Sentiment Analysis in E-Commerce: Beauty Product Reviews
Abstract
The increasing popularity of online shopping platforms is fueling the need for automated sentiment analysis for product reviews. This research aims to build an automatic sentiment analysis model in Indonesian for e-commerce product reviews. This model is expected to help consumers make purchasing decisions more quickly. We utilize the IndoBERT model, which has shown to be quite effective for general sentiment analysis, achieving an evaluation accuracy of 66.2% despite a high evaluation loss of 0.8006. The approach used combines Natural Language Processing (NLP) and Machine Learning (ML) techniques. It is hoped that this research will be useful for consumers, shop owners, and researchers in efficiently understanding the sentiment of e-commerce product reviews.
Downloads

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMATICS or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.