Sentiment Analysis on Song Lyrics for Song Popularity Prediction Using BERT
Abstract
The increasingly competitiveness in music industry is giving some musicians disadvantages. Musicians need to pay more attention to the factors that influence the popularity of a song, so their song can be popular and they can gain a lot of profit. One of the various factors that can affect a song popularity is the lyrics. The influence of the lyrics can be explored through sentiment analysis. Sentiment analysis is a computing study that identify sentiments or emotions in a text. By conducting sentiment analysis on the lyrics, song popularity can be predicted. Based on the prediction result, songwriters can evaluate their lyrics, so their song can be popular. Bidirectional Encoder Representations from Transformers (BERT) is an excellent algorithm in terms of sentiment analysis. In this study, a BERT model was developed to predict the song popularity, based on the sentiment analysis of the song lyrics. The popularity class of a song will be predicted, based on the results of lyrics sentiment analysis. The developed model is a model that has been trained with English songs. Based on the experiment, the model that used oversampling method achieved accuracy by 87%, precision by 88%, recall by 87%, and f1-score by 87%.
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMATICS or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.