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Abstract— Silver price volatility has increased markedly 

in recent years, particularly since 2023, driven by 

growing demand from the renewable energy sector. This 

study compared two conceptually distinct forecasting 

approaches: Naïve Bayes (NB), which relies on 

conditional independence assumptions, and Long Short-

Term Memory (LSTM), which models temporal 

dependencies in time-series data. Daily silver price data 

(USD/troy ounce) from January 1989 to October 2025 

were analyzed. NB was implemented using a single lagged 

price feature (t−1), while LSTM employed a two-layer 

architecture with 50 units, 0.2 dropout, and a 60-day 

sequential window. Empirical results showed that NB 

achieved R² of 0.9818, reproducing dominant price 

dynamics but exhibiting slight lagging during sharp price 

movements. In contrast, LSTM achieved lower RMSE 

and MAE, with an R² of 0.9939, effectively capturing 

nonlinear dependencies and volatility patterns. When 

extended with Monte Carlo simulation, LSTM enabled 

uncertainty-aware short-term forecasting, providing 

median price trajectories and prediction intervals, 

making it a more robust framework for silver price 

prediction under extreme volatility. 

Index Terms— silver price; Naïve Bayes; LSTM;  

Monte Carlo. 

I. INTRODUCTION 

Silver is one of the key precious metal commodities 

in the global economic system, functioning both as an 

investment asset and an industrial raw material. Its price 

dynamics often move in tandem with gold and serve as 

an alternative investment during periods of economic 

uncertainty [1]. However, silver prices are well known 

for their sharp fluctuations, driven by macroeconomic 

factors such as inflation, interest rates, exchange rates, 

and rapidly changing industrial demand [2]. These 

characteristics make accurate silver price forecasting 

particularly important for investors, financial 

institutions, and policymakers in formulating 

investment strategies and managing economic risk [3]. 

In line with the increasing volatility of commodity 

markets, various analytical approaches have been 

developed to understand and forecast silver prices. 

Conventional statistical methods such as ARIMA and 

Exponential Smoothing have been widely applied, but 

their reliance on linearity and stationarity assumptions 

often limits their effectiveness when applied to highly 

volatile and nonlinear commodity price data [4]. As a 

result, machine learning-based approaches have gained 

attention due to their ability to capture complex patterns 

and nonlinear relationships without requiring strict 

parametric assumptions [5]. 

Among machine learning methods, Naïve Bayes 

and Long Short-Term Memory (LSTM) represent two 

fundamentally different modeling philosophies. Naïve 

Bayes is a probabilistic classifier grounded in Bayes’ 

Theorem and is valued for its simplicity and 

computational efficiency [6]. LSTM is a development 

of Recurrent Neural Network (RNN) designed to 

recognize patterns and long-term dependencies in 

sequential data, thus making it highly effective for 

analyzing time series data such as silver prices [7]. 

Despite these differences, both methods continue to be 

used in empirical studies, often motivated by trade-offs 

between model complexity, interpretability, and 

computational cost. 

The Long Short-Term Memory (LSTM) method 

has been widely applied across various domains, 

including stock market analysis and prediction, 

cryptocurrency price forecasting such as Dogecoin, 

indoor air quality modeling, and railway transportation 

operations environments [8, 9, 10, 11]. Meanwhile, 

Naïve Bayes has also been applied in weather 

forecasting studies, where temperature, humidity, and 

wind speed are commonly used as predictor features, 

demonstrating its practicality as a probabilistic baseline 

despite the strong independence assumptions [12]. 

These studies illustrated the broader applicability and 

contrasting strengths of probabilistic and machine 

learning-based models, particularly in terms of 

accuracy, robustness, and computational efficiency. 
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Many studies emphasize performance improvement 

without explicitly examining whether complex deep 

learning models provide meaningful advantages over 

simpler probabilistic baselines when applied to long-

horizon commodity data, while comparative analyses 

rarely consider extended historical periods 

encompassing multiple volatility regimes, including 

recent episodes of extreme price fluctuations. In 

addition, limited attention has been given to the 

practical implications of model behavior during trend 

reversals and high-volatility phases, which are critical 

for real-world decision-making. Addressing these gaps, 

this study goes beyond a simple comparison of 

predictive accuracy by evaluating how Naïve Bayes and 

LSTM differ in capturing temporal dynamics, 

responsiveness to trend changes, and predictive 

stability when applied to long-horizon silver price data. 

Using daily world silver prices over an extended period, 

this research assesses the practical suitability of 

probabilistic versus deep learning approaches for 

forecasting silver prices under nonlinear and volatile 

market conditions, thereby contributing to a more 

nuanced understanding of model selection in 

commodity price forecasting. 

II. METHOD 

To address the research question regarding the 

comparative performance of Naïve Bayes and LSTM in 

predicting silver prices, this study adopts a comparative 

experimental design, where both models are trained and 

evaluated in parallel on an identical dataset, ensuring a 

controlled and fair comparison. The workflow includes: 

collection and validation of historical data, temporal 

preprocessing, construction of two distinct model 

architectures, training, objective evaluation using 

regression metrics, and interpretation of performance in 

the context of the temporal characteristics of silver price 

series. An overview of the research workflow is 

presented in Fig. 1. 

 

Fig. 1. Research Design 

A. Data Collection 

Historical silver price data (USD per troy ounce) 

were obtained from Investing.com, covering daily 

observations from January 3, 1989 to October 30, 2025, 

resulting in 9,384 observations. This data source was 

selected because market holidays are handled 

consistently through forward-filling, ensuring a 

continuous time series and preventing temporal bias 

[1]. The dataset contains two main columns: Date and 

Price, exported to CSV format and loaded into the 

Python environment using pandas with parameters 

parse_dates=['Date'] and index_col='Date' to ensure 

chronological ordering and compatibility with time 

series analysis tools (e.g., statsmodels and scikit-learn).  

B. Data Preprocessing 

Data preprocessing was conducted to transform the 
raw silver price series into a suitable representation for 
machine learning–based regression models. Since 
Investing.com applies forward-filling to account for 
non-trading days, no missing values were expected; 
nevertheless, explicit checks were performed using 
df.isnull().sum() to confirm data completeness, along 
with data type inspection (df.dtypes) to ensure 
numerical consistency. The dataset was chronologically 
ordered to preserve the temporal structure required for 
time-series modeling. 

Prior to feature construction, an autocorrelation 
function (ACF) and partial autocorrelation function 
(PACF) analysis was conducted exclusively on the 
training dataset to avoid information leakage. The ACF 
results indicate statistically significant short-term 
autocorrelation, while the PACF exhibits a clear cutoff 
after the first lag, suggesting that short-term temporal 
dependence dominates the silver price dynamics. Based 
on this empirical evidence, a lagged price feature 
(Priceₜ₋₁) was constructed to represent short-term 
memory in the Naïve Bayes model. Rows containing 
missing values introduced by the shift operation were 
removed, yielding a clean and temporally aligned 
dataset suitable for supervised learning. 

The dataset was divided using an 80:20 temporal 

split without shuffling to prevent look-ahead bias. The 

training set consists of 7,505 observations spanning 

January 3, 1989 to December 31, 2023, while the testing 

set contains 1,877 observations from January 2, 2024 to 

October 30, 2025, a period characterized by heightened 

price volatility. In contrast to the Naïve Bayes model, 

the LSTM model does not rely on explicitly defined lag 

variables. Instead, temporal dependence is captured 

implicitly through fixed-length input sequences. In this 

study, the data were reshaped into 60-day sequences 

(n_steps = 60) using a sliding-window approach, where 

each input sequence consists of silver prices from the 

previous 60 trading days to predict the subsequent day’s 

price. This sequence-based representation enables the 

LSTM to learn nonlinear temporal patterns and 

medium-term dependencies directly from historical 
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price trajectories without requiring manual lag 

selection. 

C. Naïve Bayes Model 

Naïve Bayes was employed in this study as a 

computationally efficient probabilistic baseline for 

modeling silver price dynamics. Although Naïve Bayes 

is conventionally designed for classification tasks, it has 

been previously adapted for regression-oriented 

problems through discretization or probabilistic 

approximation, particularly in exploratory or 

comparative modeling contexts [13]. The silver price 

distribution exhibits moderate positive skewness 

(skewness = 0.8549), indicating asymmetry and 

deviations from strict normality. While this level of 

skewness does not represent an extreme heavy-tailed 

distribution, it suggests that Gaussian assumptions may 

not be fully satisfied across the entire price range, 

thereby motivating the exploration of a probabilistic 

modeling framework that is less sensitive to 

distributional symmetry. 

To accommodate the continuous nature of silver 

prices, the target variable was discretized into a finite 

number of intervals prior to model training. 

Discretization enables the Naïve Bayes classifier to 

approximate regression behavior by estimating the 

posterior probability of future price intervals 

conditional on historical observations [14]. In this 

study, historical price information from the preceding 

three trading days was used as input features, and 

conditional independence among lagged variables was 

assumed. While this assumption is strong and may not 

fully hold in financial time series, it allows the model to 

remain analytically tractable and computationally 

efficient, serving its intended role as a baseline 

comparator rather than a primary predictive model.  

The Naïve Bayes model estimates the posterior 
probability of a price interval 𝐶 given observed 
historical prices 𝑋 as Equation (1). 

𝑃(𝐶 ∣ 𝑋) =
𝑃(𝑋 ∣ 𝐶) ⋅ 𝑃(𝐶)

𝑃(𝑋)
 (1) 

with: 

𝑃(𝐶 ∣ 𝑋)  : posterior probability of class C given 

evidence X 

𝑃(𝑋 ∣ 𝐶)  : probability that evidence X is assigned 

class C 

𝑃(𝐶)  :  prior probability of class C 

𝑃(𝑋)  : probability of evidence X 

For numerical data, likelihood calculations can use the 

Gaussian distribution [15]. 

D. LSTM Model 

The Long Short-Term Memory (LSTM) network is 

an advanced recurrent neural network architecture 

introduced by Hochreiter and Schmidhuber to address 

the vanishing gradient problem commonly encountered 

in standard Recurrent Neural Networks (RNNs) when 

modeling long sequential data [16]. Conventional 

RNNs process time-ordered data recursively but often 

fail to retain long-term dependencies due to 

exponentially diminishing gradients during 

backpropagation [17]. LSTM mitigates this limitation 

by incorporating a memory cell regulated by three 

gating mechanisms such as input, forget, and output 

gates, which collectively control the storage, update, 

and release of information over time, enabling more 

stable learning of temporal dependencies in volatile 

financial time series such as silver prices [18].  

The internal operations of the LSTM unit are 

governed by gating equations that regulate information 

flow within the memory cell. These mechanisms are 

mathematically expressed through the input gate, forget 

gate, cell state update, and output gate formulations, 

which are summarized in Equations (2)–(7). Through 

these equations, the LSTM learns to selectively 

preserve relevant historical information while 

discarding noise, enabling robust modeling of nonlinear 

temporal dependencies in long-horizon silver price 

forecasting. 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (2) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (3) 

𝐶𝑡̅ = tanh⁡(𝑊𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (4) 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶𝑡̅ (5) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (6) 

ℎ𝑡 = 𝑜𝑡 × tanh⁡(𝐶𝑡) (7) 

with: 

𝑖𝑡  : input gate, 

𝑓𝑡  : forget gate, 

𝑜𝑡  : output gate, 

𝐶𝑡  : cell state, 

ℎ𝑡  : hidden state, 

𝑥𝑡  : input at time-t, 

𝑊  : network weight, and  

b  : bias 

 

 In this study, the LSTM was implemented using a 

sequence-based forecasting framework, with the silver 

price series reshaped into fixed-length input sequences 

of 60 trading days (n_steps = 60), where each sequence 

predicted the subsequent day’s price. The model 

architecture consisted of two stacked LSTM layers 

with a tunable number of hidden units (50 or 100) and 

dropout layers (rate = 0.2) to reduce overfitting, 

followed by a fully connected layer to transform the 

LSTM features into predicted prices. A grid search was 

performed over the number of units per layer, learning 

rate (0.001, 0.0005), batch size (64), and epochs (200, 

with early stopping), and the optimal model was 

selected based on the lowest root mean squared error 

(RMSE) on the validation set. Training employed the 

Adam optimizer with the selected learning rate, mean 

squared error (MSE) as the loss function, and mean 

absolute error (MAE) as an auxiliary metric, while 

early stopping ensured generalization and prevented 
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overfitting. The resulting model was then used for both 

test set prediction and short-term Monte Carlo 

forecasting. 

E. Model Evaluation 

To assess the predictive performance of Naïve 

Bayes and LSTM, given the silver price series 

characteristics such as volatility clustering, regime-

switching, and heavy-tailed distribution evaluation was 

conducted using three complementary regression 

metrics: MAE, RMSE, and R² [19]. These metrics 

jointly capture different aspects of prediction error: 

absolute accuracy (MAE), sensitivity to large 

deviations (RMSE), and the proportion of variance 

explained by the model (R²). 

1. MAE (Mean Absolute Error)  

MAE computes the average absolute deviation 

between predictions and observed values, treating 

small and large errors equally [20]. Unlike RMSE, 

which squares errors and thus penalizes large 

deviations more heavily, MAE is more robust in the 

presence of outliers such as silver price spikes due 

to geopolitical turmoil or supply shocks [21]. In 

practice, models with lower MAE generally yield 

more consistently accurate predictions on average, 

though they may not excel at capturing extremes. 

The MAE formula using Equation (8). 

𝑀𝐴𝐸 = ⁡
1

𝑛
×∑|𝑦𝑖 − 𝑦̂𝑖| (8) 

with: 

 𝑛  : amount of data, 
𝑦𝑖   : true value, 
𝑦̂𝑖  : model prediction value. 
 

2. RMSE (Root Mean Squared Error)  

RMSE is a standard performance indicator in 

numerical prediction evaluation, especially in 

financial time series studies, due to its sensitivity to 

large errors making it an informative early signal of 

potential underfitting or over-smoothing. RMSE 

quantifies the magnitude of the difference between 

model predictions and actual observations [22]. As 

a widely used technique, RMSE helps assess the 

level of error in numerical prediction models. It is 

derived from the square root of the mean squared 

prediction errors. A decreasing RMSE generally 

reflects improved prediction accuracy particularly 

for trend direction changes though interpretation 

should consider residual patterns, as an extremely 

low RMSE may indicate overfitting or data leakage. 

Prediction accuracy is determined by the smallest 

error value across evaluation methods [23]. The 

RMSE formula using Equatiaon (9). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
×∑(𝑦𝑖 − 𝑦̂𝑖)

2 (9) 

 

3.  R² (The coefficient of determination)  

R² indicates the proportion of actual data variance 

explained by the model, ranging from 0 (no 

explanatory power) to 1 (perfect explanation) [16]. 

Although a high in sample R² is often considered a 

success marker, in out-of-sample evaluation, an R² 

close to 1 does not necessarily guarantee 

generalization abilityespecially if residuals still 

exhibit autocorrelation or systematic patterns [20]. 

The R² formula using Equation (10). 

𝑅2 = 1 − (
∑(𝑦𝑖 − 𝑦̂𝑖)

2

∑(𝑦𝑖 − 𝑦̂𝑖)
2
) (10) 

. 

III. RESULT AND DISCUSSIONS 

A. Naïve Bayes Model Prediction Results 

The autocorrelation function (ACF) and partial 

autocorrelation function (PACF) analyses were 

conducted exclusively on the training dataset to 

determine the optimal lag structure while avoiding 

information leakage. As illustrated in Fig. 2 and Fig. 3, 

the silver price series exhibited a clear AR(1)-type 

behavior. The PACF plot showed a single statistically 

significant spike at Lag 1 followed by an immediate 

cutoff into the insignificance region, indicating that 

only the most recent past observation has a direct and 

meaningful influence on the current price level. This 

pattern provideed strong empirical justification for 

selecting Lag 1 as the primary explanatory feature in the 

Naïve Bayes model. 

 

Fig. 2. ACF for training data 

 

Fig. 3. PACF for training data 

The ACF plot exhibited a slow and gradual decay 

across multiple lags, indicating strong persistence and a 

potentially non-stationary structure in silver prices, 

while the PACF showed a clear cutoff after Lag 1, 

justifying the selection of a single lag as the most 

parsimonious feature for Naïve Bayes modeling. 
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Although such non-stationarity might have violated 

classical linear time-series assumptions, it did not 

invalidate lag-based features in supervised learning, 

and differencing was intentionally not applied to 

preserve the original price scale and ensure a fair 

comparison with the LSTM model, which could learn 

non-stationary patterns implicitly. Based on this 

empirical evidence, a Lag-1 Naïve Bayes specification 

was adopted and yielded strong predictive performance, 

as summarized in Table 1, with RMSE = 0.9180, MAE 

= 0.7042, and R² = 0.9818, indicating that short-term 

price dependence alone captures a substantial 

proportion of the variability in silver prices under long-

horizon and volatile market conditions. 

TABLE 1. NAÏVE BAYES MODEL EVALUATION 

Model RMSE MAE R2 

Naïve Bayes 0.9180 0.7042 0.9818 

 

Fig. 4 further supported this conclusion by 

comparing the actual silver prices with the Lag-1 Naïve 

Bayes predictions over the test period. The predicted 

series closely followed the overall trajectory of the 

observed prices, demonstrating that immediate past 

information is sufficient to reproduce the dominant 

price dynamics. Minor deviations appeared during 

episodes of sharp price acceleration and extreme 

volatility, particularly toward the end of the sample, 

where the model exhibits slight lagging behavior. This 

smoothing effect reflected the inherent limitation of a 

probabilistic baseline model relying on conditional 

independence assumptions. 

 

Fig. 4. Actual vs. predicted silver prices by Naïve Bayes model 

(Lag-1) 

 

B. LSTM Model Prediction Results 

The LSTM model was constructed using a two-

layer architecture with 50 units per layer, a dropout rate 

of 0.2, and two dense layers (25 and 1 unit). The silver 

price data were normalized using a Min-Max Scaler and 

reshaped into 60-day input sequences (n_steps = 60) to 

predict the subsequent day’s price. Hyperparameter 

optimization was conducted via grid search over the 

number of units, learning rate (0.001, 0.0005), batch 

size (64), and epochs (200), with early stopping applied 

based on validation loss, and the best model was 

selected using the lowest RMSE. The optimal 

configuration consisted of 2 LSTM layers, 50 units, 

dropout 0.2, batch size 64, learning rate 0.0005, and 200 

epochs. Evaluation on the test data demonstrated strong 

predictive performance with RMSE = 0.5277, MAE = 

0.3493, and R² = 0.9939, indicating that the model 

explains 99.39% of the variance in actual prices, as 

summarized in Table 2. 

TABLE 2. LSTM MODEL EVALUATION 

Model RMSE MAE R2 

LSTM 0.5277 0.3493 0.9939 

 

 Visualization in Fig. 5 showed that the LSTM 

predictions closely track the actual silver price series, 

even during periods of high volatility. This 

demonstrated that the model effectively captures 

nonlinear trends and short- to medium-term temporal 

dependencies in the data, indicating strong predictive 

performance and the ability to follow rapid price 

movements in the market. 

 

Fig. 5. Actual vs. predicted silver prices by LSTM model 

C.  Performance Comparison: Naïve Bayes vs. LSTM 

Based on Table 3, LSTM was the most superior 

model overall. This conclusion was drawn from the fact 

that its prediction errors were lower and it explained a 

higher proportion of the variance in the data, with an R² 

of 0.9939, compared to Naïve Bayes. Using only MAE 

would not have capture the impact of extreme 

prediction errors, while using only RMSE could have 

overemphasize outliers. Therefore, considering both 

metrics together, along with the high R², provided a 

more balanced and informative assessment, confirming 

LSTM’s better predictive performance. 

TABLE 3. EVALUATION OF BOTH MODELS ON THE SAME 

TEST SET 

Model RMSE MAE R2 
Naïve Bayes 0.9180 0.7042 0.9818 

LSTM 0.5277 0.3493 0.9939 

 

D. Short-Term Forecasting Using Monte Carlo 

LSTM 

The short-term forecasting results using Monte 
Carlo LSTM for the next 90 days (Figure 6) showed 
historical silver prices in blue, while the red line 
represented the model’s median predictions. The 
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transparent red area depicted the 10%-90% prediction 
interval (PI), indicating the range of price uncertainty 
with an 80% probability. The visualization suggested 
that silver prices were expected to moderately decline 
from 48.44 USD to a median of 43.84 USD by day 90, 
although price volatility remained high. 

The purple and green dashed lines marked the 

train/test split and the start of the forecast period, 

making it easier to distinguish historical data from 

predictions. The prediction interval on day 90 ranged 

from 40.94–47.46 USD, indicating that actual prices 

could deviate from the median forecast. Overall, Monte 

Carlo LSTM effectively captured historical trends 

while providing useful uncertainty information for 

short-term risk planning. 

 

 
Fig. 6. Forecasting Results 

IV. CONCLUSIONS 

This study evaluated the efficacy of Naïve Bayes 

and LSTM models in forecasting silver prices. The 

Lag-1 Naïve Bayes model captured short-term price 

dependence and reproduced the dominant price 

dynamics, yielding strong predictive performance (R² 

= 0.9818), although it exhibited slight lagging behavior 

during episodes of rapid price acceleration and extreme 

volatility. In contrast, the LSTM model effectively 

tracked nonlinear trends and short- to medium-term 

temporal dependencies, achieving lower prediction 

errors and superior accuracy with an R² of 0.9939. The 

integration of Monte Carlo simulations extended the 

LSTM framework into uncertainty-aware short-term 

forecasting, providing both median price trajectories 

and 10%-90% prediction intervals that quantified 

forecast uncertainty. Overall, while Naïve Bayes 

provided a computationally efficient baseline, LSTM 

significantly outperformed it, particularly under 

volatile market conditions, confirming its robustness 

and suitability for capturing complex silver price 

dynamics and supporting strategic financial risk 

planning. 
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