Implementasi Algoritma Support Vector Machine dan Chi Square untuk Analisis Sentimen User Feedback Aplikasi

  • Lulu Luthfiana Universitas Multimedia Nusantara
  • Julio Christian Young Universitas Multimedia Nusantara
  • Andre Rusli Tokyo Denki University

Abstract

In order to adapt with evolving requirements and perform continuous software maintenance, it is essential for the software developers to understand the content of user feedback. User feedback such as bug report could provide so much information regarding the product from user’s point of view, especially parts that need improvements. However, it is often difficult to read all the feedback for products with enormous number of users as manually reading and analyzing each feedback could take too much time and effort. This research aims to develop a model for automatic feedback classification by implementing Support Vector Machine for the classifier’s algorithm and Chi-square method for feature selection. The model is developed using Python programming language and is then evaluated under different scenarios in order to measure its performance. Using a ratio of training and testing set of 80:20, our model achieved 77% accuracy, 50% precision, 55% recall, and 73% F1-score with 6.63 critical value and C=100 and gamma 0.001 as the SVM hyperparameters.

Downloads

Download data is not yet available.
Published
2020-12-29
How to Cite
Luthfiana, L., Young, J., & Rusli, A. (2020). Implementasi Algoritma Support Vector Machine dan Chi Square untuk Analisis Sentimen User Feedback Aplikasi. Ultimatics : Jurnal Teknik Informatika, 12(2), 125-126. https://doi.org/https://doi.org/10.31937/ti.v12i2.1828