The majority rely on k-fold cross-validation,
while a smaller group applies Leave-One-Subject-Out
(LOSO) or cross-dataset evaluation to test

generalization [6].

TABLE IV. SUMMARY OF SELECTED STUDIES

Reference Dataset Modality Algorithm Validation Method Best l;\?ll;ftorli"znance
2] C;‘rst;gimate Py 152.2 Multimodal (EEG, SVM (RBF), kNN, Leave-One-Out Accuracy 96.25% (2
participate, GSR, PPG) DT, RF, MLP (LOOCV) class)
Speaking)
[ ST Change DB, EKG (Changed into Ensemble CNN- Accuracy 98.3% (2
WESAD Spectogram) LSTM class)
Custom (22 .
6] participate, Mgit;m%iﬂiéiye Attention-based 10-fold cross- Accuracy 95.5% (3
Driving i . A CNN-LSTM validation Class)
. Surrounding)
Simulator)
. MUSER Split
[18] %Amusg(’m OMG- TX’;E)S;ZI:S;;%?O;& (Transformer/BERT + | Train/Validation/Test Fl—sczrlzs()s.)864 @
MLP) (Dataset)
Custom (34 EKG (10 second . 5-fold cross- Accuracy 86.5% (3
[19] subject, MIST) segment) (GININRE B validation class)
[20] Custom (20 Mulst;rﬁsga;gffc}’ Hybrid DL (ResNet50 10-fold cross- Accuracy 85.1% (2
subject , MIST) i + 13D w/ TAM) validation class)
expression)
EEG ( converted into .
. s StressNet (Hybrid 5 . o Accuracy 97.8% (2
[21] DEAP, SEED Azimuthal Projection 2D-CNN + LSTM) 80% Train / 20% Test class )
Image )
Multimodal (
Custom (90 S 10-fold cross-
5] subject,  Office Behav‘gr' l\flouse’ LightGBM, SVM, RF |  validation (dengan Fl-score 0.625 (3
Simulation) Keygard + SMOTE) class , Stress)
Physiological: HRV )
Shallow/Deep . . Accuracy 99.65%
[4] SCIE?CT MBSRgl ! EEG ConvNet, LOOI(I:I X;l\s/llzf:z?] ect, (Task: Meditation vs.
ubject, FBCSP+SVM ~subJ Rest)
. 1D-CNN, LSTM, 80% Train / 10% Accuracy 95.83% (2
[22] UBFC-Phys TPPG (face video) GRU Validation / 10% Test class )
[23] MultiAffectStress A\lllg:;ivésel:ﬂg;iie’ Learning-Based Late 60% Train / 20% Fl-score 0.85 (2 class
(MAS) NS ? Fusion (RF) Validation / 20% Test )
Fidgeting)
Custom (26 Multimodal (EKG, Shuffled ECA-Net 5-fold cross- Accuracy 91.6% (2
[3] Subject, Cortisol RESP, (1D-CNN + validation (Intra- chss )' 0
label) Electrogastrogram) Attention) subject)
. . . _ _ 0,
[1] SWELL-KW HRV k: NN, l?emsmn T.ree, 5 fol‘d cross Accuracy 99.3% (3
Logistic Regression validation class)
WESAD, SWELL . . GSOA-SHBRNN o
[16] KW, RAVDESS, Ph}y;l‘)‘i‘;%ci (EEG’ (VGG-16 + PCA + 2/3 Train, 1/3 Test (\/)\v(g:;lfgy gﬁazsf)
EMO-DB v Bi-RNN) ’
Nursery  Dataset |y yimodal (ace, | MMFD-SD (Parallel |0 posin /20% Test | Aceuracy 91.00% (3
0] (from Hosseini et | g\ "yr TEMP) CNNs (Stratified Split) class )
al., 2022) s H Time+Frequency) P
Multimodal (BVP,
EDA, TEMP, ACC, CNN (Custom Fl1-score 91.67% (3
[24] WESAD RESP) converted to Architecture) class)
2D RGB Image
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Multimodal (Time
251 LifeSnaps, S"“eST‘gRl’afTepS * o tf;?ltifla“(‘éeup_ 5-fold cross- AUC 81.14%
PMData wiar. N g validation (PMData, 2 class )
Demographics, style)
Context)
. Multimodal Facial ResNet-18 backb(?nes,
Yonsei Stress . . attention mechanisms
images (RGB video . 5-fold cross-
Image & Speech . + Multimodal o .
frames + facial . validation 3/5 Train, e s
[26] Database (custom Neglecting Mask A Specificity: 88.99%
. landmarks) and 1/5 Validation 1/5
multimodal stress S h (log mel- Module (MNMM) for Test
dataset) peech (og me intermediate feature es
spectrogram) fusi
usion
Multimodal (ECG,
EDA, EMG, Train—test split with . o
[27] WESAD Respiration, CNN + LST;“ * 1 90% training and 10% AC?‘.‘“‘C? 19 2.70%
Temperature) Attention mechanism testing (multimodal setting)
B.  Modalities and Sensor Trends
Among the various physiological signals, EDA and - Mool Frefency At Shudes
PPG emerge as the most practical and consistent
modalities for real-time, wearable-based detection. *
Their combination captures both sympathetic nervous s
system response (EDA) and cardiovascular activity 8
(PPG), providing a comprehensive picture of »
physiological arousal. This multimodal fusion is shown ,
to be highly effective, achieved 96.25% accuracy by
fusing GSR (EDA) and PPG with EEG. This & & & & & &«
e &

quantitative result supports the qualitative trend that
studies integrating multiple modalities, particularly
those readily available in wearables, typically
outperform those relying on a single signal. [2]

ECG continues to be the reference modality in
controlled laboratory environments because of its high
sensitivity to subtle changes in heart-rate variability.
However, it is less convenient for long-term use due to
sensor placement and comfort issues[3]. EEG-based
approaches, while powerful for cognitive-stress
analysis, face similar challenges related to setup
complexity[4].

Overall, the literature points toward wearable-
friendly, multimodal sensing, often combining EDA,
PPG, and ACC. This configuration balances accuracy,
comfort, and cost, making it well suited for practical
applications[15]. Figure 2 highlights a clear preference
toward EDA and PPG as the dominant physiological
modalities in recent stress-detection  studies.
Researchers have chosen wearable-friendly sensors
over clinically accurate but invasive alternatives like
ECG or EEG, which is a realistic trade-off. Analytically
speaking, this distribution implies that real-world
deployability concerns implicitly limit state-of-the-art
research, highlighting the significance of multimodal
setups that strike a balance between accuracy, comfort,
and scalability.

Modality

Fig. 2. Frequency of physiological modalities used

C. Validation Strategies and Datasets

A consistent observation is the dominance of k-fold
cross-validation for evaluating model accuracy. While
suitable for preliminary comparison, this approach
often inflates results because training and testing data
originate from the same participants [3]. A smaller
number of studies adopt LOSO or subject-independent
validation, which provides a more realistic assessment
of model robustness in unseen subjects[2] [4]

Public datasets such as WESAD and DEAP appear
most frequently. WESAD, in particular, serves as the
primary benchmark for multimodal wearable stress
detection, combining EDA, PPG, and ACC signals.
Nevertheless, differences in dataset structure,
participant demographics, and labeling criteria make
direct comparison between studies difficult [1]. Figure
3 illustrates the distribution of validation strategies,
emphasizing the need for broader adoption of cross-
subject testing in future research.
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Fig. 3. Validation strategies across studies.

As illustrated in Figure 3, the dominance of k-fold
cross-validation indicates that most studies prioritize
performance optimization under controlled conditions
rather than generalization to unseen users. Our
synthesis reveals that the limited adoption of LOSO
validation is not merely a methodological choice, but a
key contributor to the observed lab-to-field gap. This
imbalance underscores the need to reinterpret high
reported accuracies with caution, particularly when
claims of real-world applicability are made.

D. Reported Performance

The reported performance across all studies
generally falls within the 85 %96 % range, depending
on the modality and evaluation protocol used, models
cluster around 90 % accuracy or equivalent F1-scores,
which is strong for physiological classification tasks

(31, [6], [9], [23].

However, results obtained from LOSO or cross-
dataset validation are typically 5-10 % lower,
underscoring the challenge of generalizing across
individuals [4]. The lower performance observed under
LOSO or cross-dataset validation does not indicate
inferior modeling, but rather reflects a more stringent
and realistic learning objective. In intra-subject
evaluation, models are exposed to physiological
patterns from the same individuals during training and
testing, enabling them to implicitly learn subject-
specific baselines and signal idiosyncrasies. This can
lead to inflated performance that reflects pattern
recognition of individuals rather than genuine stress-
related physiological responses. In contrast, LOSO
validation enforces complete subject separation,
requiring models to infer stress from physiological
changes that generalize across individuals with

inherently different baselines and response
dynamics. Since stress manifests as relative deviations
rather than absolute signal values, LOSO-trained
models are compelled to capture invariant stress-related
features instead of memorizing personal signal patterns.
Consequently, although LOSO evaluation yields lower
numerical scores, it provides a more meaningful
assessment of a model’s ability to detect stress rather
than merely recognizing individual-specific patterns.

k-fold / Random Split (Intra-subject) =M LOSO (Subject-independent)

100

80 1

60 4

40 1

Average Accuracy (%)

20 4

Traditional ML Deep Learning

Model Type

Fig. 4. Impact of validation protocol on reported stress-detection
performance.

The figure summarizes average performance trends
of traditional machine-learning and deep-learning
models under intra-subject (k-fold) and subject-
independent (LOSO) evaluation across the reviewed
studies. Deep-learning approaches consistently achieve
higher scores than traditional ML when trained on
multimodal inputs. The combination of CNN for
feature extraction and LSTM for temporal modeling
remains the most successful design pattern, especially
when applied to PPG and EDA data.

However, a direct comparison of these performance
metrics is complicated by the significant heterogeneity
across study protocols. Our analysis reveals that several
factors strongly influence reported outcomes. These
include the data labeling methodology (e.g., self-report
vs. induced stress protocols like MIST [19], [20]
ordriving simulators [6]), the signal processing details
such as the length of the time segments used for analysis
(e.g., 10-second segments in [19]), and the dataset
characteristics, including sample size and participant
diversity. For example, models validated on large,
public benchmark datasets like WESAD [1][, [16], [24]
may offer more generalizable insights than those
trained on smaller, custom datasets [6]. These
variations underscore the difficulty in establishing a
single best model and highlight the critical need for
standardized reporting protocols in future research.

E.  Machine-Learning and Deep-Learning
Approaches

The reviewed papers demonstrate two major
methodological generations. Early studies typically
extracted handcrafted statistical and frequency-
domain features, which were then classified using
SVM, RF, or logistic regression. These techniques
achieved accuracies in the range of 80-90 %, proving
that stress can be inferred reliably from physiological
data even with simple models [11]. Moreover,
classical ML methods remain attractive in scenarios
involving limited data, lower computational budgets,
and a need for model interpretability, which is
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particularly relevant for clinical or explainable-Al
contexts.

Hybrid CNN-LSTM architectures have emerged
as the dominant design paradigm in recent studies.
From a modeling perspective, this hybridization is
well aligned with the nature of physiological stress
signals: CNN components act as automated feature
extractors that reduce noise and encode local patterns,
while LSTM layers model the sequential evolution of
these features over time. When applied to multimodal
inputs such as PPG, EDA, and ACC, this architecture
enables both intra-modal representation learning and
temporal fusion, which explains the consistently high
reported accuracies between 93 % and 96 % across
multiple datasets. Extensions incorporating attention
mechanisms further refine this process by dynamically
weighting informative signal segments or modalities,
while contrastive pre-training and teacher—student

knowledge distillation aim to improve robustness and
data efficiency [6].

Taken together, the reviewed literature suggests
that the choice between classical machine-learning
and deep-learning approaches should not be guided by
accuracy alone. Instead, it should reflect the intended
application context, available data, and deployment
constraints. Classical ML models remain suitable as
strong baselines or interpretable solutions in low-
resource settings, whereas deep-learning architectures
represent the current state of the art for high-
performance, multimodal stress detection when
sufficient data and computational capacity are
available.

Table V summarizes the average performance by
model type. In general, deep sequential or hybrid
models outperform classical methods, though they
require more computational resources.

TABLE V PERFORMANCE COMPARISON BASED ON MODEL TYPE

Performance Range
Model Reference Dataset (Reported) Key Notes
ML Classi 2] Custom (40 participate, Accuracy: 96.25% (2 SVM (RBF) outperformed kNN, DT, RF,
(SVM ;;s (l:<- Public Speaking) class) and MLP in feature fusion.
NN, GBM) Custom (90 subject, Fl-score: 0.625 (3 nghtGBM outpe_rformed SVM/RF.
[5] Office Simulation) ) Behavioral data fusion (mouse/keyboard)
was better than HRV.
Time and frequency domain (spectrogram)
0,
[1] ST Change DB, WESAD Accure:;(gszfi)ﬁ Gie fusion of ECG data achieves high
Deep Learning accuracy.
(Hyl?gl%\(jl;m- [19] Custom (34 subject, Accuracy 86.5% (3 Effective for real-time detection (10-
BILSTM) MIST) class) second segments).
Custom (22 participate, Accuracy 95.5% (3 No n-phy51qloglcal multimodal quwn
[6] Driving Simulator) w. using attention has proven to be highly
& effective.
The Parallel CNN architecture separates
0,
Deep Learning [9] Nursery Dataset Accurag;gsl 500 < Time and Frequency domain features
(CNN before fusion.
Multimodal Custom (26 Subject Accuracy 91.6% (2 Using "Shuffled ECA-Net" (Attention) for
Fusion) [3] Cortisol label) ? class )' feature fusion. The stress label is validated
by Cortisol.
. Using Multi-Task Learning (MTL) where
Deen Learnin [18] MuSE, OMG-Emotion Fl-score: 0')8 64 (2 class emotion recognition becomes an auxiliary
("l?r?;s ff)imerg/ task for stress detection.
Multi-Task) Using Late Fusion (Random Forest) to
. . combine the outputs of several unimodal
[23] MultiAffectStress (MAS) Fl-score: 0.85 (2 class) models (including Wav2Vec 2.0 and
DistilBERT).

F. Societal Feasibility and Ethical Considerations

While high numerical accuracy remains an essential
benchmark, the true success of a stress-detection model
lies in its translation into everyday use. Machine-
learning research is beginning to move from laboratory
settings toward field deployment, yet the gap between
experimental performance and societal applicability
remains substantial. Several studies acknowledge that
stress recognition is meaningful only when it can
operate continuously, comfortably, and ethically within
people’s daily routines.

1) Feasibility of Deployment

Approximately one-third of the reviewed papers
describe some form of prototype or pilot deployment,
ranging from wrist-worn sensors to smartphone-based
data collection. Wearable-centric designs particularly
those relying on PPG and EDA sensors integrated in
smartwatches or fitness bands emerge as the most
realistic pathway for long-term stress monitoring[15].

These devices already enjoy high consumer
adoption and can collect data passively without
interrupting normal activity. Studies employing
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multimodal fusion (EDA + PPG =+ ACC/ECG)
demonstrate not only technical robustness but also user
comfort, battery efficiency, and signal stability during
motion, all of which are prerequisites for sustainable
deployment.

Conversely, models relying on EEG or ECG chest
straps face usability barriers due to cumbersome
electrodes and the need for skin contact. Although these
sensors yield rich physiological data, their invasiveness
reduces adherence outside clinical environments. A few
researchers attempt to overcome these barriers through
smart-textile electrodes and dry-sensor patches,
indicating a promising hardware direction for future
work.

2) Real-Time and Edge-Al Integration

Recent advances highlight the feasibility of running
stress-recognition pipelines on resource-constrained
devices. Several publications introduce lightweight
CNN or LSTM architectures optimized for on-device
inference, reporting inference times of less than one
second on mobile processors [22]. This shift toward
edge-Al brings multiple benefits: it enables immediate
feedback for users, lowers network latency, and
minimizes dependency on cloud connectivity factors
crucial for emergency or occupational-safety contexts.
Moreover, edge computing supports energy efficiency
by processing only essential features locally and
transmitting aggregated indicators instead of raw
biosignals.

However, only a small fraction of current literature
reports  quantitative measurements of  power
consumption, model size, or latency, parameters that
determine practical viability. Future publications
should systematically include these metrics alongside
accuracy to support reproducibility and engineering
optimization.

3) Summary of Feasibility Indicators

This gap in feasibility is most critical regarding
privacy and ethics. Physiological signals constitute
highly sensitive personal health information, and their
continuous collection raises significant user concerns
over data misuse and surveillance. This review found
that fewer than 15% of studies explicitly address this,
often only mentioning basic anonymization. This is
insufficient for real-world trust. As requested by
modern data-protection laws (e.g., GDPR), the field
must shift from cloud-centric processing to privacy-by-
design architectures. The solution lies in the resource-
efficiency models identified in this review, which
enable on-device inference (Edge AI). This approach
processes data locally, minimizing data transmission.
For models that require continuous improvement,
Federated Learning frameworks experimented with by
a handful of studies offer a path forward, allowing
models to be trained across distributed devices without
centralizing raw data, thereby mitigating critical
privacy risks.

Furthermore, our analysis highlights that technical
accuracy alone is insufficient; the psychological impact
and application context are paramount. Continuous
stress feedback, if poorly designed, risks amplifying
user anxiety rather than mitigating it. Future research
must therefore bridge the gap between detection and
intervention. This requires integrating psychological
frameworks, such as providing Just-In-Time Adaptive
Interventions (JITAI) or cognitive-behavioral prompts,
transforming passive monitoring into active well-being
support. In practical application contexts, such as
workplace wellness programs or continuous personal
health monitoring, this integration is essential. The goal
is not merely to inform a user "you are stressed," but to
provide an actionable, empathetic, and private pathway
to improved mental resilience.

Beyond privacy and hardware, societal feasibility
also involves user perception and behavioral adoption.
Continuous stress feedback can empower self-
awareness, yet poorly designed feedback loops risk
amplifying anxiety. Few studies examine how users
interpret or act upon stress predictions. Integrating
psychological frameworks, such as just-in-time
adaptive interventions or cognitive-behavioral prompts,
could transform stress detection from passive
monitoring into active well-being support.

To quantify these dimensions, each paper was
scored across three observable indicators (a) use of
wearable or smartphone sensors, (b) existence of a
prototype or real-time system, and (¢) mention of
privacy or edge computing.

Overall, the evidence reveals a field that is
technically sophisticated but socially nascent. To move
from promising algorithms to impactful public-health
tools, future research must integrate design for
usability, transparency, and trust alongside continued
advances in model accuracy. The ultimate benchmark
for stress-detection research will not only be statistical
precision but also its contribution to safer, healthier, and
more empathetic human technology interaction.

This review reveals a clear methodological shift
from traditional machine-learning pipelines toward
deep-learning—based architectures for stress detection.
As summarized in Fig. 4, deep-learning models
consistently achieve higher average performance than
classical approaches under both intra-subject and
subject-independent  evaluation. However, this
advantage is accompanied by increased computational
complexity, highlighting a trade-off between accuracy
and deployability that must be considered in practical
applications.

A key finding of this review is the substantial
influence of validation strategy on reported
performance. As illustrated in Fig. 4, both traditional
ML and deep-learning models exhibit a consistent
reduction in performance under subject-independent
validation compared to intra-subject evaluation. This
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pattern underscores the central role of subject inter-
variability in physiological stress detection and
confirms that validation methodology is a decisive
factor in assessing real-world generalization capability.

Despite the observed performance trends, direct
comparison across studies remains inherently limited.
The reviewed literature exhibits  substantial
heterogeneity in datasets, stress-induction protocols,
class definitions, signal preprocessing, and validation
schemes. Consequently, the synthesized results should
be interpreted as indicative methodological trends
rather than definitive rankings of model superiority.
This limitation reinforces the need for standardized
reporting practices to enable more reliable comparison
in future reviews.

Taken together, the findings suggest that future
stress-detection research should prioritize subject-
independent evaluation, multimodal sensing strategies,
and deployment-aware model design. Emphasis on
LOSO or cross-dataset validation, alongside
transparent reporting of computational and privacy-
related metrics, is essential to bridge the gap between
laboratory performance and real-world applicability.

This SLR also has limitations. Our search was
restricted to articles published between 2021 and 2025
to capture the most recent SOTA, which may exclude
foundational papers in the field. Furthermore, due to
high heterogeneity in datasets, protocols, and metrics,
we performed a descriptive and thematic synthesis. A
formal statistical meta-analysis was not conducted,
which limits the quantitative aggregation of
performance across studies.

V. CONCLUSIONS

This Systematic Literature Review analyzed 19
studies and confirmed a clear technical state-of-the-art
for stress detection: multimodal sensing (PPG, EDA,
ACC) combined with hybrid CNN-LSTM models
consistently yields high accuracy. The review provides
a structured synthesis of current methodological trends,
validation practices, and deployment considerations.
The main conclusions of this study are summarized as
follows.

A. Main Findings

e  Multimodal sensing, particularly
combinations of PPG, EDA, and ACC, is the
dominant and most practical configuration for
wearable-based stress detection.

e Hybrid deep-learning architectures, especially
CNN-LSTM models, consistently achieve
higher reported performance than traditional
machine-learning methods.

e Intra-subject validation (e.g., k-fold cross-
validation) remains the most commonly used
evaluation  protocol, = while  subject-

independent validation methods such as
LOSO are still underutilized.

e Performance obtained under subject-
independent validation is consistently lower
but provides a more realistic estimate of real-
world generalization capability.

B. Scientific Contributions

This review makes
contributions:

the following scientific

e It provides an up-to-date synthesis of
multimodal stress-detection studies published
between 2021 and 2025, capturing recent
advances in deep-learning—based modeling.

e It systematically highlights the impact of
validation protocols on reported performance,
explicitly  quantifying the lab-to-field
generalization gap.

e It extends conventional performance-focused
reviews by integrating deployment-oriented
dimensions, including computational
efficiency and data privacy considerations.

C. Research Implications

The findings of this review have several important
implications for future research and practice:

e Reported accuracy alone is insufficient to
assess model  robustness;  validation
methodology must be considered a primary
evaluation factor.

e Deployment feasibility, including model
efficiency and privacy-preserving design,
should be treated as first-class criteria
alongside predictive performance.

e  Without standardized validation and reporting
practices, cross-study comparison will remain
limited and potentially misleading.

D. Further Research Directions

Based on the identified gaps, future research should
prioritize:

e The adoption of subject-independent
evaluation protocols, such as LOSO or cross-
dataset validation, to ensure reliable
generalization.

e The development of lightweight and energy-
efficient models suitable for on-device
inference and edge-Al deployment.

e The integration of privacy-by-design
principles, including federated learning and
local processing, to address ethical and
regulatory concerns.

The connection between stress detection and
intervention mechanisms, such as just-in-time adaptive
interventions (JITAI), to move from passive monitoring
toward actionable mental well-being support
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