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Abstract— Brain tumor segmentation from low-quality 

magnetic resonance imaging (MRI) remains a 

challenging task due to noise, resolution variation, and 

low contrast between tumor and healthy tissues. 

Improving segmentation accuracy is essential to support 

more precise diagnosis and treatment planning. This 

study proposes a hybrid deep learning model that 

integrates V-Net and Swin Transformer–based 

architecture (Swin UNETR) for automatic brain tumor 

segmentation in multimodal MRI images. The MICCAI 

BraTS 2020 dataset was used, consisting of T1, T1c, T2, 

and FLAIR sequences with corresponding segmentation 

labels. The preprocessing pipeline includes resampling, 

skull stripping, intensity normalization, and data 

augmentation. V-Net is employed to extract local spatial 

features from 3D volumetric data, while the Swin 

UNETR captures global spatial relationships through a 

self-attention mechanism. Postprocessing procedures 

such as thresholding, morphological refinement, and 

false-positive removal are applied to enhance 

segmentation quality. The proposed hybrid model 

achieves Dice scores of 0.8635 for Whole Tumor (WT), 

0.7179 for Tumor Core (TC), and 0.8073 for Enhancing 

Tumor (ET), with additional evaluation using precision, 

recall, and IoU further confirming its effectiveness. These 

results highlight the model’s potential to improve 

automated brain tumor segmentation in low-quality MRI 

images and support its applicability as an efficient AI-

assisted diagnostic tool in clinical practice. 

Index Terms— Brain Neoplasms; MRI; Deep 

Learning; Segmentation; V-Net, Transformer. 

I. INTRODUCTION 

Magnetic Resonance Imaging (MRI) is a non-
invasive medical imaging technology that is crucial for 
detecting and diagnosing various diseases, particularly 
brain tumors. MRI's advantage lies in its ability to 
produce high-resolution images with good contrast 
against soft brain tissue. Imaging modalities such as T1-
weighted, T2-weighted, and FLAIR can provide 
comprehensive information about brain structure [1]. 
The multimodal MRI approach has proven effective in 
improving diagnostic accuracy because each modality 

provides distinct information about the structure and 
morphology of brain tissue [2]. 

However, segmenting brain tumors from MRI 
images is a significant challenge. This is due to the 
complexity of tumor shape and size, irregular 
boundaries, differences in intensity between tissues, 
and the presence of noise and imaging artifacts [3]. 
Therefore, automated methods based on artificial 
intelligence, particularly deep learning, are needed to 
improve segmentation efficiency and accuracy. 

Recent advancements in brain tumor segmentation 
and classification from MRI scans highlight the shift 
toward sophisticated deep learning and hybrid models. 
Early methods, like the one proposed by [4], utilized a 
classical approach combining a Modified Region 
Growing (MRG) algorithm for segmentation with 
Adaptive Support Vector Machine (ASVM) and 
Grasshopper Optimization Algorithm (GOA) feature 
selection to manage computational complexity. 
However, the field has rapidly moved toward 
Convolutional Neural Networks (CNNs) and 
Transformers. Key developments include 3D U-Net 
models for accurate volumetric segmentation [5], and 
advanced U-Net variants like the Trans U-Net [6] and 
UNETR [2], which leverage the Transformer's self-
attention mechanism to capture long-range spatial 
dependencies. Further innovation includes hybrid 
approaches such as the 3D U-Net with Contextual 
Transformer and Double Attention [1], multi-pathway 
3D FCNs for multimodal data fusion [7], and the 
introduction of computational efficiency techniques 
like QuantSR [8] for high-resolution medical imaging. 
These studies collectively demonstrate a trend of 
integrating advanced architectures and multi-modal 
data processing to achieve superior segmentation and 
classification accuracy for clinical application. 

One deep learning architecture that has proven 
effective is the U-Net, which uses a symmetric encoder-
decoder approach with skip connections. The U-Net 
performs well in medical image segmentation, but is 
less than optimal when handling images with high noise 
[9]. On the other hand, Swin UNETR is capable of 
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capturing global and local relationships in medical 
images, but requires significant computational 
resources [10]. Other approaches such as 3D U-Net and 
Modified Region Growing (MRG) have also been 
explored. 3D U-Net can process volumetric images, but 
still faces challenges when intensity is non-uniform 
[11]. V-Net, which uses a 3D convolutional neural 
network, is specifically designed for volumetric data 
such as MRI. V-Net is effective in understanding spatial 
context between layers, but has limitations in 
comprehensively capturing global features [12]. 

Combining V-Net with Swin UNETR in a hybrid 

approach is expected to overcome the weaknesses of 

each method. This combination allows for the 

integration of the local strengths of V-Net and the 

global strengths of Swin UNETR, thereby improving 

the accuracy of brain tumor segmentation in low-

quality MRI images. This system uses multimodal 

image input (T1, T1c, T2, FLAIR) from the BraTS 

dataset that has undergone preprocessing stages, 

including noise removal, intensity normalization, and 

data augmentation. The system outputs a label map 

(mask) that clearly shows the brain tumor area. The 

segmentation results were then compared with ground 

truth to evaluate performance. With this approach, the 

research is expected to significantly contribute to the 

development of more accurate and efficient automated 

segmentation tools, accelerate medical diagnosis, and 

enrich the academic literature in the field of deep 

learning-based medical image segmentation. 

II. METHOD 

A. Data 

The dataset used in this study is the MICCAI Brain 
Tumor Segmentation Challenge (BraTS) 2020 dataset, 
which provides multimodal MRI scans and expert-
annotated ground truth labels for brain tumor 
segmentation [13]. The data consists of four main 
imaging modalities: T1, T1 with contrast (T1c), T2, and 
FLAIR, as shown in Fig.1. Segmentation labels are 
provided in three categories: Whole Tumor (WT), 
Tumor Core (TC), and Enhancing Tumor (ET). 

The dataset described in Table I consists of two 

main parts: Training Data, used to train the 

segmentation model, and Validation Data, used to 

evaluate the model's performance. The dataset can be 

used for the development of deep learning-based 

segmentation methods because it provides tumor 

segmentation labels that include Whole Tumor (WT), 

Tumor Core (TC), and Enhancing Tumor (ET). 

TABLE  I. DATASET SPECIFICATIONS 

Specifications  Description 

Amount of MRI Images 369 total (295 for training 

and 74 for validation) 

Amount of Image slices 2,349 total images (1,847 for 

training and 502 for 

validation)  

Resolution 240×240×155 voxel. 

Modalities T1, T1c, T2, FLAIR. 

Color Depth 16-bit per channel. 

Format NIfTI (.nii). 

 

Computations were performed using a laptop with 

the following specifications: an Intel Core i5-13000 

processor, an NVIDIA RTX4050 GPU, 24 GB of 

RAM, and Windows OS. Programming was performed 

using Python via the Google Colab and Jupyter 

Notebook platforms, with libraries such as PyTorch, 

MONAI, and Scikit-image for medical image 

processing and deep learning model implementation. 

 

B. The Proposed Methods 

This research was conducted through several main 

stages systematically arranged to ensure optimal 

segmentation results, as shown in Fig. 2. These stages 

include data preprocessing, segmentation using a 

hybrid model, post-processing to refine the results, and 

testing scenarios to evaluate model performance. Each 

stage is interconnected and designed to address 

common issues encountered in segmenting low-quality 

MRI images, such as noise, intensity variations, and 

low contrast between tissues.

 

 

Fig. 1. Some Examples of Images from the BraTS 2020 MRI Dataset 
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Fig. 2. Architecture Diagram of Hybrid Model of V-Net and Swin UNETR for Brain Tumor Segmentation 

1). Preprocessing  

Preprocessing is key to producing consistent and 

optimal input images. First, resampling is performed to 

standardize voxel resolution, given that the MRI data 

originate from different institutions. Next, skull 

stripping is performed using threshold-based and 

connected components algorithms to remove non-brain 

tissue [14]. The third step is intensity normalization, 

applying z-score normalization to each modality. 

Normalized intensity value, 𝐼𝑛𝑜𝑟𝑚, is calculated based 

on (1) as follow: 

       

  𝐼𝑛𝑜𝑟𝑚 =
𝐼−𝜇

𝜎
     (1) 

 

Where I is an original voxel intensity value in the MRI 

image, μ is a mean intensity value within an MRI 

volume, σ is a standard deviation of intensity within an 

MRI volume.  

The modalities are then combined into a 3D tensor 

consisting of four channels. The dataset is then 

converted to tensor format for compatibility with deep 

learning architectures [15]. The final step is converting 

the image into a 3D tensor format ready for processing 

by the model. Once these steps are complete, the data 

is ready to be fed into the Hybrid V-Net and Swin 

UNETR, where V-Net handles local spatial features, 

while Swin UNETR focuses on broader spatial 

relationships. With proper preprocessing, the model is 

expected to perform more accurately in brain tumor 

segmentation. 

2). Segmentation Approach 

The hybrid V-Net and Swin UNETR model was 

designed using a dual-path approach. V-Net, as a 3D 

convolutional network, focuses on local spatial 

features through an encoder-decoder with skip 

connections [12]. Swin UNETR with a hierarchical 

architecture based on local self-attention, is used to 

extract global spatial context [10]. After feature 

extraction, feature fusion is performed through 

concatenation and convolution layers to combine the 

representations from both models. To combine the 

feature outputs from V-Net (local) and Swin UNETR 

(global), a concatenation operation is used followed by 

a 3D convolution to reduce the dimensionality and fuse 

the features, as shown in (2). 

           

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = Conv3D([𝐹𝑣||𝐹𝑡]          (2) 

 

Fv is features extracted from the V-Net pipeline, which 

captures local spatial information from volumetric 

MRI (e.g., shape, texture around the tumor). Ft is the 

extracted features from the Swin UNETR pipeline, 

which brings global context through a self-attention 

mechanism (long-range relations).  

The training process uses n epochs, with a loss 

function based on a combination of Dice Loss and 

Cross Entropy Loss [16]. Equation (3) is formula of the 

Dice Loss as: 

                        

ℒ𝐷𝑖𝑐𝑒 = 1 − 𝐷𝑖𝑐𝑒     (3) 

 

where Dice is as presented in follow equation: 

 

             𝐷𝑖𝑐𝑒 =
∑ 𝑝𝑖𝑔𝑖+𝜖𝑖

∑ 𝑝𝑖+∑ 𝑔𝑖𝑖 +𝜖𝑖
   (4) 

 

with pi = model prediction at the i-th voxel (0 or 1, or 

probabilistic 0–1), gi = ground truth at the i-th voxel (0 

or 1), ∑ 𝑝𝑖𝑔𝑖𝑖 = number of correctly detected voxels 

(intersection) and ϵ = small value to prevent division 

by zero.  

Equation (5) is formula of Cross Entropy Loss: 

 

    ℒ𝐶𝐸 = −∑ ∑ 𝑔𝑖,𝑐 log(𝑝𝑖,𝑐)
𝐶
𝑐=1𝑖     (5) 

 

with C = number of classes,  𝑔𝑖,𝑐= 1 if the i-th voxel 

belongs to class 𝑐 and 0 otherwise,  𝑝𝑖,𝑐= predicted 

probability that the i-th voxel belongs to class 𝑐. 

The final segmentation results are grouped into three 

sections, namely: Enhancing Tumor (ET) that is the 

active tissue after contrast, Tumor Core (TC) that is the 
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interior of the tumor without edema and Whole Tumor 

(WT) that is the entire tumor mass.  

3). Postprocessing 

The postprocessing stage begins with thresholding 

and probability masking, where a threshold value is set 

(usually between 0.3 and 0.7) to filter predictions based 

on the probabilities generated by a model, such as the 

Swin UNETR. Only voxels with probabilities above 

the threshold are considered valid, thus reducing noise 

and preventing minor misclassifications at the tumor 

edge [17]. Next, morphological refinement is 

performed using closing and dilation techniques to 

address contour roughness, fill small holes, and 

strengthen segmentation boundaries to align with the 

original anatomical structure [9]. This refinement is 

crucial because initial segmentation results are often 

discrete and not perfectly connected. 

The third step is the removal of false positives, 

which are areas of the image incorrectly identified as 

tumors. This process uses Connected Component 

Analysis (CCA) to eliminate small predicted regions 

that are not spatially related to the main tumor 

structure, thereby increasing the model's specificity 

[13]. To refine the final results, smoothing using 

Gaussian or median filtering is applied, which is useful 

for smoothing segmentation edges and reducing 

unnatural intensity variations due to noise or unstable 

predictions [6]. This stage also improves the accuracy 

of volume measurements and facilitates 3D 

visualization. 

As a final step, the segmentation results are 

converted into standard medical formats, namely NIfTI 

(.nii) and DICOM (.dcm). The NIfTI format is very 

commonly used in neuroimaging research because it is 

compatible with software such as FSL and SPM, while 

DICOM is a universal format in clinical medical 

practice and supports integration with hospital PACS 

systems [18]. This conversion makes the segmentation 

results ready for further analysis and clinical 

applications, bridging research findings with real-

world applications.  

4). Testing Scenario 

The test scenario in this study was designed to 

evaluate the performance and reliability of a hybrid V-

Net and Swin UNETR model in brain tumor 

segmentation based on the MICCAI BraTS 2020 

dataset. The dataset includes various MRI imaging 

modalities such as T1, T1c, T2, and FLAIR, equipped 

with ground truth labels, allowing for objective 

evaluation of prediction accuracy. Initial testing was 

conducted by applying the trained model to validation 

data to measure the model's ability to identify and 

separate tumor structures from healthy brain tissue. 

Next, model performance was analyzed using 

evaluation metrics such as the Dice Score, Jaccard 

Index, sensitivity, and specificity. The Dice Score 

measures the similarity between the predicted 

segmentation and the reference label, while the Jaccard 

Index measures the degree of overlap between the two. 

Sensitivity assesses the model's ability to correctly 

detect tumors, while specificity assesses its accuracy in 

avoiding misclassification of healthy tissue. In addition 

to the Dice Score, other commonly used segmentation 

metrics, including Intersection over Union (IoU), 

Precision, Recall (Sensitivity), and Specificity, were 

employed to ensure broader comparability with 

existing brain tumor segmentation studies. 

To assess the model's robustness to variations in 

image quality, testing was conducted on noisy or low-

resolution MRI data. This testing is crucial for 

assessing the model's resilience under less-than-ideal 

imaging conditions. Furthermore, the resulting 

segmentations were also analyzed post-processing, 

using techniques such as morphological refinement 

and removal of false positives to ensure the final results 

were more accurate and freer from false predictions. 

III. RESULT AND DISCUSSIONS 

A. Training Result 

The training process was carried out using a 

stepwise approach. Initially, the model was trained for 

5 epochs to test the stability of the architecture and data 

pipeline. The results of this initial testing showed that 

the loss value was still relatively high and the 

segmentation performance was not optimal. The 

segmentation produced at this stage appeared coarse, 

with a very low Dice Score (WT = 0.159, TC = 0.0, ET 

= 0.0), and was not able to differentiate well between 

Whole Tumor (WT), Enhancing Tumor (ET), and 

Tumor Core (TC). After increasing the number of 

epochs from 5 to 40, there was an improvement in both 

the Loss and Dice score for predicting brain tumors, as 

seen in Fig. 3 and 4. 

 

 
Fig. 3. Loss Comparison Graph between 5 epochs and 40 

epochs. 

 

Fig. 3 shows a comparison of the loss graphs 

between the model training for 5 epochs and 40 epochs. 

It can be seen that in the initial training with 5 epochs, 

the loss value decreased quite drastically but stopped 

before reaching stable convergence. Conversely, in the 

training for 40 epochs, the loss decrease was more 

consistent and sustained, reaching a value approaching 

0.0048 at the end of the training. This graph shows that 

increasing the number of epochs provides a longer 

learning period for the model, allowing it to better 
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adjust its weights and resulting in more accurate and 

stable segmentation performance.  

B. Segmentation Result 

Segmentation visualization for a representative 

MRI slice is shown in Fig. 4. For this particular sample, 

the model achieved Dice Scores of 0.8932 for Whole 

Tumor (WT), 0.9327 for Tumor Core (TC), and 0.8304 

for Enhancing Tumor (ET). These values represent the 

segmentation quality on a single example image and 

are intended to illustrate the model’s behavior visually. 

Table II summarizes the quantitative performance of 

the proposed model across multiple evaluation metrics, 

including Dice Similarity, Precision, and Recall, 

aggregated over the entire validation set. 

 

 
      (a)                                               (b) 

 
      (c)                                                    (d) 

Fig. 4. Prediction results example for 40 epochs: (a) Prediction of 

the entire tumor, (b) Enhancing tumor, (c) Tumor core, (d) Whole 

tumor. 

TABLE  II. SEGMENTATION PERFORMANCE EVALUATION RESULTS 

FOR EACH BRAIN TUMOR SUBREGION MAP 

Brain Tumor 

Subregions 

Dice 

Similarity 

Precision Recall 

Tumor Core 

(TC) 

0.7179 0.8346 0.6675 

Whole Tumor 
(WT) 

0.8635 0.8622 0.8677 

Enhancing 

Tumor (ET) 

0.8073 0.7904 0.8392 

 

Based on the test results, Whole Tumor (WT) 

achieved the highest scores across almost all 

evaluation metrics, with a Dice Score of 0.8635, 

Precision 0.8622, and Recall 0.8677. This indicates 

that the model is capable of identifying the entire tumor 

area with good accuracy and sensitivity. 

Meanwhile, Enhancing Tumor (ET) also 

demonstrated quite solid performance with a Dice 

Score of 0.8073, indicating the model's ability to detect 

active tumor regions or those experiencing contrast 

enhancement following contrast agent administration 

in MRI. However, the relatively small variation in 

shape and size of ET compared to WT makes it more 

difficult to fully segment. 

For the Tumor Core (TC), the Dice Score of 0.7179 

indicates that the model still faces challenges in 

precisely detecting the tumor core. This may be due to 

the similarity in intensity between the TC and the 

surrounding tissue, as well as the more limited 

distribution of TC data compared to WT. 

Overall, this evaluation results indicate that the 

hybrid V-Net and Swin UNETR approach is capable of 

providing competitive segmentation performance on 

low-quality MRI images. However, accuracy 

improvements, particularly for the TC segment, can 

still be achieved through strategies such as adding 

various data augmentations, adjusting the loss function 

(e.g., a combination of Dice Loss and Focal Loss), and 

implementing more adaptive post-processing 

techniques to reduce segmentation errors in small 

areas. 

C. Qualitative Evaluation Results 

Visual evaluation was performed by displaying 

axial MRI image slices along with predicted 

segmentation results and ground truth labels. This 

visualization demonstrates that the model is able to 

map tumor areas with relatively accurate shapes, 

although there are minor inaccuracies at the edges of 

small tumors. 

 

 
Fig. 5. MRI Modality Output: FLAIR, T1, T1CE, T2 

 

Fig. 5 shows the four main MRI modalities that 

have undergone preprocessing and postprocessing, 

used as input for the segmentation process: FLAIR, T1, 

T1CE, and T2. Each modality provides different 

information about brain tissue structures, such as 

edema, active tumor contrast, and anatomical brain 

boundaries. The combination of these four modalities 

is crucial in providing a complete representation of 

various types of brain tumor tissue. 
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Fig. 6. Ground Truth and Segmentation 

 

Fig. 6 displays a comparison between the 

segmentation results generated by the model and the 

ground truth labels. It can be seen that the model's 

predictions successfully follow the tumor shape and 

area quite accurately. Despite slight differences in 

tumor edges, the model was generally able to identify 

relevant tumor locations and shapes, including their 

internal structures, such as Tumor Core (TC) and 

Whole Tumor (WT). 

 

 

 
Fig. 7. Tumor Class Mask: ET (red), TC (yellow), WT (green) 

 

Fig. 7 clarifies the classification of tumor classes 

predicted by the model. Red indicates the Enhancing 

Tumor (ET) region, yellow represents the Tumor Core 

(TC), and green indicates the Whole Tumor (WT). This 

mask helps assess how well the model can spatially 

distinguish and characterize each tumor subregion and 

highlights the model's ability to detect complex tumor 

structures with precise segmentation. 

 

D. 3D Visualization 

As part of the qualitative evaluation, a three-

dimensional visualization of the brain tumor 

segmentation results was performed using the Plotly 

library. The purpose of this visualization was to 

provide a comprehensive understanding of the spatial 

structure of the tumor predicted by the FusionModel 

model, while also more intuitively evaluating the 

accuracy, integrity, and distribution of each tumor 

component. The visualization was performed by 

mapping each voxel classified as tumor into 3D space 

based on the (x, y, z) coordinates of the pred_mask, 

which is the final segmentation prediction result. Each 

voxel is displayed as a point scatter in 3D space and 

assigned a different color to distinguish the tumor 

components: yellow for Tumor Core, green for Whole 

Tumor, and red for Enhancing Tumor. 

 
   (a)                                   (b) 

 
           (c)                              (d) 

Fig. 8. 3D visualization of (a) the entire tumor (b) the Whole 

Tumor (c) the Tumor Core and (d) Enhancing Tumor (ET) 

 

This visualization consists of four main sections. 

First, the full tumor prediction visualization displays 

all voxels classified as part of the tumor, colored based 

on their respective labels. This visualization illustrates 

the overall structure and distribution of the tumor, 

including irregular borders, asymmetric distribution, 

and areas of high density that may indicate tumor 

dominance. The clarity of the color labels allows 

identification of spatial relationships between tumor 

components and helps assess whether the model's 

predictions logically follow the biological pattern of 

the brain tumor. 

The Whole Tumor (WT) visualization focuses on 

the entire tumor mass regardless of label type. In this 

stage, all voxels with a label greater than zero are 

displayed in green, reflecting the total size and shape 

of the tumor. This visualization is useful for evaluating 

whether the model covers the entire tumor volume as 

intended, or whether it is missing important areas 

(under-segmentation) or over-segmenting. 

The third visualization displays only the Tumor 

Core (TC), the deepest area of the tumor, typically 

composed of dense tissue and crucial for diagnosis. 

The TC is displayed in yellow to highlight whether the 

model accurately and consistently identifies the tumor 

core, consistent with the general pattern of tumor 
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growth. The distinctive shape and location of the TC 

can help assess the potential for compression of vital 

brain structures. 

The Enhancing Tumor (ET) was visualized, which 

is the area of the tumor that shows increased signal on 

T1-weighted contrast (T1c) imaging. This area is often 

associated with high levels of biological activity and 

increased vascularization, making it important for 

diagnosis and therapy planning. Voxels in the ET are 

visualized in red, which helps observe the distribution 

and potential aggressiveness of the tumor in 3D space. 

Overall, this 3D visualization not only strengthens 

the quantitative evaluation results but also provides a 

more realistic spatial representation of model 

predictions, making it very useful for medical 

practitioners in understanding and analyzing brain 

tumor development more comprehensively. 

 

Discussion 

A. Findings 

This study demonstrates that combining the Swin 

UNETR and V-Net architectures into a single hybrid 

model (Fusion model) can improve the accuracy of 

brain tumor segmentation in volumetric MRI images. 

Quantitative evaluation results demonstrate that the 

average Dice Score for three tumor types, Whole 

Tumor (WT), Tumor Core (TC), and Enhancing 

Tumor (ET), reaches 0.8635, 0.7179, and 0.8073, 

respectively. These values are considered high, 

indicating that the model successfully recognizes and 

maps tumor areas accurately, even in low-resolution 

MRI images. 

Although several recent studies report higher Dice 

scores, particularly for Whole Tumor segmentation, 

these methods often rely on extensive architecture 

tuning, large-scale computational resources, or ideal 

imaging conditions. In contrast, the proposed hybrid 

V-Net and Swin UNETR model demonstrates 

balanced performance across Dice, Precision, and 

Recall metrics, especially under low-quality MRI 

conditions. This indicates that the proposed approach 

prioritizes robustness and generalizability rather than 

solely optimizing a single metric. 

When compared conceptually to non-hybrid 

baselines, a standalone V-Net effectively captures 

local volumetric features but lacks global contextual 

awareness, often leading to fragmented boundaries. 

Conversely, Swin UNETR models emphasize global 

spatial relationships but may miss fine-grained local 

details critical for small tumor regions. The proposed 

hybrid architecture integrates both strengths, resulting 

in improved segmentation consistency across WT, TC, 

and ET regions. 

This achievement aligns with a previous study by 

[2] which demonstrated that the use of a transformer-

based architecture like Swin UNETR is able to capture 

global spatial context better than conventional CNN 

models, especially for 3D segmentation tasks. 

Furthermore, the V-Net-based encoder-decoder 

approach proved effective in extracting local spatial 

features from medical volumes, as also demonstrated 

by [12] in their original study on V-Net for internal 

organ segmentation. 

The success of the fusion model in this study also 

demonstrates that an architectural ensemble approach 

can mitigate the weaknesses of each model when used 

alone. This is reinforced by findings [16] in nnU-Net, 

which suggest that appropriate architecture and 

pipeline adaptation, including fusion strategies and 

post-processing, significantly impact segmentation 

quality. Furthermore, qualitative evaluation through 

3D visualization demonstrated that the model's 

predictions were not only numerically accurate but also 

morphologically and spatially consistent. The Tumor 

Core (TC) and Enhancing Tumor (ET) areas were 

successfully mapped with shapes and distributions 

consistent with the general biological structure of brain 

tumors. 

However, several challenges and potential 

improvements remain. One is the reliance on training 

data, due to the lack of publicly available labels in the 

official BraTS validation set, evaluation was 

conducted using an internal validation split. This opens 

up the possibility of evaluation bias. Furthermore, 

some samples exhibited lower Dice scores in the 

Enhancing Tumor (ET) class, indicating that the model 

still has limitations in capturing small, mixed, low-

contrast tumor areas. A similar finding was also 

reported by [19], who emphasized that ET 

segmentation is a major challenge because its intensity 

contrast often overlaps with normal tissue. 

The implications of these findings are important in the 

context of developing AI-based clinical decision 

support systems. Fusion models such as those 

proposed in this study have the potential to be used as 

non-invasive and efficient early diagnostic tools, 

particularly for brain tumor screening in 3D images. 

However, further validation against external datasets 

and integration with feedback from healthcare 

professionals are needed for the system to be adopted 

clinically. 

B. Limitation 

Although the results are promising, this study still 

has several limitations that should be considered for 

future development. While multiple evaluation 

metrics, including Dice, Precision, and Recall, were 

employed, the inclusion of additional distance-based 

metrics such as the Hausdorff Distance could provide 

deeper insight into boundary accuracy. Furthermore, 

clinical evaluation involving radiologists or specialist 

physicians would offer more comprehensive validation 

of the segmentation results. 



 

 

 

 

Ultimatics : Jurnal Teknik Informatika, Vol. 17, No. 2 | December 2025 261 

 

ISSN 2085-4552 

A second limitation lies in the lack of segmentation 

labels in the validation data, so the evaluation was 

conducted only on the training data. This results in a 

lack of objective testing of the model's performance on 

data the model has never encountered before. 

Therefore, future research is recommended to perform 

manual splitting or add an external validation dataset 

for more comprehensive and accurate model 

evaluation. 

Furthermore, the current loss formulation can be 

further improved by incorporating advanced loss 

combinations, such as Dice Loss with Focal Loss, to 

enhance sensitivity for small tumor regions. 

Combining DiceLoss with CrossEntropyLoss is 

recommended to improve segmentation performance, 

especially for minority classes. Finally, future research 

is expected to explore hyperparameter optimization in 

more depth, such as variations in learning rate and 

batch size, as well as the application of spatial data 

augmentation such as rotation, flipping, and elastic 

deformation. These steps have the potential to improve 

the model's generalization and robustness to variations 

in tumor shape and size in MRI images. 

By considering these various suggestions and 

improvements, it is hoped that future research will 

produce a more reliable, accurate, and applicable brain 

tumor segmentation system in real-world clinical 

settings. 

IV. CONCLUSIONS 

 

The hybrid V-Net-Swin UNETR model 

successfully improves brain tumor segmentation 

performance on the BraTS 2020 MRI dataset. By 

combining comprehensive preprocessing, a dual-path 

feature extraction strategy, and adaptive 

postprocessing, the model achieves Dice scores of 

0.8635 for Whole Tumor (WT), 0.8073 for Enhancing 

Tumor (ET), and 0.7179 for Tumor Core (TC), 

demonstrating its ability to integrate local volumetric 

features with global contextual information 

effectively. These results highlight the model’s 

potential as a reliable AI-based diagnostic support tool 

in clinical workflows. For future development, further 

validation on external datasets is needed to assess 

generalization across imaging protocols, along with 

enhancements in detecting small tumor regions 

through improved loss functions and augmentation 

strategies. Incorporating uncertainty estimation, 

developing lightweight versions for real-time or 

resource-limited settings, and enabling interactive or 

semi-supervised segmentation could also enhance 

clinical usability. Additionally, integrating imaging 

data with clinical or molecular information offers 

opportunities for more comprehensive tumor 

characterization. 
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