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Abstract— Brain tumor segmentation from low-quality
magnetic resonance imaging (MRI) remains a
challenging task due to noise, resolution variation, and
low contrast between tumor and healthy tissues.
Improving segmentation accuracy is essential to support
more precise diagnosis and treatment planning. This
study proposes a hybrid deep learning model that
integrates V-Net and Swin Transformer—based
architecture (Swin UNETR) for automatic brain tumor
segmentation in multimodal MRI images. The MICCAI
BraTsS 2020 dataset was used, consisting of T1, T1lc, T2,
and FLAIR sequences with corresponding segmentation
labels. The preprocessing pipeline includes resampling,
skull stripping, intensity normalization, and data
augmentation. V-Net is employed to extract local spatial
features from 3D volumetric data, while the Swin
UNETR captures global spatial relationships through a
self-attention mechanism. Postprocessing procedures
such as thresholding, morphological refinement, and
false-positive removal are applied to enhance
segmentation quality. The proposed hybrid model
achieves Dice scores of 0.8635 for Whole Tumor (WT),
0.7179 for Tumor Core (TC), and 0.8073 for Enhancing
Tumor (ET), with additional evaluation using precision,
recall, and IoU further confirming its effectiveness. These
results highlight the model’s potential to improve
automated brain tumor segmentation in low-quality MRI
images and support its applicability as an efficient Al-
assisted diagnostic tool in clinical practice.

Index Terms— Brain Neoplasms; MRI;
Learning; Segmentation; V-Net, Transformer.

Deep

L INTRODUCTION

Magnetic Resonance Imaging (MRI) is a non-
invasive medical imaging technology that is crucial for
detecting and diagnosing various diseases, particularly
brain tumors. MRI's advantage lies in its ability to
produce high-resolution images with good contrast
against soft brain tissue. Imaging modalities such as T1-
weighted, T2-weighted, and FLAIR can provide
comprehensive information about brain structure [1].
The multimodal MRI approach has proven effective in
improving diagnostic accuracy because each modality

provides distinct information about the structure and
morphology of brain tissue [2].

However, segmenting brain tumors from MRI
images is a significant challenge. This is due to the
complexity of tumor shape and size, irregular
boundaries, differences in intensity between tissues,
and the presence of noise and imaging artifacts [3].
Therefore, automated methods based on artificial
intelligence, particularly deep learning, are needed to
improve segmentation efficiency and accuracy.

Recent advancements in brain tumor segmentation
and classification from MRI scans highlight the shift
toward sophisticated deep learning and hybrid models.
Early methods, like the one proposed by [4], utilized a
classical approach combining a Modified Region
Growing (MRG) algorithm for segmentation with
Adaptive Support Vector Machine (ASVM) and
Grasshopper Optimization Algorithm (GOA) feature

selection to manage computational complexity.
However, the field has rapidly moved toward
Convolutional Neural Networks (CNNs) and

Transformers. Key developments include 3D U-Net
models for accurate volumetric segmentation [5], and
advanced U-Net variants like the Trans U-Net [6] and
UNETR [2], which leverage the Transformer's self-
attention mechanism to capture long-range spatial
dependencies. Further innovation includes hybrid
approaches such as the 3D U-Net with Contextual
Transformer and Double Attention [1], multi-pathway
3D FCNs for multimodal data fusion [7], and the
introduction of computational efficiency techniques
like QuantSR [8] for high-resolution medical imaging.
These studies collectively demonstrate a trend of
integrating advanced architectures and multi-modal
data processing to achieve superior segmentation and
classification accuracy for clinical application.

One deep learning architecture that has proven
effective is the U-Net, which uses a symmetric encoder-
decoder approach with skip connections. The U-Net
performs well in medical image segmentation, but is
less than optimal when handling images with high noise
[9]. On the other hand, Swin UNETR is capable of
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capturing global and local relationships in medical
images, but requires significant computational
resources [10]. Other approaches such as 3D U-Net and
Modified Region Growing (MRG) have also been
explored. 3D U-Net can process volumetric images, but
still faces challenges when intensity is non-uniform
[11]. V-Net, which uses a 3D convolutional neural
network, is specifically designed for volumetric data
such as MRI. V-Net is effective in understanding spatial
context between layers, but has limitations in
comprehensively capturing global features [12].

Combining V-Net with Swin UNETR in a hybrid
approach is expected to overcome the weaknesses of
each method. This combination allows for the
integration of the local strengths of V-Net and the
global strengths of Swin UNETR, thereby improving
the accuracy of brain tumor segmentation in low-
quality MRI images. This system uses multimodal
image input (T1, Tle, T2, FLAIR) from the BraTS
dataset that has undergone preprocessing stages,
including noise removal, intensity normalization, and
data augmentation. The system outputs a label map
(mask) that clearly shows the brain tumor area. The
segmentation results were then compared with ground
truth to evaluate performance. With this approach, the
research is expected to significantly contribute to the
development of more accurate and efficient automated
segmentation tools, accelerate medical diagnosis, and
enrich the academic literature in the field of deep
learning-based medical image segmentation.

II.  METHOD

A. Data

The dataset used in this study is the MICCAI Brain
Tumor Segmentation Challenge (BraTS) 2020 dataset,
which provides multimodal MRI scans and expert-
annotated ground truth labels for brain tumor
segmentation [13]. The data consists of four main
imaging modalities: T1, T1 with contrast (T1c), T2, and
FLAIR, as shown in Fig.1. Segmentation labels are
provided in three categories: Whole Tumor (WT),
Tumor Core (TC), and Enhancing Tumor (ET).

The dataset described in Table I consists of two
main parts: Training Data, used to train the
segmentation model, and Validation Data, used to
evaluate the model's performance. The dataset can be
used for the development of deep learning-based
segmentation methods because it provides tumor
segmentation labels that include Whole Tumor (WT),
Tumor Core (TC), and Enhancing Tumor (ET).

TABLE 1. DATASET SPECIFICATIONS

Specifications Description

369 total (295 for training
and 74 for validation)

2,349 total images (1,847 for
training and 502 for
validation)

Amount of MRI Images

Amount of Image slices

Resolution 240x240x155 voxel.
Modalities T1, Tlc, T2, FLAIR.
Color Depth 16-bit per channel.
Format NIfTI (.nii).

Computations were performed using a laptop with
the following specifications: an Intel Core i5-13000
processor, an NVIDIA RTX4050 GPU, 24 GB of
RAM, and Windows OS. Programming was performed
using Python via the Google Colab and Jupyter
Notebook platforms, with libraries such as PyTorch,
MONAI, and Scikit-image for medical image
processing and deep learning model implementation.

B. The Proposed Methods

This research was conducted through several main
stages systematically arranged to ensure optimal
segmentation results, as shown in Fig. 2. These stages
include data preprocessing, segmentation using a
hybrid model, post-processing to refine the results, and
testing scenarios to evaluate model performance. Each
stage is interconnected and designed to address
common issues encountered in segmenting low-quality
MRI images, such as noise, intensity variations, and
low contrast between tissues.

Fig. 1. Some Examples of Images from the BraTS 2020 MRI Dataset
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Fig. 2. Architecture Diagram of Hybrid Model of V-Net and Swin UNETR for Brain Tumor Segmentation

1). Preprocessing

Preprocessing is key to producing consistent and
optimal input images. First, resampling is performed to
standardize voxel resolution, given that the MRI data
originate from different institutions. Next, skull
stripping is performed using threshold-based and
connected components algorithms to remove non-brain
tissue [14]. The third step is intensity normalization,
applying z-score normalization to each modality.
Normalized intensity value, I, -m, is calculated based
on (1) as follow:

=t &)

I
norm .

Where [ is an original voxel intensity value in the MRI
image, u is a mean intensity value within an MRI
volume, ¢ is a standard deviation of intensity within an
MRI volume.

The modalities are then combined into a 3D tensor
consisting of four channels. The dataset is then
converted to tensor format for compatibility with deep
learning architectures [15]. The final step is converting
the image into a 3D tensor format ready for processing
by the model. Once these steps are complete, the data
is ready to be fed into the Hybrid V-Net and Swin
UNETR, where V-Net handles local spatial features,
while Swin UNETR focuses on broader spatial
relationships. With proper preprocessing, the model is
expected to perform more accurately in brain tumor
segmentation.

2). Segmentation Approach

The hybrid V-Net and Swin UNETR model was
designed using a dual-path approach. V-Net, as a 3D
convolutional network, focuses on local spatial
features through an encoder-decoder with skip
connections [12]. Swin UNETR with a hierarchical
architecture based on local self-attention, is used to
extract global spatial context [10]. After feature
extraction, feature fusion is performed through
concatenation and convolution layers to combine the
representations from both models. To combine the

feature outputs from V-Net (local) and Swin UNETR
(global), a concatenation operation is used followed by
a 3D convolution to reduce the dimensionality and fuse
the features, as shown in (2).

Frusion = Conv3D([F,||F] 2

F, is features extracted from the V-Net pipeline, which
captures local spatial information from volumetric
MRI (e.g., shape, texture around the tumor). F; is the
extracted features from the Swin UNETR pipeline,
which brings global context through a self-attention
mechanism (long-range relations).

The training process uses n epochs, with a loss
function based on a combination of Dice Loss and
Cross Entropy Loss [16]. Equation (3) is formula of the
Dice Loss as:

Lpice =1 — Dice 3)

where Dice is as presented in follow equation:

Yibigite

Dice = —=———=——
YipitXigite

4)
with p; = model prediction at the i-th voxel (0 or 1, or
probabilistic 0—1), g; = ground truth at the i-th voxel (0
or 1), i p;gi= number of correctly detected voxels
(intersection) and € = small value to prevent division
by zero.

Equation (5) is formula of Cross Entropy Loss:

Leg=—2iXéoy Gic 108(Pi,c) %)

with C = number of classes, g;.= 1 if the i-th voxel
belongs to class ¢ and 0 otherwise, p; .= predicted
probability that the i-th voxel belongs to class c.

The final segmentation results are grouped into three
sections, namely: Enhancing Tumor (ET) that is the
active tissue after contrast, Tumor Core (TC) that is the
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interior of the tumor without edema and Whole Tumor
(WT) that is the entire tumor mass.

3). Postprocessing

The postprocessing stage begins with thresholding
and probability masking, where a threshold value is set
(usually between 0.3 and 0.7) to filter predictions based
on the probabilities generated by a model, such as the
Swin UNETR. Only voxels with probabilities above
the threshold are considered valid, thus reducing noise
and preventing minor misclassifications at the tumor
edge [17]. Next, morphological refinement is
performed using closing and dilation techniques to
address contour roughness, fill small holes, and
strengthen segmentation boundaries to align with the
original anatomical structure [9]. This refinement is
crucial because initial segmentation results are often
discrete and not perfectly connected.

The third step is the removal of false positives,
which are areas of the image incorrectly identified as
tumors. This process uses Connected Component
Analysis (CCA) to eliminate small predicted regions
that are not spatially related to the main tumor
structure, thereby increasing the model's specificity
[13]. To refine the final results, smoothing using
Gaussian or median filtering is applied, which is useful
for smoothing segmentation edges and reducing
unnatural intensity variations due to noise or unstable
predictions [6]. This stage also improves the accuracy
of volume measurements and facilitates 3D
visualization.

As a final step, the segmentation results are
converted into standard medical formats, namely NIfTI
(-nii) and DICOM (.dcm). The NIfTI format is very
commonly used in neuroimaging research because it is
compatible with software such as FSL and SPM, while
DICOM is a universal format in clinical medical
practice and supports integration with hospital PACS
systems [18]. This conversion makes the segmentation
results ready for further analysis and clinical
applications, bridging research findings with real-
world applications.

4). Testing Scenario

The test scenario in this study was designed to
evaluate the performance and reliability of a hybrid V-
Net and Swin UNETR model in brain tumor
segmentation based on the MICCAI BraTS 2020
dataset. The dataset includes various MRI imaging
modalities such as T1, Tlc, T2, and FLAIR, equipped
with ground truth labels, allowing for objective
evaluation of prediction accuracy. Initial testing was
conducted by applying the trained model to validation
data to measure the model's ability to identify and
separate tumor structures from healthy brain tissue.
Next, model performance was analyzed using
evaluation metrics such as the Dice Score, Jaccard
Index, sensitivity, and specificity. The Dice Score
measures the similarity between the predicted

segmentation and the reference label, while the Jaccard
Index measures the degree of overlap between the two.
Sensitivity assesses the model's ability to correctly
detect tumors, while specificity assesses its accuracy in
avoiding misclassification of healthy tissue. In addition
to the Dice Score, other commonly used segmentation
metrics, including Intersection over Union (IoU),
Precision, Recall (Sensitivity), and Specificity, were
employed to ensure broader comparability with
existing brain tumor segmentation studies.

To assess the model's robustness to variations in
image quality, testing was conducted on noisy or low-
resolution MRI data. This testing is crucial for
assessing the model's resilience under less-than-ideal
imaging conditions. Furthermore, the resulting
segmentations were also analyzed post-processing,
using techniques such as morphological refinement
and removal of false positives to ensure the final results
were more accurate and freer from false predictions.

III. RESULT AND DISCUSSIONS

A. Training Result

The training process was carried out using a
stepwise approach. Initially, the model was trained for
5 epochs to test the stability of the architecture and data
pipeline. The results of this initial testing showed that
the loss value was still relatively high and the
segmentation performance was not optimal. The
segmentation produced at this stage appeared coarse,
with a very low Dice Score (WT =0.159, TC=0.0, ET
= 0.0), and was not able to differentiate well between
Whole Tumor (WT), Enhancing Tumor (ET), and
Tumor Core (TC). After increasing the number of
epochs from 5 to 40, there was an improvement in both
the Loss and Dice score for predicting brain tumors, as
seen in Fig. 3 and 4.

—a— Training 40 Epoch
— Training 5 Epoch

015

Training Loss

alo

005

000 e

R EE )
Epoach

Fig. 3. Loss Comparison Graph between 5 epochs and 40
epochs.

Fig. 3 shows a comparison of the loss graphs
between the model training for 5 epochs and 40 epochs.
It can be seen that in the initial training with 5 epochs,
the loss value decreased quite drastically but stopped
before reaching stable convergence. Conversely, in the
training for 40 epochs, the loss decrease was more
consistent and sustained, reaching a value approaching
0.0048 at the end of the training. This graph shows that
increasing the number of epochs provides a longer
learning period for the model, allowing it to better
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adjust its weights and resulting in more accurate and
stable segmentation performance.

B. Segmentation Result

Segmentation visualization for a representative
MRI slice is shown in Fig. 4. For this particular sample,
the model achieved Dice Scores of 0.8932 for Whole
Tumor (WT), 0.9327 for Tumor Core (TC), and 0.8304
for Enhancing Tumor (ET). These values represent the
segmentation quality on a single example image and
are intended to illustrate the model’s behavior visually.
Table II summarizes the quantitative performance of
the proposed model across multiple evaluation metrics,
including Dice Similarity, Precision, and Recall,
aggregated over the entire validation set.

(©) (d)
Fig. 4. Prediction results example for 40 epochs: (a) Prediction of
the entire tumor, (b) Enhancing tumor, (¢) Tumor core, (d) Whole
tumor.

TABLE II. SEGMENTATION PERFORMANCE EVALUATION RESULTS
FOR EACH BRAIN TUMOR SUBREGION MAP

Brain Tumor Dice Precision Recall
Subregions Similarity
Tumor Core 0.7179 0.8346 0.6675
(TO)
Whole Tumor 0.8635 0.8622 0.8677
(WT)
Enhancing 0.8073 0.7904 0.8392
Tumor (ET)

Based on the test results, Whole Tumor (WT)
achieved the highest scores across almost all
evaluation metrics, with a Dice Score of 0.8635,
Precision 0.8622, and Recall 0.8677. This indicates
that the model is capable of identifying the entire tumor
area with good accuracy and sensitivity.

Meanwhile, Enhancing Tumor (ET) also
demonstrated quite solid performance with a Dice
Score of 0.8073, indicating the model's ability to detect
active tumor regions or those experiencing contrast
enhancement following contrast agent administration

in MRI. However, the relatively small variation in
shape and size of ET compared to WT makes it more
difficult to fully segment.

For the Tumor Core (TC), the Dice Score of 0.7179
indicates that the model still faces challenges in
precisely detecting the tumor core. This may be due to
the similarity in intensity between the TC and the
surrounding tissue, as well as the more limited
distribution of TC data compared to WT.

Overall, this evaluation results indicate that the
hybrid V-Net and Swin UNETR approach is capable of
providing competitive segmentation performance on
low-quality MRI images. However, accuracy
improvements, particularly for the TC segment, can
still be achieved through strategies such as adding
various data augmentations, adjusting the loss function
(e.g., a combination of Dice Loss and Focal Loss), and
implementing more  adaptive  post-processing
techniques to reduce segmentation errors in small
areas.

C. Qualitative Evaluation Results

Visual evaluation was performed by displaying
axial MRI image slices along with predicted

segmentation results and ground truth labels. This
visualization demonstrates that the model is able to
map tumor areas with relatively accurate shapes,
although there are minor inaccuracies at the edges of

small tumors.
FLAIR T1

T1CE T2

Fig. 5. MRI Modality Output: FLAIR, T1, TICE, T2

Fig. 5 shows the four main MRI modalities that
have undergone preprocessing and postprocessing,
used as input for the segmentation process: FLAIR, T1,
TI1CE, and T2. Each modality provides different
information about brain tissue structures, such as
edema, active tumor contrast, and anatomical brain
boundaries. The combination of these four modalities
is crucial in providing a complete representation of
various types of brain tumor tissue.
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Ground Truth

Prediction

Fig. 6. Ground Truth and Segmentation

Fig. 6 displays a comparison between the
segmentation results generated by the model and the
ground truth labels. It can be seen that the model's
predictions successfully follow the tumor shape and
area quite accurately. Despite slight differences in
tumor edges, the model was generally able to identify
relevant tumor locations and shapes, including their
internal structures, such as Tumor Core (TC) and
Whole Tumor (WT).

Full Prediction Enhancing Tumor (ET)

Tumer Core (TC)

Whole Tumor (WT)

Fig. 7. Tumor Class Mask: ET (red), TC (yellow), WT (green)

Fig. 7 clarifies the classification of tumor classes
predicted by the model. Red indicates the Enhancing
Tumor (ET) region, yellow represents the Tumor Core
(TC), and green indicates the Whole Tumor (WT). This
mask helps assess how well the model can spatially
distinguish and characterize each tumor subregion and
highlights the model's ability to detect complex tumor
structures with precise segmentation.

D. 3D Visualization

As part of the qualitative evaluation, a three-
dimensional visualization of the brain tumor
segmentation results was performed using the Plotly
library. The purpose of this visualization was to
provide a comprehensive understanding of the spatial

structure of the tumor predicted by the FusionModel
model, while also more intuitively evaluating the
accuracy, integrity, and distribution of each tumor
component. The visualization was performed by
mapping each voxel classified as tumor into 3D space
based on the (x, y, z) coordinates of the pred mask,
which is the final segmentation prediction result. Each
voxel is displayed as a point scatter in 3D space and
assigned a different color to distinguish the tumor
components: yellow for Tumor Core, green for Whole
Tumor, and red for Enhancing Tumor.

(© (d
Fig. 8. 3D visualization of (a) the entire tumor (b) the Whole
Tumor (c) the Tumor Core and (d) Enhancing Tumor (ET)

This visualization consists of four main sections.
First, the full tumor prediction visualization displays
all voxels classified as part of the tumor, colored based
on their respective labels. This visualization illustrates
the overall structure and distribution of the tumor,
including irregular borders, asymmetric distribution,
and areas of high density that may indicate tumor
dominance. The clarity of the color labels allows
identification of spatial relationships between tumor
components and helps assess whether the model's
predictions logically follow the biological pattern of
the brain tumor.

The Whole Tumor (WT) visualization focuses on
the entire tumor mass regardless of label type. In this
stage, all voxels with a label greater than zero are
displayed in green, reflecting the total size and shape
of the tumor. This visualization is useful for evaluating
whether the model covers the entire tumor volume as
intended, or whether it is missing important areas
(under-segmentation) or over-segmenting.

The third visualization displays only the Tumor
Core (TC), the deepest area of the tumor, typically
composed of dense tissue and crucial for diagnosis.
The TC is displayed in yellow to highlight whether the
model accurately and consistently identifies the tumor
core, consistent with the general pattern of tumor
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growth. The distinctive shape and location of the TC
can help assess the potential for compression of vital
brain structures.

The Enhancing Tumor (ET) was visualized, which
is the area of the tumor that shows increased signal on
T1-weighted contrast (T1c) imaging. This area is often
associated with high levels of biological activity and
increased vascularization, making it important for
diagnosis and therapy planning. Voxels in the ET are
visualized in red, which helps observe the distribution
and potential aggressiveness of the tumor in 3D space.

Overall, this 3D visualization not only strengthens
the quantitative evaluation results but also provides a
more realistic spatial representation of model
predictions, making it very useful for medical
practitioners in understanding and analyzing brain
tumor development more comprehensively.

Discussion

A. Findings

This study demonstrates that combining the Swin
UNETR and V-Net architectures into a single hybrid
model (Fusion model) can improve the accuracy of
brain tumor segmentation in volumetric MRI images.
Quantitative evaluation results demonstrate that the
average Dice Score for three tumor types, Whole
Tumor (WT), Tumor Core (TC), and Enhancing
Tumor (ET), reaches 0.8635, 0.7179, and 0.8073,
respectively. These values are considered high,
indicating that the model successfully recognizes and
maps tumor areas accurately, even in low-resolution
MRI images.

Although several recent studies report higher Dice
scores, particularly for Whole Tumor segmentation,
these methods often rely on extensive architecture
tuning, large-scale computational resources, or ideal
imaging conditions. In contrast, the proposed hybrid
V-Net and Swin UNETR model demonstrates
balanced performance across Dice, Precision, and
Recall metrics, especially under low-quality MRI
conditions. This indicates that the proposed approach
prioritizes robustness and generalizability rather than
solely optimizing a single metric.

When compared conceptually to non-hybrid
baselines, a standalone V-Net effectively captures
local volumetric features but lacks global contextual
awareness, often leading to fragmented boundaries.
Conversely, Swin UNETR models emphasize global
spatial relationships but may miss fine-grained local
details critical for small tumor regions. The proposed
hybrid architecture integrates both strengths, resulting
in improved segmentation consistency across WT, TC,
and ET regions.

This achievement aligns with a previous study by
[2] which demonstrated that the use of a transformer-

based architecture like Swin UNETR is able to capture
global spatial context better than conventional CNN
models, especially for 3D segmentation tasks.
Furthermore, the V-Net-based encoder-decoder
approach proved effective in extracting local spatial
features from medical volumes, as also demonstrated
by [12] in their original study on V-Net for internal
organ segmentation.

The success of the fusion model in this study also
demonstrates that an architectural ensemble approach
can mitigate the weaknesses of each model when used
alone. This is reinforced by findings [16] in nnU-Net,
which suggest that appropriate architecture and
pipeline adaptation, including fusion strategies and
post-processing, significantly impact segmentation
quality. Furthermore, qualitative evaluation through
3D visualization demonstrated that the model's
predictions were not only numerically accurate but also
morphologically and spatially consistent. The Tumor
Core (TC) and Enhancing Tumor (ET) areas were
successfully mapped with shapes and distributions
consistent with the general biological structure of brain
tumors.

However, several challenges and potential
improvements remain. One is the reliance on training
data, due to the lack of publicly available labels in the
official BraTS validation set, evaluation was
conducted using an internal validation split. This opens
up the possibility of evaluation bias. Furthermore,
some samples exhibited lower Dice scores in the
Enhancing Tumor (ET) class, indicating that the model
still has limitations in capturing small, mixed, low-
contrast tumor areas. A similar finding was also
reported by [19], who emphasized that ET
segmentation is a major challenge because its intensity
contrast often overlaps with normal tissue.

The implications of these findings are important in the
context of developing Al-based clinical decision
support systems. Fusion models such as those
proposed in this study have the potential to be used as
non-invasive and efficient early diagnostic tools,
particularly for brain tumor screening in 3D images.
However, further validation against external datasets
and integration with feedback from healthcare
professionals are needed for the system to be adopted
clinically.

B. Limitation

Although the results are promising, this study still
has several limitations that should be considered for
future development. While multiple evaluation
metrics, including Dice, Precision, and Recall, were
employed, the inclusion of additional distance-based
metrics such as the Hausdorff Distance could provide
deeper insight into boundary accuracy. Furthermore,
clinical evaluation involving radiologists or specialist
physicians would offer more comprehensive validation
of the segmentation results.
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A second limitation lies in the lack of segmentation
labels in the validation data, so the evaluation was
conducted only on the training data. This results in a
lack of objective testing of the model's performance on
data the model has never encountered before.
Therefore, future research is recommended to perform
manual splitting or add an external validation dataset
for more comprehensive and accurate model
evaluation.

Furthermore, the current loss formulation can be
further improved by incorporating advanced loss
combinations, such as Dice Loss with Focal Loss, to
enhance sensitivity for small tumor regions.
Combining DiceLoss with CrossEntropyLoss 1is
recommended to improve segmentation performance,
especially for minority classes. Finally, future research
is expected to explore hyperparameter optimization in
more depth, such as variations in learning rate and
batch size, as well as the application of spatial data
augmentation such as rotation, flipping, and elastic
deformation. These steps have the potential to improve
the model's generalization and robustness to variations
in tumor shape and size in MRI images.

By considering these various suggestions and
improvements, it is hoped that future research will
produce a more reliable, accurate, and applicable brain
tumor segmentation system in real-world clinical
settings.

IV. CONCLUSIONS

The hybrid V-Net-Swin UNETR  model
successfully improves brain tumor segmentation
performance on the BraTS 2020 MRI dataset. By
combining comprehensive preprocessing, a dual-path
feature  extraction  strategy, and  adaptive
postprocessing, the model achieves Dice scores of
0.8635 for Whole Tumor (WT), 0.8073 for Enhancing
Tumor (ET), and 0.7179 for Tumor Core (TC),
demonstrating its ability to integrate local volumetric
features with global contextual information
effectively. These results highlight the model’s
potential as a reliable Al-based diagnostic support tool
in clinical workflows. For future development, further
validation on external datasets is needed to assess
generalization across imaging protocols, along with
enhancements in detecting small tumor regions
through improved loss functions and augmentation
strategies. Incorporating uncertainty estimation,
developing lightweight versions for real-time or
resource-limited settings, and enabling interactive or
semi-supervised segmentation could also enhance
clinical usability. Additionally, integrating imaging
data with clinical or molecular information offers
opportunities for more comprehensive tumor
characterization.
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