Implementasi Algoritma Support Vector Machine dan Chi Square untuk Analisis Sentimen User Feedback Aplikasi
Abstract
In order to adapt with evolving requirements and perform continuous software maintenance, it is essential for the software developers to understand the content of user feedback. User feedback such as bug report could provide so much information regarding the product from user’s point of view, especially parts that need improvements. However, it is often difficult to read all the feedback for products with enormous number of users as manually reading and analyzing each feedback could take too much time and effort. This research aims to develop a model for automatic feedback classification by implementing Support Vector Machine for the classifier’s algorithm and Chi-square method for feature selection. The model is developed using Python programming language and is then evaluated under different scenarios in order to measure its performance. Using a ratio of training and testing set of 80:20, our model achieved 77% accuracy, 50% precision, 55% recall, and 73% F1-score with 6.63 critical value and C=100 and gamma 0.001 as the SVM hyperparameters.
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMATICS or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.