Pengembangan Model Pengenalan Wajah Manusia dengan Teknik Reduksi Dimensi Bi2DPCA dan Support Vector Machine sebagai Classifier
Abstract
This paper presents the modeling of face recognition using feature extraction based on Principal Component Analysis (PCA) and Support Vector Machine (SVM) as a classifier. Three PCA techniques were compared, they are 1DPCA, 2DPCA and Bi-2DPCA. Meanwhile, three type of SVM kernel functions-linear, polynomial, and radial basis function (RBF) were used. The experiment used the ORL Face Database AT&T Laboratory, which contain 400 images with 10 images per each person. The leave one out method is used for validating each pair of extraction and classifier method. The highest accuracy is obtained by a combination of linear kernel and Bi-2DPCA85%, with 94.25%, and also the fastest computation time, is 15.34 seconds.
Index Terms— Face Recognition, Principle Component Analysis, Kernel, Support Vector Machine, Leave-one Out Cross Validation
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMATICS or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.