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Abstract— Stress is a major determinant of mental health 

and productivity, motivating growing interest in 

continuous and unobtrusive stress detection using 

wearable sensors and machine-learning (ML) techniques. 

This study presents a Systematic Literature Review 

(SLR) of 19 peer-reviewed articles published between 

2021 and 2025, selected from an initial pool of 36 studies 

using structured inclusion and exclusion criteria. A 

combined quantitative and qualitative synthesis was 

conducted to analyze five key dimensions: sensing 

modalities, ML/DL algorithms, datasets, validation 

protocols, and deployment-related feasibility. The review 

identifies dominant methodological trends rather than 

definitive rankings. Multimodal physiological sensing—

most commonly combining photoplethysmography 

(PPG), electrodermal activity (EDA), and accelerometer 

data—together with hybrid deep-learning architectures 

such as CNN–LSTM, is frequently associated with high 

reported performance on benchmark datasets. However, 

the analysis also reveals a pronounced lab-to-field gap. 

Most studies rely on intra-subject or k-fold cross-

validation, while subject-independent evaluation using 

Leave-One-Subject-Out (LOSO) remains rarely adopted, 

limiting claims of real-world generalizability. In addition, 

fewer than 15% of the reviewed studies explicitly 

consider practical deployment constraints, including 

computational efficiency, power consumption, and data 

privacy. The primary contribution of this review lies in 

systematically quantifying the impact of validation 

practices and deployment considerations on reported 

performance. The findings highlight that, despite 

promising accuracy, current stress-detection models 

remain insufficiently validated for real-world use and 

point toward the need for generalizable, lightweight, and 

privacy-aware wearable stress-detection systems. 

Index Terms— deep learning; machine learning; 

multimodal fusion; physiological sensing; stress detection; 

wearable computing. 

I. INTRODUCTION 

Stress is increasingly recognized as a global health 

issue affecting individual well-being and organizational 

productivity. Conventional detection methods, such as 

clinical interviews, are subjective and episodic; in 

contrast, the advent of wearable sensors and machine 

learning (ML) has enabled more objective and 

continuous stress monitoring [1]. Over the last decade, 

researchers have explored multiple physiological 

modalities such as heart-rate variability from 

ECG/PPG, electrodermal responses (EDA/GSR), brain 

activity (EEG), respiration, and facial or speech cues. 

These signals, when analyzed by ML or deep-learning 

(DL) algorithms, can classify stress with notable 

accuracy. This progress is foundational to the field, 

offering a promising pathway toward objective and 

continuous biomarkers for mental health [2]. 

Despite this progress, a critical divergence exists 

between laboratory results and real-world applicability. 

Recent studies employing Deep Learning (DL) 

architectures, such as CNN-LSTM hybrids, frequently 

report accuracies exceeding 95% on benchmark 

datasets [1]. However, the reliability of these results is 

often constrained by evaluation methodology. Several 

studies rely on intra-subject validation (e.g., k-fold 

cross-validation), which can inflate performance by 

mixing data from the same individuals across training 

and testing sets [3]. Prior work suggests that subject-

independent evaluation protocols, such as Leave-One-

Subject-Out (LOSO) or cross-dataset validation, 

provide a more realistic assessment of generalization to 

unseen users, yet these approaches remain relatively 

uncommon [4]. In addition, practical deployment 

introduces barriers related to societal feasibility: models 

are often too computationally heavy for wearable 

devices, leading to rapid battery drain, while sensor 
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comfort dictates user adherence for continuous 

monitoring [5][6]. 

Beyond these technical hurdles, a critical gap exists 

in the insufficient consideration of privacy and ethics. 

Physiological data is inherently sensitive, and 

continuous collection raises significant user concerns 

regarding data ownership, misuse, and surveillance. 

Integrating these systems into daily life requires 

frameworks that ensure user trust, such as on-device 

inference (Edge AI) or Federated Learning, yet these 

aspects are frequently overlooked in research focused 

purely on accuracy. 

Several prior surveys have reviewed stress detection 

using physiological signals and machine learning, 

primarily focusing on traditional ML approaches and 

studies published before 2020 (e.g., Can et al [7]; 

Panicker & Gayathri [8]). While these works establish 

important foundations, they do not systematically 

address recent developments in deep learning–based 

multimodal models, subject-independent validation 

practices such as LOSO, or deployment-oriented 

constraints such as computational efficiency and data 

privacy. 

In contrast, this study explicitly addresses these 

gaps by systematically reviewing recent (2021–2025) 

multimodal ML/DL studies, quantifying validation 

practices, and synthesizing technical performance with 

deployment-oriented considerations. This positioning 

differentiates the present SLR from prior reviews that 

primarily emphasize algorithmic accuracy without 

assessing real-world readiness. 

This review systematically synthesizes published 

evidence to address these multifaceted gaps. We answer 

four research questions (RQs) designed to map the state 

of the art (SOTA): (RQ1) effective sensing modalities, 

(RQ2) reliable ML/DL algorithms, (RQ3) common 

validation protocols, and (RQ4) specific barriers to 

deployment regarding computational efficiency and 

data privacy. By unifying quantitative and qualitative 

insights, this SLR aims to guide future research toward 

stress-detection systems that are not only accurate but 

also scalable, generalizable, and ethically compliant. 

The remainder of this paper is organized as follows: 

Section II presents theoretical foundations; Section III 

details the SLR methodology; Section IV discusses 

results and trends; and Section V concludes with 

research gaps and future directions. 

II. METHOD 

This section presents the theoretical foundations 

that guided our literature synthesis and the conceptual 

analysis framework used to extract and interpret 

findings from the reviewed studies. 

A. Conceptual analysis framework 

To ensure that the review is theory-driven rather 

than descriptive, we organize the theoretical discussion 

around four interrelated dimensions that form the 

analytical lens of this SLR: (1) sensing modalities, (2) 

modeling and representation learning, (3) validation 

and generalization, and (4) deployment constraints 

(computational efficiency and data privacy). These 

dimensions directly map to our research questions and 

the data extraction fields used in the review. Concretely, 

the review extracts and synthesizes evidence about 

which modalities are used and why (RQ1), which 

algorithmic paradigms prevail and how features are 

represented (RQ2), which validation protocols are 

adopted and how they affect generalization (RQ3), and 

which deployment-oriented considerations (e.g., on-

device inference, federated learning, power/latency 

metrics) are addressed (RQ4). 

B. Stress and Physiological Signals 

Stress triggers the Autonomic Nervous System 

(ANS), disrupting the balance between the sympathetic 

("fight or flight") and parasympathetic ("rest and 

digest") branches. Multimodal sensing is theoretically 

grounded on this systemic response [9]. Though it lacks 

temporal precision for short-term events, electrodermal 

activity (EDA), which directly reflects sympathetic 

arousal via sweat gland activation, is generally regarded 

as the most reliable indication of emotional stress [1]. 

At the same time, the intricate interaction between 

sympathetic and parasympathetic activity is measured 

by Heart Rate Variability (HRV), which is obtained 

from ECG or PPG. PPG provides a wearable-friendly 

substitute for ECG, however it is prone to motion 

artifacts [2]. ECG is still the clinical gold standard. 

Beyond these autonomic markers, cortical responses 

can be captured via EEG, while physical activity that 

often confounds physiological signals is monitored 

using accelerometers (ACC). Theoretically, 

multimodal fusion reduces the uncertainty associated 

with unimodal sensing by capturing independent stress 

signals, such as merging the sympathetic strength of 

EDA with the vagal tone of HRV [10]. 

C. Feature Engineering to Representation Learning 

The transition from classical Machine Learning 

(ML) to Deep Learning (DL) represents a fundamental 

shift in how stress features are modeled. Traditional ML 

approaches relied heavily on Feature Engineering 

where domain experts manually extracted statistical 

features for classifiers like SVM or Random Forest. 

While interpretable, this approach is limited by the 

quality of handcrafted features and struggles with raw, 

noisy sensor data [11]. Conversely, modern 

architectures have shifted toward Deep Representation 

Learning. In particular, hybrid models such as CNN-

LSTM automate feature extraction; Convolutional 

Neural Networks (CNN) learn spatial or spectral 

patterns directly from spectrograms, while Long Short-
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Term Memory (LSTM) networks model the long-term 

temporal dependencies essential for physiological time-

series analysis [1]. 

D. The Generalization Gap: Subject Inter-variability 

Subject inter-variability is a significant theoretical 

difficulty in stress detection. Stress-related 

physiological reactions vary greatly; for example, one 

person's baseline heart rate may be a sign of extreme 

stress for another [4]. Theoretically, this has significant 

ramifications for validation procedures. Conventional 

validation techniques, such k-fold cross-validation, are 

predicated on the idea that the data is identically 

distributed and independent. This assumption is broken, 

though, when training and testing segments from the 

same subject are combined, leading the model to learn 

subject-specific characteristics instead of stress-specific 

patterns. Leave-One-Subject-Out (LOSO) validation is 

necessary for theoretical rigor in order to close the lab-

to-field gap. In contrast to k-fold, LOSO guarantees that 

the model is evaluated on completely unknown users, 

requiring the acquisition of generalized stress features a 

necessary condition for reliable real-world 

implementation [2]. 

E. Constraints Efficiency and Privacy 

Beyond accuracy, real-world deployment is 

theoretically constrained by the trade-off between 

model complexity and resource availability. Deep 

Learning models, while accurate, impose high 

computational costs. Furthermore, the traditional 

Centralized Learning paradigm where raw data is 

transmitted to a cloud server violates modern privacy 

principles. The theoretical alternative is Federated 

Learning (FL), a distributed optimization paradigm 

where models are trained locally on devices and only 

model updates (gradients) are shared [12]. This 

approach theoretically decouples learning from data 

centralization addressing the privacy concerns inherent 

in physiological sensing without compromising the 

model's ability to learn from population-level data. 

III. RESULT AND DISCUSSIONS 

A. Systematic Literature Review 

This study adopts a Systematic Literature Review 

(SLR) approach to synthesize existing evidence on 

stress detection using Machine Learning. To ensure 

methodological rigor, transparency, and 

reproducibility, the review protocol adheres to the 

Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines [13]. This 

standard framework ensures that the selection of studies 

is unbiased and comprehensive, shifting focus from 

general descriptions to quantitative performance 

analysis of recent multimodal systems. 

B. Research Question 

The following table contain the research questions 

that has been carried out on this paper. Table I showed 

four questions that is the main focus of this paper. 

TABLE  I. RESEARCH QUESTION 

ID Research Question Motivation 

RQ1 
Which physiological or 
behavioral modalities are most 

effective for stress detection? 

Identify 

practical and 
accurate 

sensing 

methods 

RQ2 

Which ML/DL models 

demonstrate robust and 

generalizable performance? 

Determine the 

current state of 

the art 

RQ3 
What datasets and validation 

protocols are commonly used? 

Evaluate 

reproducibility 

and 
comparability 

RQ4 

What societal, ethical, or 

deployment aspects are 
considered? 

Assess real-

world readiness 

 

C. Work Procedure 

The work procedure involves conducting a 

literature search, selecting relevant sources, 

documenting findings, analyzing the information, and 

drawing conclusions as visualized in the PRISMA 

flowchart (Fig. 1), following a structured protocol 

adapted from established SLR guidelines [14]. This 

process consists of these main steps, as detailed below. 

First, the authors identified key terms relevant to the 

research topic. The main keywords used in the search 

were “stress detection,” “machine learning,” “deep 

learning,” “wearable sensor,” “physiological signal,” 

and “multimodal fusion.” Boolean combinations were 

applied across several databases such as IEEE Xplore, 

ScienceDirect, SpringerLink, and MDPI to ensure a 

broad coverage of recent studies [14].  

Second, the authors determined the origin and 

source of the literature. Journals were selected from 

reputable international publishers that focus on artificial 

intelligence, biomedical engineering, and affective 

computing [14]. The search was conducted online and 

limited to peer-reviewed articles published between 

2021 and 2025 to capture the most recent advances. 

Third, the collected works were filtered according 

to strict criteria. The initial search yielded 36 papers. 

After removing 5 duplicates, 31 papers underwent title 

and abstract screening. We applied the Inclusion and 

Exclusion Criteria presented in Table II to filter these 

results. We specifically excluded qualitative surveys 

and studies lacking quantitative metrics (e.g., 

Accuracy/F1-Score). This process resulted in a final 

selection of 19 articles deemed relevant for detailed 

review. 

TABLE  II. INCLUSION AND EXCLUSION CRITERIA 
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Criterion Inclusion Exclusion 

Publication 

Type 
Journal Articel 

Conference, Thesis, 

Book Chapters 

Timeline 2021-2025 < 2021 

Content 
Quantitative ML/DL 

Performance 
Qualitative / 

Theoretical only 

Modality Multimodal Unimodal 

 

Fourth, to ensure technical soundness, a Quality 

Assessment was performed on the final 19 articles. We 

defined four binary quality criteria focusing on 

reproducibility. Each paper was evaluated as Yes (1) or 

No (0). Only studies satisfying at least 3 out of 4 criteria 

were included in the final data synthesis. 

TABLE  III. QUALITY ASSESSMENT 

ID Assessment Criteria (QA) Motivation 

QA1 Is the dataset clearly described? 

Ensures data 

reproducibility 

(participants, 
signals, protocols). 

QA2 

Are the feature extraction and 

ML/DL models explicitly 

defined? 

Ensures the 

technical approach 

is replicable 

QA3 
Is the validation methodology 

clearly stated? 

Critical for 

evaluating 

generalizability 
claims. 

QA4 
Are quantitative performance 

metrics reported? 

Essential for 

comparative 
analysis. 

 

Fifth, the extracted data were synthesized using a 

two-stage approach. First, a descriptive quantitative 

synthesis was conducted to address RQ1–RQ3 by 

tabulating key characteristics of the selected studies, 

including sensing modalities, algorithms, datasets, 

validation protocols, and reported performance metrics. 

Descriptive statistics (frequencies and ranges) were 

used to identify prevailing trends and state-of-the-art 

approaches. A formal meta-analysis was not performed 

due to substantial heterogeneity in datasets, 

experimental protocols, and evaluation metrics. A 

qualitative thematic synthesis was applied to address 

RQ4 by analyzing deployment-related considerations 

such as computational efficiency, validation rigor, and 

data privacy. This analysis also involved a critical 

assessment of methodological quality, particularly the 

use of subject-independent validation and dataset 

characteristics, to identify key gaps affecting real-world 

applicability. 

 

 

IV. RESULT AND DISCUSSIONS 

A. Overview of the Studies 

The systematic selection process resulted in 19 

studies published between 2021 and 2025. The analysis 

reveals a diverse landscape of methodologies, with 

dataset sizes ranging from small custom cohorts (n=11) 

to large public benchmarks like WESAD (n=15) and 

SWELL-KW. Before detailing the performance 

metrics, it is crucial to note that direct comparison of 

accuracy across studies requires caution. The 

heterogeneity in stress-induction protocols (e.g., MIST 

vs. Driving Simulators) and label granularity (2-class 

vs. 3-class) means that a higher accuracy score does not 

always imply a superior model, but may reflect a 

simpler classification task or a less rigorous validation 

scheme. 

Most of the reviewed works focus on physiological-

signal-based stress detection, often combining more 

than one sensing modality. The most frequently used 

signals are electrodermal activity (EDA), 

photoplethysmography (PPG), and electrocardiography 

(ECG), followed by studies employing 

electroencephalography (EEG) or accelerometer 

(ACC) data [15]. These modalities are widely available 

in commercial wearables, which explains their 

popularity for daily stress-monitoring research. 

In terms of methodology, traditional machine-

learning classifiers such as Support Vector Machine 

(SVM), Random Forest (RF), and XGBoost remain 

common, particularly for smaller or unimodal 

datasets[15]. However, a clear shift toward deep 

learning architectures, notably Convolutional Neural 

Fig. 1. PRISMA Flowchart of the Literature Selection Process 
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Networks (CNN), Long Short-Term Memory (LSTM) 

networks, and hybrid CNN–LSTM models, can be 

observed in the most recent papers. These models tend 

to achieve the highest accuracy, often above 90 %, 

especially when multiple signals are fused [16][17].  

The validation methods reported vary across 

studies. The majority rely on k-fold cross-validation, 

while a smaller group applies Leave-One-Subject-Out 

(LOSO) or cross-dataset evaluation to test 

generalization [6].  

Table IV provides a concise overview of each study, 

including its dataset, modality, algorithm, validation 

method, and the best reported metric. 

Table IV provides a concise overview of each study, 

including its dataset, modality, algorithm, validation 

method, and the best reported metric. 

 

TABLE IV.  SUMMARY OF SELECTED STUDIES

Reference Dataset Modality Algorithm Validation Method 
Best Performance 

Metric 

[2] 

Custom (40 

participate, Public 

Speaking) 

Multimodal (EEG, 
GSR, PPG) 

SVM (RBF), kNN, 
DT, RF, MLP 

Leave-One-Out 
(LOOCV) 

Accuracy 96.25% (2 
class) 

[1] 
ST Change DB, 
WESAD 

EKG (Changed into 
Spectogram) 

Ensemble CNN-
LSTM 

 
Accuracy 98.3% (2 

class) 

[6] 

Custom (22 

participate, 
Driving 

Simulator) 

Multimodal (Eye 

Data, Vehicle, 

Surrounding) 

Attention-based 
CNN-LSTM 

10-fold cross-
validation 

Accuracy 95.5% (3 
Class) 

[18] 
MuSE, OMG-

Emotion 

Text (transcript) & 

Acoustic (audio) 

MUSER 
(Transformer/BERT + 

MLP) 

Split 
Train/Validation/Test 

(Dataset) 

F1-score 0.864 (2 

class) 

[19] 
Custom (34 

subject, MIST) 

EKG (10 second  

segment) 
CNN + BiLSTM 

5-fold cross-

validation 

Accuracy 86.5% (3 

class) 

[20] 
Custom (20 
subject , MIST) 

Multimodal (EKG, 

Sound, Face 

expression) 

Hybrid DL (ResNet50 
+ I3D w/ TAM) 

10-fold cross-
validation 

Accuracy 85.1% (2  
class ) 

[21] DEAP, SEED 

EEG ( converted into 

Azimuthal Projection 

Image ) 

StressNet (Hybrid 
2D-CNN + LSTM) 

80% Train / 20% Test 
Accuracy 97.8% (2  

class ) 

[5] 
Custom (90 
subject, Office 

Simulation) 

Multimodal ( 
Behavior: Mouse, 

Keyboard + 
Physiological: HRV ) 

LightGBM, SVM, RF 
10-fold cross-

validation (dengan 

SMOTE) 

F1-score 0.625 (3  

class , Stress) 

[4] 
Custom (11 

subject, MBSR) 
EEG 

Shallow/Deep 

ConvNet, 
FBCSP+SVM 

LOOCV, Mix-subject, 

Intra-subject 

Accuracy 99.65% 

(Task: Meditation vs. 
Rest) 

[22] UBFC-Phys rPPG (face video) 
1D-CNN, LSTM, 

GRU 

80% Train / 10% 

Validation / 10% Test 

Accuracy 95.83% (2  

class ) 

[23] 
MultiAffectStress 

(MAS) 

Audio-Visual (Face, 
Vocal, Sentiment, 

Fidgeting) 

Learning-Based Late 

Fusion (RF) 

60% Train / 20% 

Validation / 20% Test 

F1-score 0.85 (2  class 

) 

[3] 
Custom (26 
Subject, Cortisol 

label) 

Multimodal (EKG, 
RESP,  

Electrogastrogram) 

Shuffled ECA-Net 
(1D-CNN + 

Attention) 

5-fold cross-
validation (Intra-

subject) 

Accuracy 91.6% (2  

class ) 

[11] SWELL-KW HRV 
k-NN, Decision Tree, 

Logistic Regression 

5-fold cross-

validation 

Accuracy 99.3% (3  

class ) 

[16] 
WESAD, SWELL 
KW, RAVDESS, 

EMO-DB 

Physiological (EKG, 

EDA) & Audio 

GSOA-SHBRNN 
(VGG-16 + PCA + 

Bi-RNN) 

2/3 Train, 1/3 Test 
Accuracy 99.52% 

(WESAD, 2  class ) 

[9] 
Nursery Dataset 
(from Hosseini et 

al., 2022) 

Multimodal (ACC, 

EDA, HR, TEMP) 

MMFD-SD (Parallel 
CNNs 

Time+Frequency) 

80% Train / 20% Test 

(Stratified Split) 

Accuracy 91.00% (3  

class ) 

[24] WESAD 

Multimodal (BVP, 
EDA, TEMP, ACC, 

RESP)  converted to 

2D RGB Image 

CNN (Custom 

Architecture) 
 

F1-score 91.67% (3  

class ) 
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B. Modalities and Sensor Trends 

Among the various physiological signals, EDA and 

PPG emerge as the most practical and consistent 

modalities for real-time, wearable-based detection. 

Their combination captures both sympathetic nervous 

system response (EDA) and cardiovascular activity 

(PPG), providing a comprehensive picture of 

physiological arousal. This multimodal fusion is shown 

to be highly effective, achieved 96.25% accuracy by 

fusing GSR (EDA) and PPG with EEG. This 

quantitative result supports the qualitative trend that 

studies integrating multiple modalities, particularly 

those readily available in wearables, typically 

outperform those relying on a single signal. [2] 

ECG continues to be the reference modality in 

controlled laboratory environments because of its high 

sensitivity to subtle changes in heart-rate variability. 

However, it is less convenient for long-term use due to 

sensor placement and comfort issues[3]. EEG-based 

approaches, while powerful for cognitive-stress  

analysis, face similar challenges related to setup 

complexity[4]. 

Overall, the literature points toward wearable-

friendly, multimodal sensing, often combining EDA, 

PPG, and ACC. This configuration balances accuracy, 

comfort, and cost, making it well suited for practical 

applications[15]. Figure 2 highlights a clear preference 

toward EDA and PPG as the dominant physiological 

modalities in recent stress-detection studies. 

Researchers have chosen wearable-friendly sensors 

over clinically accurate but invasive alternatives like 

ECG or EEG, which is a realistic trade-off. Analytically 

speaking, this distribution implies that real-world 

deployability concerns implicitly limit state-of-the-art 

research, highlighting the significance of multimodal 

setups that strike a balance between accuracy, comfort, 

and scalability. 

 

Fig. 2. Frequency of physiological modalities used 

C. Validation Strategies and Datasets 

A consistent observation is the dominance of k-fold 

cross-validation for evaluating model accuracy. While 

suitable for preliminary comparison, this approach 

often inflates results because training and testing data 

originate from the same participants [3]. A smaller 

number of studies adopt LOSO or subject-independent 

validation, which provides a more realistic assessment 

of model robustness in unseen subjects[2] [4] 

Public datasets such as WESAD and DEAP appear 

most frequently. WESAD, in particular, serves as the 

primary benchmark for multimodal wearable stress 

detection, combining EDA, PPG, and ACC signals. 

Nevertheless, differences in dataset structure, 

participant demographics, and labeling criteria make 

direct comparison between studies difficult [1]. Figure 

3 illustrates the distribution of validation strategies, 

emphasizing the need for broader adoption of cross-

subject testing in future research. 

[25] 
LifeSnaps, 

PMData 

Multimodal (Time 

Series: HR, Steps +  
Tabular: 

Demographics, 

Context) 

Contrastive 

Pretraining (CLIP-
style) 

5-fold cross-

validation 

AUC 81.14% 

(PMData, 2  class ) 

[26] 

Yonsei Stress 

Image & Speech 

Database (custom 
multimodal stress 

dataset) 

Multimodal Facial 

images (RGB video 
frames + facial 

landmarks) and 

Speech (log mel-
spectrogram) 

ResNet-18 backbones, 
attention mechanisms 

+  Multimodal 

Neglecting Mask 
Module (MNMM) for 

intermediate feature 

fusion 

5-fold cross-
validation 3/5 Train, 

1/5 Validation 1/5 

Test 

Specificity: 88.99% 

[27] WESAD 

Multimodal (ECG, 
EDA, EMG, 

Respiration, 

Temperature) 
 

CNN + LSTM + 
Attention mechanism 

Train–test split with 

90% training and 10% 

testing 

Accuracy: 92.70% 
(multimodal setting)   
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Fig. 3. Validation strategies across studies. 

As illustrated in Figure 3, the dominance of k-fold 

cross-validation indicates that most studies prioritize 

performance optimization under controlled conditions 

rather than generalization to unseen users. Our 

synthesis reveals that the limited adoption of LOSO 

validation is not merely a methodological choice, but a 

key contributor to the observed lab-to-field gap. This 

imbalance underscores the need to reinterpret high 

reported accuracies with caution, particularly when 

claims of real-world applicability are made. 

D. Reported Performance 

The reported performance across all studies 

generally falls within the 85 %–96 % range, depending 

on the modality and evaluation protocol used, models 

cluster around 90 % accuracy or equivalent F1-scores, 

which is strong for physiological classification tasks 

[3], [6], [9], [23].  

However, results obtained from LOSO  or cross-

dataset validation are typically 5–10 % lower, 

underscoring the challenge of generalizing across 

individuals [4]. The lower performance observed under 

LOSO or cross-dataset validation does not indicate 

inferior modeling, but rather reflects a more stringent 

and realistic learning objective. In intra-subject 

evaluation, models are exposed to physiological 

patterns from the same individuals during training and 

testing, enabling them to implicitly learn subject-

specific baselines and signal idiosyncrasies. This can 

lead to inflated performance that reflects pattern 

recognition of individuals rather than genuine stress-

related physiological responses. In contrast, LOSO 

validation enforces complete subject separation, 

requiring models to infer stress from physiological 

changes that generalize across individuals with  

inherently different baselines and response 

dynamics. Since stress manifests as relative deviations 

rather than absolute signal values, LOSO-trained 

models are compelled to capture invariant stress-related 

features instead of memorizing personal signal patterns. 

Consequently, although LOSO evaluation yields lower 

numerical scores, it provides a more meaningful 

assessment of a model’s ability to detect stress rather 

than merely recognizing individual-specific patterns.  

 

Fig. 4. Impact of validation protocol on reported stress-detection 

performance. 

 The figure summarizes average performance trends 

of traditional machine-learning and deep-learning 

models under intra-subject (k-fold) and subject-

independent (LOSO) evaluation across the reviewed 

studies. Deep-learning approaches consistently achieve 

higher scores than traditional ML when trained on 

multimodal inputs. The combination of CNN for 

feature extraction and LSTM for temporal modeling 

remains the most successful design pattern, especially 

when applied to PPG and EDA data. 

However, a direct comparison of these performance 

metrics is complicated by the significant heterogeneity 

across study protocols. Our analysis reveals that several 

factors strongly influence reported outcomes. These 

include the data labeling methodology (e.g., self-report 

vs. induced stress protocols like MIST [19], [20] 

ordriving simulators [6]), the signal processing details 

such as the length of the time segments used for analysis 

(e.g., 10-second segments in [19]), and the dataset 

characteristics, including sample size and participant 

diversity. For example, models validated on large, 

public benchmark datasets like WESAD [1][, [16], [24] 

may offer more generalizable insights than those 

trained on smaller, custom datasets [6]. These 

variations underscore the difficulty in establishing a 

single best model and highlight the critical need for 

standardized reporting protocols in future research.  

E. Machine-Learning and Deep-Learning 

Approaches 

 The reviewed papers demonstrate two major 

methodological generations. Early studies typically 

extracted handcrafted statistical and frequency-

domain features, which were then classified using 

SVM, RF, or logistic regression. These techniques 

achieved accuracies in the range of 80–90 %, proving 

that stress can be inferred reliably from physiological 

data even with simple models [11]. Moreover, 

classical ML methods remain attractive in scenarios 

involving limited data, lower computational budgets, 

and a need for model interpretability, which is 
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particularly relevant for clinical or explainable-AI 

contexts. 

 Hybrid CNN–LSTM architectures have emerged 

as the dominant design paradigm in recent studies. 

From a modeling perspective, this hybridization is 

well aligned with the nature of physiological stress 

signals: CNN components act as automated feature 

extractors that reduce noise and encode local patterns, 

while LSTM layers model the sequential evolution of 

these features over time. When applied to multimodal 

inputs such as PPG, EDA, and ACC, this architecture 

enables both intra-modal representation learning and 

temporal fusion, which explains the consistently high 

reported accuracies between 93 % and 96 % across 

multiple datasets. Extensions incorporating attention 

mechanisms further refine this process by dynamically 

weighting informative signal segments or modalities, 

while contrastive pre-training and teacher–student 

knowledge distillation aim to improve robustness and 

data efficiency [6].  

 Taken together, the reviewed literature suggests 

that the choice between classical machine-learning 

and deep-learning approaches should not be guided by 

accuracy alone. Instead, it should reflect the intended 

application context, available data, and deployment 

constraints. Classical ML models remain suitable as 

strong baselines or interpretable solutions in low-

resource settings, whereas deep-learning architectures 

represent the current state of the art for high-

performance, multimodal stress detection when 

sufficient data and computational capacity are 

available. 

 Table V summarizes the average performance by 

model type. In general, deep sequential or hybrid 

models outperform classical methods, though they 

require more computational resources.  

 

TABLE V  PERFORMANCE COMPARISON BASED ON MODEL TYPE 

F. Societal Feasibility and Ethical Considerations 

While high numerical accuracy remains an essential 

benchmark, the true success of a stress-detection model 

lies in its translation into everyday use. Machine-

learning research is beginning to move from laboratory 

settings toward field deployment, yet the gap between 

experimental performance and societal applicability 

remains substantial. Several studies acknowledge that 

stress recognition is meaningful only when it can 

operate continuously, comfortably, and ethically within 

people’s daily routines. 

 

1) Feasibility of Deployment 

 Approximately one-third of the reviewed papers 

describe some form of prototype or pilot deployment, 

ranging from wrist-worn sensors to smartphone-based 

data collection. Wearable-centric designs particularly 

those relying on PPG and EDA sensors integrated in 

smartwatches or fitness bands emerge as the most 

realistic pathway for long-term stress monitoring[15].  

 These devices already enjoy high consumer 

adoption and can collect data passively without 

interrupting normal activity. Studies employing 

Model Reference Dataset 
Performance Range 

(Reported) 
Key Notes 

ML Classic 
(SVM, RF, k-

NN, GBM) 

 

[2] 
Custom (40 participate, 

Public Speaking) 

Accuracy: 96.25% (2 

class) 

SVM (RBF) outperformed kNN, DT, RF, 

and MLP in feature fusion. 

[5] 
Custom (90 subject, 

Office Simulation) 

F1-score: 0.625 (3   

class ) 

LightGBM outperformed SVM/RF. 
Behavioral data fusion (mouse/keyboard) 

was better than HRV. 

Deep Learning 

(Hybrid CNN-
LSTM / 

BiLSTM) 

 

[1] ST Change DB, WESAD 
Accuracy 98.3% (2  

class ) 

Time and frequency domain (spectrogram) 
fusion of ECG data achieves high 

accuracy. 

[19] 
Custom (34 subject, 

MIST) 

Accuracy 86.5% (3  

class ) 

Effective for real-time detection (10-

second segments). 

[6] 
Custom (22 participate, 

Driving Simulator) 

Accuracy 95.5% (3 

class) 

Non-physiological multimodal fusion 
using attention has proven to be highly 

effective. 

Deep Learning 

(CNN 

Multimodal 

Fusion)  

[9] Nursery Dataset 
Accuracy 91.00% (3  

class ) 

The Parallel CNN architecture separates 
Time and Frequency domain features 

before fusion. 

[3] 
Custom (26 Subject, 

Cortisol label) 

Accuracy 91.6% (2  

class ) 

Using "Shuffled ECA-Net" (Attention) for 

feature fusion. The stress label is validated 

by Cortisol. 

Deep Learning 
(Transformer / 

Multi-Task) 

 

[18] MuSE, OMG-Emotion 
F1-score: 0.864 (2  class 

)  

Using Multi-Task Learning (MTL) where 
emotion recognition becomes an auxiliary 

task for stress detection. 

[23] MultiAffectStress (MAS) F1-score: 0.85 (2 class) 

Using Late Fusion (Random Forest) to 

combine the outputs of several unimodal 
models (including Wav2Vec 2.0 and 

DistilBERT). 
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multimodal fusion (EDA + PPG ± ACC/ECG) 

demonstrate not only technical robustness but also user 

comfort, battery efficiency, and signal stability during 

motion, all of which are prerequisites for sustainable 

deployment. 

 Conversely, models relying on EEG or ECG chest 

straps face usability barriers due to cumbersome 

electrodes and the need for skin contact. Although these 

sensors yield rich physiological data, their invasiveness 

reduces adherence outside clinical environments. A few 

researchers attempt to overcome these barriers through 

smart-textile electrodes and dry-sensor patches, 

indicating a promising hardware direction for future 

work. 

2) Real-Time and Edge-AI Integration 

 Recent advances highlight the feasibility of running 

stress-recognition pipelines on resource-constrained 

devices. Several publications introduce lightweight 

CNN or LSTM architectures optimized for on-device 

inference, reporting inference times of less than one 

second on mobile processors [22]. This shift toward 

edge-AI brings multiple benefits: it enables immediate 

feedback for users, lowers network latency, and 

minimizes dependency on cloud connectivity factors 

crucial for emergency or occupational-safety contexts. 

Moreover, edge computing supports energy efficiency 

by processing only essential features locally and 

transmitting aggregated indicators instead of raw 

biosignals. 

 However, only a small fraction of current literature 

reports quantitative measurements of power 

consumption, model size, or latency, parameters that 

determine practical viability. Future publications 

should systematically include these metrics alongside 

accuracy to support reproducibility and engineering 

optimization. 

3) Summary of Feasibility Indicators 

 This gap in feasibility is most critical regarding 

privacy and ethics. Physiological signals constitute 

highly sensitive personal health information, and their 

continuous collection raises significant user concerns 

over data misuse and surveillance. This review found 

that fewer than 15% of studies explicitly address this, 

often only mentioning basic anonymization. This is 

insufficient for real-world trust. As requested by 

modern data-protection laws (e.g., GDPR), the field 

must shift from cloud-centric processing to privacy-by-

design architectures. The solution lies in the resource-

efficiency models identified in this review, which 

enable on-device inference (Edge AI). This approach 

processes data locally, minimizing data transmission. 

For models that require continuous improvement, 

Federated Learning frameworks experimented with by 

a handful of studies offer a path forward, allowing 

models to be trained across distributed devices without 

centralizing raw data, thereby mitigating critical 

privacy risks. 

 Furthermore, our analysis highlights that technical 

accuracy alone is insufficient; the psychological impact 

and application context are paramount. Continuous 

stress feedback, if poorly designed, risks amplifying 

user anxiety rather than mitigating it. Future research 

must therefore bridge the gap between detection and 

intervention. This requires integrating psychological 

frameworks, such as providing Just-In-Time Adaptive 

Interventions (JITAI) or cognitive-behavioral prompts, 

transforming passive monitoring into active well-being 

support. In practical application contexts, such as 

workplace wellness programs or continuous personal 

health monitoring, this integration is essential. The goal 

is not merely to inform a user "you are stressed," but to 

provide an actionable, empathetic, and private pathway 

to improved mental resilience. 

 Beyond privacy and hardware, societal feasibility 

also involves user perception and behavioral adoption. 

Continuous stress feedback can empower self-

awareness, yet poorly designed feedback loops risk 

amplifying anxiety. Few studies examine how users 

interpret or act upon stress predictions. Integrating 

psychological frameworks, such as just-in-time 

adaptive interventions or cognitive-behavioral prompts, 

could transform stress detection from passive 

monitoring into active well-being support. 

 To quantify these dimensions, each paper was 

scored across three observable indicators (a) use of 

wearable or smartphone sensors, (b) existence of a 

prototype or real-time system, and (c) mention of 

privacy or edge computing.  

 Overall, the evidence reveals a field that is 

technically sophisticated but socially nascent. To move 

from promising algorithms to impactful public-health 

tools, future research must integrate design for 

usability, transparency, and trust alongside continued 

advances in model accuracy. The ultimate benchmark 

for stress-detection research will not only be statistical 

precision but also its contribution to safer, healthier, and 

more empathetic human technology interaction. 

This review reveals a clear methodological shift 

from traditional machine-learning pipelines toward 

deep-learning–based architectures for stress detection. 

As summarized in Fig. 4, deep-learning models 

consistently achieve higher average performance than 

classical approaches under both intra-subject and 

subject-independent evaluation. However, this 

advantage is accompanied by increased computational 

complexity, highlighting a trade-off between accuracy 

and deployability that must be considered in practical 

applications. 

A key finding of this review is the substantial 

influence of validation strategy on reported 

performance. As illustrated in Fig. 4, both traditional 

ML and deep-learning models exhibit a consistent 

reduction in performance under subject-independent 

validation compared to intra-subject evaluation. This 
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pattern underscores the central role of subject inter-

variability in physiological stress detection and 

confirms that validation methodology is a decisive 

factor in assessing real-world generalization capability. 

Despite the observed performance trends, direct 

comparison across studies remains inherently limited. 

The reviewed literature exhibits substantial 

heterogeneity in datasets, stress-induction protocols, 

class definitions, signal preprocessing, and validation 

schemes. Consequently, the synthesized results should 

be interpreted as indicative methodological trends 

rather than definitive rankings of model superiority. 

This limitation reinforces the need for standardized 

reporting practices to enable more reliable comparison 

in future reviews. 

Taken together, the findings suggest that future 

stress-detection research should prioritize subject-

independent evaluation, multimodal sensing strategies, 

and deployment-aware model design. Emphasis on 

LOSO or cross-dataset validation, alongside 

transparent reporting of computational and privacy-

related metrics, is essential to bridge the gap between 

laboratory performance and real-world applicability. 

This SLR also has limitations. Our search was 

restricted to articles published between 2021 and 2025 

to capture the most recent SOTA, which may exclude 

foundational papers in the field. Furthermore, due to 

high heterogeneity in datasets, protocols, and metrics, 

we performed a descriptive and thematic synthesis. A 

formal statistical meta-analysis was not conducted, 

which limits the quantitative aggregation of 

performance across studies. 

V. CONCLUSIONS 

This Systematic Literature Review analyzed 19 

studies and confirmed a clear technical state-of-the-art 

for stress detection: multimodal sensing (PPG, EDA, 

ACC) combined with hybrid CNN-LSTM models 

consistently yields high accuracy. The review provides 

a structured synthesis of current methodological trends, 

validation practices, and deployment considerations. 

The main conclusions of this study are summarized as 

follows. 

A. Main Findings 

• Multimodal sensing, particularly 

combinations of PPG, EDA, and ACC, is the 

dominant and most practical configuration for 

wearable-based stress detection. 

• Hybrid deep-learning architectures, especially 

CNN–LSTM models, consistently achieve 

higher reported performance than traditional 

machine-learning methods. 

• Intra-subject validation (e.g., k-fold cross-

validation) remains the most commonly used 

evaluation protocol, while subject-

independent validation methods such as 

LOSO are still underutilized. 

• Performance obtained under subject-

independent validation is consistently lower 

but provides a more realistic estimate of real-

world generalization capability. 

 

B. Scientific Contributions 

This review makes the following scientific 

contributions: 

• It provides an up-to-date synthesis of 

multimodal stress-detection studies published 

between 2021 and 2025, capturing recent 

advances in deep-learning–based modeling. 

• It systematically highlights the impact of 

validation protocols on reported performance, 

explicitly quantifying the lab-to-field 

generalization gap. 

• It extends conventional performance-focused 

reviews by integrating deployment-oriented 

dimensions, including computational 

efficiency and data privacy considerations. 

C. Research Implications 

The findings of this review have several important 

implications for future research and practice: 

• Reported accuracy alone is insufficient to 

assess model robustness; validation 

methodology must be considered a primary 

evaluation factor. 

• Deployment feasibility, including model 

efficiency and privacy-preserving design, 

should be treated as first-class criteria 

alongside predictive performance. 

• Without standardized validation and reporting 

practices, cross-study comparison will remain 

limited and potentially misleading. 

D. Further Research Directions 

Based on the identified gaps, future research should 

prioritize: 

• The adoption of subject-independent 

evaluation protocols, such as LOSO or cross-

dataset validation, to ensure reliable 

generalization. 

• The development of lightweight and energy-

efficient models suitable for on-device 

inference and edge-AI deployment. 

• The integration of privacy-by-design 

principles, including federated learning and 

local processing, to address ethical and 

regulatory concerns. 

The connection between stress detection and 

intervention mechanisms, such as just-in-time adaptive 

interventions (JITAI), to move from passive monitoring 

toward actionable mental well-being support 
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