Prediksi Tingkat Kelulusan Tepat Waktu Mahasiswa Menggunakan Algoritma Naïve Bayes pada Universitas XYZ
Abstract
Data processing is imperative for the development of information technology. Almost any field of work has information about data. The data is made use of the analysis of the job. Nowadays, information data is imperatively processed to help workers in making decisions. This study discusses student prediction graduation rates by using the naïve Bayes method. That aims at providing information to college if they can use it properly to utilize the data of students who graduated by processing data mining. Based on the data mining process, steps founded that used producing information, namely predicting student graduation on time. The method of this study is Naïve Bayes with classification techniques. At this study, researchers used a six-phase data mining process of industry crossing standards in data mining known as CRISP-DM. The results of research concluded that the application of the Naive Bayes algorithm uses 4 (four) parameters namely ips, ipk, the number of credits, and graduation by getting an accuracy value of 80.95%.
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMATICS or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.