Klasifikasi Daun Dengan Perbaikan Fitur Citra Menggunakan Metode K-Nearest Neighbor
Abstract
Plants are the most important part in life on earth as oxygen supplier to breathe, groceries, fuel, medicine and more. Plants can be classified based on its leaves shape. Classification process is required well data extraction feature, so it needs fixing feature process at pre-processing level. Combining median filter and image erosion is used for fixing feature process. Whereas for feature extraction is used invariant moment method. In this research, it is used leaves classification based on leaves edge shape. K-Nearest Neighbor Method (KNN) is used for leaves classification process. KNN method is chosen because this method is known rapid in training data, effective for large training data, simple and easy to learn. Testing the result of leaves classification from image which is on dataset has been built to get accuracy value about 86,67%.
Index Terms—Classification, Median Filter, Invariant Moment, K-Nearest Neighbor.
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMATICS or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.