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Abstract— Silver price volatility has increased markedly
in recent years, particularly since 2023, driven by
growing demand from the renewable energy sector. This
study compared two conceptually distinct forecasting
approaches: Naive Bayes (NB), which relies on
conditional independence assumptions, and Long Short-
Term Memory (LSTM), which models temporal
dependencies in time-series data. Daily silver price data
(USD/troy ounce) from January 1989 to October 2025
were analyzed. NB was implemented using a single lagged
price feature (t—1), while LSTM employed a two-layer
architecture with 50 units, 0.2 dropout, and a 60-day
sequential window. Empirical results showed that NB
achieved R> of 0.9818, reproducing dominant price
dynamics but exhibiting slight lagging during sharp price
movements. In contrast, LSTM achieved lower RMSE
and MAE, with an R? of 0.9939, effectively capturing
nonlinear dependencies and volatility patterns. When
extended with Monte Carlo simulation, LSTM enabled
uncertainty-aware short-term forecasting, providing
median price trajectories and prediction intervals,
making it a more robust framework for silver price
prediction under extreme volatility.

Index Terms— silver price; Naive Bayes; LSTM;
Monte Carlo.

I. INTRODUCTION

Silver is one of the key precious metal commodities
in the global economic system, functioning both as an
investment asset and an industrial raw material. Its price
dynamics often move in tandem with gold and serve as
an alternative investment during periods of economic
uncertainty [1]. However, silver prices are well known
for their sharp fluctuations, driven by macroeconomic
factors such as inflation, interest rates, exchange rates,
and rapidly changing industrial demand [2]. These
characteristics make accurate silver price forecasting
particularly important for investors, financial
institutions, and policymakers in formulating
investment strategies and managing economic risk [3].

In line with the increasing volatility of commodity
markets, various analytical approaches have been

developed to understand and forecast silver prices.
Conventional statistical methods such as ARIMA and
Exponential Smoothing have been widely applied, but
their reliance on linearity and stationarity assumptions
often limits their effectiveness when applied to highly
volatile and nonlinear commodity price data [4]. As a
result, machine learning-based approaches have gained
attention due to their ability to capture complex patterns
and nonlinear relationships without requiring strict
parametric assumptions [5].

Among machine learning methods, Naive Bayes
and Long Short-Term Memory (LSTM) represent two
fundamentally different modeling philosophies. Naive
Bayes is a probabilistic classifier grounded in Bayes’
Theorem and is valued for its simplicity and
computational efficiency [6]. LSTM is a development
of Recurrent Neural Network (RNN) designed to
recognize patterns and long-term dependencies in
sequential data, thus making it highly effective for
analyzing time series data such as silver prices [7].
Despite these differences, both methods continue to be
used in empirical studies, often motivated by trade-offs
between model complexity, interpretability, and
computational cost.

The Long Short-Term Memory (LSTM) method
has been widely applied across various domains,
including stock market analysis and prediction,
cryptocurrency price forecasting such as Dogecoin,
indoor air quality modeling, and railway transportation
operations environments [8, 9, 10, 11]. Meanwhile,
Naive Bayes has also been applied in weather
forecasting studies, where temperature, humidity, and
wind speed are commonly used as predictor features,
demonstrating its practicality as a probabilistic baseline
despite the strong independence assumptions [12].
These studies illustrated the broader applicability and
contrasting strengths of probabilistic and machine
learning-based models, particularly in terms of
accuracy, robustness, and computational efficiency.
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Many studies emphasize performance improvement
without explicitly examining whether complex deep
learning models provide meaningful advantages over
simpler probabilistic baselines when applied to long-
horizon commodity data, while comparative analyses
rarely  consider extended historical  periods
encompassing multiple volatility regimes, including
recent episodes of extreme price fluctuations. In
addition, limited attention has been given to the
practical implications of model behavior during trend
reversals and high-volatility phases, which are critical
for real-world decision-making. Addressing these gaps,
this study goes beyond a simple comparison of
predictive accuracy by evaluating how Naive Bayes and
LSTM differ in capturing temporal dynamics,
responsiveness to trend changes, and predictive
stability when applied to long-horizon silver price data.
Using daily world silver prices over an extended period,
this research assesses the practical suitability of
probabilistic versus deep learning approaches for
forecasting silver prices under nonlinear and volatile
market conditions, thereby contributing to a more
nuanced understanding of model selection in
commodity price forecasting.

II.  METHOD

To address the research question regarding the
comparative performance of Naive Bayes and LSTM in
predicting silver prices, this study adopts a comparative
experimental design, where both models are trained and
evaluated in parallel on an identical dataset, ensuring a
controlled and fair comparison. The workflow includes:
collection and validation of historical data, temporal
preprocessing, construction of two distinct model
architectures, training, objective evaluation using
regression metrics, and interpretation of performance in
the context of the temporal characteristics of silver price
series. An overview of the research workflow is
presented in Fig. 1.
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Fig. 1. Research Design

A. Data Collection

Historical silver price data (USD per troy ounce)
were obtained from Investing.com, covering daily
observations from January 3, 1989 to October 30, 2025,
resulting in 9,384 observations. This data source was
selected because market holidays are handled
consistently through forward-filling, ensuring a
continuous time series and preventing temporal bias
[1]. The dataset contains two main columns: Date and
Price, exported to CSV format and loaded into the
Python environment using pandas with parameters
parse_dates=["Date'] and index_col='Date’ to ensure
chronological ordering and compatibility with time
series analysis tools (e.g., statsmodels and scikit-learn).

B. Data Preprocessing

Data preprocessing was conducted to transform the
raw silver price series into a suitable representation for
machine learning—based regression models. Since
Investing.com applies forward-filling to account for
non-trading days, no missing values were expected;
nevertheless, explicit checks were performed using
dfisnull().sum() to confirm data completeness, along
with data type inspection (dfdtypes) to ensure
numerical consistency. The dataset was chronologically
ordered to preserve the temporal structure required for
time-series modeling.

Prior to feature construction, an autocorrelation
function (ACF) and partial autocorrelation function
(PACF) analysis was conducted exclusively on the
training dataset to avoid information leakage. The ACF
results indicate statistically significant short-term
autocorrelation, while the PACF exhibits a clear cutoff
after the first lag, suggesting that short-term temporal
dependence dominates the silver price dynamics. Based
on this empirical evidence, a lagged price feature
(Price-1) was constructed to represent short-term
memory in the Naive Bayes model. Rows containing
missing values introduced by the shift operation were
removed, yielding a clean and temporally aligned
dataset suitable for supervised learning.

The dataset was divided using an 80:20 temporal
split without shuffling to prevent look-ahead bias. The
training set consists of 7,505 observations spanning
January 3, 1989 to December 31, 2023, while the testing
set contains 1,877 observations from January 2, 2024 to
October 30, 2025, a period characterized by heightened
price volatility. In contrast to the Naive Bayes model,
the LSTM model does not rely on explicitly defined lag
variables. Instead, temporal dependence is captured
implicitly through fixed-length input sequences. In this
study, the data were reshaped into 60-day sequences
(n_steps = 60) using a sliding-window approach, where
each input sequence consists of silver prices from the
previous 60 trading days to predict the subsequent day’s
price. This sequence-based representation enables the
LSTM to learn nonlinear temporal patterns and
medium-term dependencies directly from historical
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price trajectories without

selection.

requiring manual lag

C. Naive Bayes Model

Naive Bayes was employed in this study as a
computationally efficient probabilistic baseline for
modeling silver price dynamics. Although Naive Bayes
is conventionally designed for classification tasks, it has
been previously adapted for regression-oriented
problems through discretization or probabilistic
approximation, particularly in exploratory or
comparative modeling contexts [13]. The silver price
distribution exhibits moderate positive skewness
(skewness = 0.8549), indicating asymmetry and
deviations from strict normality. While this level of
skewness does not represent an extreme heavy-tailed
distribution, it suggests that Gaussian assumptions may
not be fully satisfied across the entire price range,
thereby motivating the exploration of a probabilistic
modeling framework that is less sensitive to
distributional symmetry.

To accommodate the continuous nature of silver
prices, the target variable was discretized into a finite
number of intervals prior to model training.
Discretization enables the Naive Bayes classifier to
approximate regression behavior by estimating the
posterior probability of future price intervals
conditional on historical observations [14]. In this
study, historical price information from the preceding
three trading days was used as input features, and
conditional independence among lagged variables was
assumed. While this assumption is strong and may not
fully hold in financial time series, it allows the model to
remain analytically tractable and computationally
efficient, serving its intended role as a baseline
comparator rather than a primary predictive model.

The Naive Bayes model estimates the posterior
probability of a price interval C given observed
historical prices X as Equation (1).

P(X10)- P(O)
P(CIX)= PO 1)

with:

P(C | X) : posterior probability of class C given
evidence X

P(X | C) : probability that evidence X is assigned
class C

P(C) . prior probability of class C

P(X) : probability of evidence X

For numerical data, likelihood calculations can use the
Gaussian distribution [15].

D. LSTM Model

The Long Short-Term Memory (LSTM) network is
an advanced recurrent neural network architecture
introduced by Hochreiter and Schmidhuber to address
the vanishing gradient problem commonly encountered
in standard Recurrent Neural Networks (RNNs) when

modeling long sequential data [16]. Conventional
RNNSs process time-ordered data recursively but often
fail to retain long-term dependencies due to
exponentially diminishing gradients during
backpropagation [17]. LSTM mitigates this limitation
by incorporating a memory cell regulated by three
gating mechanisms such as input, forget, and output
gates, which collectively control the storage, update,
and release of information over time, enabling more
stable learning of temporal dependencies in volatile
financial time series such as silver prices [18].

The internal operations of the LSTM unit are
governed by gating equations that regulate information
flow within the memory cell. These mechanisms are
mathematically expressed through the input gate, forget
gate, cell state update, and output gate formulations,
which are summarized in Equations (2)—(7). Through
these equations, the LSTM learns to selectively
preserve relevant historical information while
discarding noise, enabling robust modeling of nonlinear
temporal dependencies in long-horizon silver price
forecasting.

ir = o(Wixe + Wpihe—y + b;) (2)
fe = o(Wrxe + Wyphe_y + by) (3)
Ce = tanh (Wx, + Wyche_y + b.) 4)
Co=fexCooq +i XC (5)

0p = o(Woxe + Wiohe—1 + by) (6)
h; = o, X tanh (C;) 7

with:

i; :input gate,

fi : forget gate,

0, :output gate,

C; : cell state,

h; : hidden state,

X; : input at time-t,

W : network weight, and
b :bias

In this study, the LSTM was implemented using a
sequence-based forecasting framework, with the silver
price series reshaped into fixed-length input sequences
of 60 trading days (n_steps = 60), where each sequence
predicted the subsequent day’s price. The model
architecture consisted of two stacked LSTM layers
with a tunable number of hidden units (50 or 100) and
dropout layers (rate = 0.2) to reduce overfitting,
followed by a fully connected layer to transform the
LSTM features into predicted prices. A grid search was
performed over the number of units per layer, learning
rate (0.001, 0.0005), batch size (64), and epochs (200,
with early stopping), and the optimal model was
selected based on the lowest root mean squared error
(RMSE) on the validation set. Training employed the
Adam optimizer with the selected learning rate, mean
squared error (MSE) as the loss function, and mean
absolute error (MAE) as an auxiliary metric, while
early stopping ensured generalization and prevented
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overfitting. The resulting model was then used for both
test set prediction and short-term Monte Carlo
forecasting.

E. Model Evaluation

To assess the predictive performance of Naive
Bayes and LSTM, given the silver price series
characteristics such as volatility clustering, regime-
switching, and heavy-tailed distribution evaluation was
conducted using three complementary regression
metrics: MAE, RMSE, and R? [19]. These metrics
jointly capture different aspects of prediction error:
absolute accuracy (MAE), sensitivity to large
deviations (RMSE), and the proportion of variance
explained by the model (R?).

1. MAE (Mean Absolute Error)

MAE computes the average absolute deviation
between predictions and observed values, treating
small and large errors equally [20]. Unlike RMSE,
which squares errors and thus penalizes large
deviations more heavily, MAE is more robust in the
presence of outliers such as silver price spikes due
to geopolitical turmoil or supply shocks [21]. In
practice, models with lower MAE generally yield
more consistently accurate predictions on average,
though they may not excel at capturing extremes.
The MAE formula using Equation (8).

1
MAE = —x ) |y~ 9 ®)
with:
n :amount of data,

y; : true value,
¥; : model prediction value.

2.RMSE (Root Mean Squared Error)

RMSE is a standard performance indicator in
numerical prediction evaluation, especially in
financial time series studies, due to its sensitivity to
large errors making it an informative early signal of
potential underfitting or over-smoothing. RMSE
quantifies the magnitude of the difference between
model predictions and actual observations [22]. As
a widely used technique, RMSE helps assess the
level of error in numerical prediction models. It is
derived from the square root of the mean squared
prediction errors. A decreasing RMSE generally
reflects improved prediction accuracy particularly
for trend direction changes though interpretation
should consider residual patterns, as an extremely
low RMSE may indicate overfitting or data leakage.
Prediction accuracy is determined by the smallest
error value across evaluation methods [23]. The
RMSE formula using Equatiaon (9).

1
RMSE = JZ X Z(yi — 92 ©)

3. R? (The coefficient of determination)

R? indicates the proportion of actual data variance
explained by the model, ranging from 0 (no
explanatory power) to 1 (perfect explanation) [16].
Although a high in sample R? is often considered a
success marker, in out-of-sample evaluation, an R?
close to 1 does not necessarily guarantee
generalization abilityespecially if residuals still
exhibit autocorrelation or systematic patterns [20].
The R? formula using Equation (10).

. — A. 2
“oi-(ome) o

III. RESULT AND DISCUSSIONS

A. Naive Bayes Model Prediction Results

The autocorrelation function (ACF) and partial
autocorrelation function (PACF) analyses were
conducted exclusively on the training dataset to
determine the optimal lag structure while avoiding
information leakage. As illustrated in Fig. 2 and Fig. 3,
the silver price series exhibited a clear AR(1)-type
behavior. The PACF plot showed a single statistically
significant spike at Lag 1 followed by an immediate
cutoff into the insignificance region, indicating that
only the most recent past observation has a direct and
meaningful influence on the current price level. This
pattern provideed strong empirical justification for
selecting Lag 1 as the primary explanatory feature in the
Naive Bayes model.

o 5 10 15 20

Fig. 2. ACF for training data

Fig. 3. PACF for training data

The ACF plot exhibited a slow and gradual decay
across multiple lags, indicating strong persistence and a
potentially non-stationary structure in silver prices,
while the PACF showed a clear cutoff after Lag 1,
justifying the selection of a single lag as the most
parsimonious feature for Naive Bayes modeling.
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Although such non-stationarity might have violated
classical linear time-series assumptions, it did not
invalidate lag-based features in supervised learning,
and differencing was intentionally not applied to
preserve the original price scale and ensure a fair
comparison with the LSTM model, which could learn
non-stationary patterns implicitly. Based on this
empirical evidence, a Lag-1 Naive Bayes specification
was adopted and yielded strong predictive performance,
as summarized in Table 1, with RMSE = 0.9180, MAE
= 0.7042, and R? = 0.9818, indicating that short-term
price dependence alone captures a substantial
proportion of the variability in silver prices under long-
horizon and volatile market conditions.

TABLE 1. NAIVE BAYES MODEL EVALUATION

MAE R?
0.7042 0.9818

Model
Naive Bayes

RMSE
0.9180

Fig. 4 further supported this conclusion by
comparing the actual silver prices with the Lag-1 Naive
Bayes predictions over the test period. The predicted
series closely followed the overall trajectory of the
observed prices, demonstrating that immediate past
information is sufficient to reproduce the dominant
price dynamics. Minor deviations appeared during
episodes of sharp price acceleration and extreme
volatility, particularly toward the end of the sample,
where the model exhibits slight lagging behavior. This
smoothing effect reflected the inherent limitation of a
probabilistic baseline model relying on conditional
independence assumptions.

— Harga Aktual
5 === Prediksi Naive Bayes

2019 2020 2021 2022 2022 2024 2025 2026
Date.

Fig. 4. Actual vs. predicted silver prices by Naive Bayes model
(Lag-1)

B. LSTM Model Prediction Results

The LSTM model was constructed using a two-
layer architecture with 50 units per layer, a dropout rate
of 0.2, and two dense layers (25 and 1 unit). The silver
price data were normalized using a Min-Max Scaler and
reshaped into 60-day input sequences (n_steps = 60) to
predict the subsequent day’s price. Hyperparameter
optimization was conducted via grid search over the
number of units, learning rate (0.001, 0.0005), batch
size (64), and epochs (200), with early stopping applied
based on validation loss, and the best model was
selected using the lowest RMSE. The optimal

configuration consisted of 2 LSTM layers, 50 units,
dropout 0.2, batch size 64, learning rate 0.0005, and 200
epochs. Evaluation on the test data demonstrated strong
predictive performance with RMSE = 0.5277, MAE =
0.3493, and R? = 0.9939, indicating that the model
explains 99.39% of the variance in actual prices, as
summarized in Table 2.

TABLE 2. LSTM MODEL EVALUATION

MAE R?
0.3493 0.9939

Model
LSTM

RMSE
0.5277

Visualization in Fig. 5 showed that the LSTM
predictions closely track the actual silver price series,
even during periods of high wvolatility. This
demonstrated that the model effectively captures
nonlinear trends and short- to medium-term temporal
dependencies in the data, indicating strong predictive
performance and the ability to follow rapid price
movements in the market.

— etua
Predicted

0]

019 2020 20 022 2023 2024 2025 2026
Date

Fig. 5. Actual vs. predicted silver prices by LSTM model

C. Performance Comparison: Naive Bayes vs. LSTM

Based on Table 3, LSTM was the most superior
model overall. This conclusion was drawn from the fact
that its prediction errors were lower and it explained a
higher proportion of the variance in the data, with an R?
0f 0.9939, compared to Naive Bayes. Using only MAE
would not have capture the impact of extreme
prediction errors, while using only RMSE could have
overemphasize outliers. Therefore, considering both
metrics together, along with the high R provided a
more balanced and informative assessment, confirming
LSTM’s better predictive performance.

TABLE 3. EVALUATION OF BOTH MODELS ON THE SAME

TEST SET
Model RMSE MAE R?
Naive Bayes 0.9180 0.7042 0.9818
LSTM 0.5277 0.3493 0.9939

D. Short-Term Forecasting Using Monte Carlo
LSTM
The short-term forecasting results using Monte
Carlo LSTM for the next 90 days (Figure 6) showed
historical silver prices in blue, while the red line
represented the model’s median predictions. The
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transparent red area depicted the 10%-90% prediction
interval (PI), indicating the range of price uncertainty
with an 80% probability. The visualization suggested
that silver prices were expected to moderately decline
from 48.44 USD to a median of 43.84 USD by day 90,
although price volatility remained high.

The purple and green dashed lines marked the
train/test split and the start of the forecast period,
making it easier to distinguish historical data from
predictions. The prediction interval on day 90 ranged
from 40.94—47.46 USD, indicating that actual prices
could deviate from the median forecast. Overall, Monte
Carlo LSTM effectively captured historical trends
while providing useful uncertainty information for
short-term risk planning.

19688 1992 199 2000 2004 2008 012 06 2020 024
Date

Fig. 6. Forecasting Results

IV. CONCLUSIONS

This study evaluated the efficacy of Naive Bayes
and LSTM models in forecasting silver prices. The
Lag-1 Naive Bayes model captured short-term price
dependence and reproduced the dominant price
dynamics, yielding strong predictive performance (R?
=0.9818), although it exhibited slight lagging behavior
during episodes of rapid price acceleration and extreme
volatility. In contrast, the LSTM model effectively
tracked nonlinear trends and short- to medium-term
temporal dependencies, achieving lower prediction
errors and superior accuracy with an R? 0f 0.9939. The
integration of Monte Carlo simulations extended the
LSTM framework into uncertainty-aware short-term
forecasting, providing both median price trajectories
and 10%-90% prediction intervals that quantified
forecast uncertainty. Overall, while Naive Bayes
provided a computationally efficient baseline, LSTM
significantly outperformed it, particularly under
volatile market conditions, confirming its robustness
and suitability for capturing complex silver price
dynamics and supporting strategic financial risk
planning.
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